1
|
Addis DR, Aggarwal S, Lazrak A, Jilling T, Matalon S. Halogen-Induced Chemical Injury to the Mammalian Cardiopulmonary Systems. Physiology (Bethesda) 2021; 36:272-291. [PMID: 34431415 DOI: 10.1152/physiol.00004.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The halogens chlorine (Cl2) and bromine (Br2) are highly reactive oxidizing elements with widespread industrial applications and a history of development and use as chemical weapons. When inhaled, depending on the dose and duration of exposure, they cause acute and chronic injury to both the lungs and systemic organs that may result in the development of chronic changes (such as fibrosis) and death from cardiopulmonary failure. A number of conditions, such as viral infections, coexposure to other toxic gases, and pregnancy increase susceptibility to halogens significantly. Herein we review their danger to public health, their mechanisms of action, and the development of pharmacological agents that when administered post-exposure decrease morbidity and mortality.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, Division of Cardiothoracic Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama.,Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tamas Jilling
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Pediatrics, Division of Neonatology, Children's Hospital, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
2
|
Hadzic S, Wu CY, Avdeev S, Weissmann N, Schermuly RT, Kosanovic D. Lung epithelium damage in COPD - An unstoppable pathological event? Cell Signal 2020; 68:109540. [PMID: 31953012 DOI: 10.1016/j.cellsig.2020.109540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 10/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common term for alveolar septal wall destruction resulting in emphysema, and chronic bronchitis accompanied by conductive airway remodelling. In general, this disease is characterized by a disbalance of proteolytic/anti-proteolytic activity, augmented inflammatory response, increased oxidative/nitrosative stress, rise in number of apoptotic cells and decreased proliferation. As the first responder to the various environmental stimuli, epithelium occupies an important position in different lung pathologies, including COPD. Epithelium sequentially transitions from the upper airways in the direction of the gas exchange surface in the alveoli, and every cell type possesses a distinct role in the maintenance of the homeostasis. Basically, a thick ciliated structure of the airway epithelium has a major function in mucus secretion, whereas, alveolar epithelium which forms a thin barrier covered by surfactant has a function in gas exchange. Following this line, we will try to reveal whether or not the chronic bronchitis and emphysema, being two pathological phenotypes in COPD, could originate in two different types of epithelium. In addition, this review focuses on the role of lung epithelium in COPD pathology, and summarises underlying mechanisms and potential therapeutics.
Collapse
Affiliation(s)
- Stefan Hadzic
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Cheng-Yu Wu
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Sergey Avdeev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Djuro Kosanovic
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany; Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
3
|
Bartolini D, Galli F. The functional interactome of GSTP: A regulatory biomolecular network at the interface with the Nrf2 adaption response to oxidative stress. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1019:29-44. [DOI: 10.1016/j.jchromb.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/01/2023]
|
4
|
Mikerov AN, Phelps DS, Gan X, Umstead TM, Haque R, Wang G, Floros J. Effect of ozone exposure and infection on bronchoalveolar lavage: sex differences in response patterns. Toxicol Lett 2014; 230:333-344. [PMID: 24769259 DOI: 10.1016/j.toxlet.2014.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
Female mice exhibit a better survival rate than males after infection, but if infection follows an ozone-induced oxidative stress, male survival exceeds that of females. Our goal was to study bronchoalveolar lavage factors that contribute to these sex differences in outcome. We studied parameters at 4, 24, and 48 h after ozone exposure and infection, including markers of inflammation, oxidative stress, and tissue damage, and surfactant phospholipids and surfactant protein A (SP-A). A multianalyte immunoassay at the 4h time point measured 59 different cytokines, chemokines, and other proteins. We found that: (1) Although some parameters studied revealed sex differences, no sex differences were observed in LDH, total protein, MIP-2, and SP-A. Males showed more intragroup significant differences in SP-A between filtered air- and ozone-exposed mice compared to females. (2) Oxidized dimeric SP-A was higher in FA-exposed female mice. (3) Surfactant phospholipids were typically higher in males. (4) The multianalyte data revealed differences in the exuberance of responses under different conditions - males in response to infection and females in response to oxidative stress. These more exuberant, and presumably less well-controlled responses associate with the poorer survival. We postulate that the collective effects of these sex differences in response patterns of lung immune cells may contribute to the clinical outcomes previously observed.
Collapse
Affiliation(s)
- Anatoly N Mikerov
- The Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Department of General Hygiene and Ecology, Saratov State Medical University, Saratov, Russia
| | - David S Phelps
- The Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Xiaozhuang Gan
- The Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Todd M Umstead
- The Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Rizwanul Haque
- The Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Guirong Wang
- The Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Joanna Floros
- The Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
5
|
Affiliation(s)
- Sanjay Rajagopalan
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| | | |
Collapse
|
6
|
Pulmonary Collectins in Diagnosis and Prevention of Lung Diseases. ANIMAL LECTINS: FORM, FUNCTION AND CLINICAL APPLICATIONS 2012. [PMCID: PMC7121960 DOI: 10.1007/978-3-7091-1065-2_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pulmonary surfactant is a complex mixture of lipids and proteins, and is synthesized and secreted by alveolar type II epithelial cells and bronchiolar Clara cells. It acts to keep alveoli from collapsing during the expiratory phase of the respiratory cycle. After its secretion, lung surfactant forms a lattice structure on the alveolar surface, known as tubular myelin. Surfactant proteins (SP)-A, B, C and D make up to 10% of the total surfactant. SP-B and SPC are relatively small hydrophobic proteins, and are involved in the reduction of surface-tension at the air-liquid interface. SP-A and SP-D, on the other hand, are large oligomeric, hydrophilic proteins that belong to the collagenous Ca2+-dependent C-type lectin family (known as “Collectins”), and play an important role in host defense and in the recycling and transport of lung surfactant (Awasthi 2010) (Fig. 43.1). In particular, there is increasing evidence that surfactant-associated proteins A and -D (SP-A and SP-D, respectively) contribute to the host defense against inhaled microorganisms (see 10.1007/978-3-7091-1065_24 and 10.1007/978-3-7091-1065_25). Based on their ability to recognize pathogens and to regulate the host defense, SP-A and SP-D have been recently categorized as “Secretory Pathogen Recognition Receptors”. While SP-A and SP-D were first identified in the lung; the expression of these proteins has also been observed at other mucosal surfaces, such as lacrimal glands, gastrointestinal mucosa, genitourinary epithelium and periodontal surfaces. SP-A is the most prominent among four proteins in the pulmonary surfactant-system. The expression of SP-A is complexly regulated on the transcriptional and the chromosomal level. SP-A is a major player in the pulmonary cytokine-network and moreover has been described to act in the pulmonary host defense. This chapter gives an overview on the understanding of role of SP-A and SP-D in for human pulmonary disorders and points out the importance for pathology-orientated research to further elucidate the role of these molecules in adult lung diseases. As an outlook, it will become an issue of pulmonary pathology which might provide promising perspectives for applications in research, diagnosis and therapy (Awasthi 2010).
Collapse
|
7
|
Song W, Wei S, Liu G, Yu Z, Estell K, Yadav AK, Schwiebert LM, Matalon S. Postexposure Administration of a β2-Agonist Decreases Chlorine-Induced Airway Hyperreactivity in Mice. Am J Respir Cell Mol Biol 2011; 45:88-94. [DOI: 10.1165/rcmb.2010-0226oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Yadav AK, Doran SF, Samal AA, Sharma R, Vedagiri K, Postlethwait EM, Squadrito GL, Fanucchi MV, Roberts LJ, Patel RP, Matalon S. Mitigation of chlorine gas lung injury in rats by postexposure administration of sodium nitrite. Am J Physiol Lung Cell Mol Physiol 2010; 300:L362-9. [PMID: 21148791 DOI: 10.1152/ajplung.00278.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nitrite (NO(2)(-)) has been shown to limit injury to the heart, liver, and kidneys in various models of ischemia-reperfusion injury. Potential protective effects of systemic NO(2)(-) in limiting lung injury or enhancing repair have not been documented. We assessed the efficacy and mechanisms by which postexposure intraperitoneal injections of NO(2)(-) mitigate chlorine (Cl(2))-induced lung injury in rats. Rats were exposed to Cl(2) (400 ppm) for 30 min and returned to room air. NO(2)(-) (1 mg/kg) or saline was administered intraperitoneally at 10 min and 2, 4, and 6 h after exposure. Rats were killed at 6 or 24 h. Injury to airway and alveolar epithelia was assessed by quantitative morphology, protein concentrations, number of cells in bronchoalveolar lavage (BAL), and wet-to-dry lung weight ratio. Lipid peroxidation was assessed by measurement of lung F(2)-isoprostanes. Rats developed severe, but transient, hypoxemia. A significant increase of protein concentration, neutrophil numbers, airway epithelia in the BAL, and lung wet-to-dry weight ratio was evident at 6 h after Cl(2) exposure. Quantitative morphology revealed extensive lung injury in the upper airways. Airway epithelial cells stained positive for terminal deoxynucleotidyl-mediated dUTP nick end labeling (TUNEL), but not caspase-3. Administration of NO(2)(-) resulted in lower BAL protein levels, significant reduction in the intensity of the TUNEL-positive cells, and normal lung wet-to-dry weight ratios. F(2)-isoprostane levels increased at 6 and 24 h after Cl(2) exposure in NO(2)(-)- and saline-injected rats. This is the first demonstration that systemic NO(2)(-) administration mitigates airway and epithelial injury.
Collapse
Affiliation(s)
- Amit K Yadav
- Departments of Environmental Health Sciences, Schools of Public Health and Medicine, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mechanisms and modification of chlorine-induced lung injury in animals. Ann Am Thorac Soc 2010; 7:278-83. [PMID: 20601632 DOI: 10.1513/pats.201001-009sm] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chlorine (Cl(2)) is a reactive oxidant gas used extensively in industrial processes. Exposure of both humans and animals to high concentrations of Cl(2) results in acute lung injury, which may resolve spontaneously or progress to acute respiratory failure. Injury to airway and alveolar epithelium may result from chemical reactions of Cl(2), from HOCl (the hydrolysis product of Cl(2)), and/or from the various reaction products, such as chloramines, that are formed from the reactions of these chlorinating species with biological molecules. Subsequent reactions may initiate self-propagating reactions and induce the production of inflammatory mediators compounding injury to pulmonary surfactant, ion channels, and components of lung epithelial and airway cells. Low-molecular-weight antioxidants, such as ascorbate, glutathione, and urate, present in the lung epithelial lining fluid and tissue, remove Cl(2) and HOCl and thus decrease injury to critical target biological targets. However, levels of lung antioxidants of animals exposed to Cl(2) in concentrations likely to be encountered in the vicinity of industrial accidents decrease rapidly and irreversibly. Our measurements show that prophylactic administration of a mixture containing ascorbate and desferal N-acetyl-cysteine, a precursor of reduced glutathione, prevents Cl(2)-induced injury to the alveolar epithelium of rats exposed to Cl(2). The clinical challenge is to deliver sufficient quantities of antioxidants noninvasively, after Cl(2) exposure, to decrease morbidity and mortality.
Collapse
|
10
|
Atochina-Vasserman EN, Beers MF, Gow AJ. Review: Chemical and structural modifications of pulmonary collectins and their functional consequences. Innate Immun 2010; 16:175-82. [PMID: 20423921 PMCID: PMC4361894 DOI: 10.1177/1753425910368871] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The lung is continuously exposed to inhaled pathogens (toxic pollutants, micro-organisms, environmental antigens, allergens) from the external environment. In the broncho-alveolar space, the critical balance between a measured protective response against harmful pathogens and an inappropriate inflammatory response to harmless particles is discerned by the innate pulmonary immune system. Among its many components, the surfactant proteins and specifically the pulmonary collectins (surfactant proteins A [SP-A] and D [SP-D]) appear to provide important contributions to the modulation of host defense and inflammation in the lung. Many studies have shown that multimerization of SP-A and SP-D are important for efficient local host defense including neutralization and opsonization of influenza A virus, binding Pneumocystis murina and inhibition of LPS-induced inflammatory cell responses. These observations strongly imply that oligomerization of collectins is a critical feature of its function. However, during the inflammatory state, despite normal pool sizes, chemical modification of collectins can result in alteration of their structure and function. Both pulmonary collectins can be altered through proteolytic inactivation, nitration, S-nitrosylation, oxidation and/or crosslinking as a consequence of the inflammatory milieu facilitated by cytokines, nitric oxide, proteases, and other chemical mediators released by inflammatory cells. Thus, this review will summarize recent developments in our understanding of the relationship between post-translational assembly of collectins and their modification by inflammation as an important molecular switch for the regulation of local innate host defense.
Collapse
|
11
|
Crouch EC, Hirche TO, Shao B, Boxio R, Wartelle J, Benabid R, McDonald B, Heinecke J, Matalon S, Belaaouaj A. Myeloperoxidase-dependent inactivation of surfactant protein D in vitro and in vivo. J Biol Chem 2010; 285:16757-70. [PMID: 20228064 DOI: 10.1074/jbc.m109.097048] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surfactant protein D (SP-D) plays diverse and important roles in innate immunity and pulmonary homeostasis. Neutrophils and myeloperoxidase (MPO) colocalized with SP-D in a murine bacterial pneumonia model of acute inflammation, suggesting that MPO-derived reactive species might alter the function of SP-D. Exposure of SP-D to the complete MPO-H(2)O(2)-halide system caused loss of SP-D-dependent aggregating activity. Hypochlorous acid (HOCl), the major oxidant generated by MPO, caused a similar loss of aggregating activity, which was accompanied by the generation of abnormal disulfide-cross-linked oligomers. A full-length SP-D mutant lacking N-terminal cysteine residues and truncation mutants lacking the N-terminal domains were resistant to the oxidant-induced alterations in disulfide bonding. Mass spectroscopy of HOCl-treated human SP-D demonstrated several modifications, but none involved key ligand binding residues. There was detectable oxidation of cysteine 15, but no HOCl-induced cysteine modifications were observed in the C-terminal lectin domain. Together, the findings localize abnormal disulfide cross-links to the N-terminal domain. MPO-deficient mice showed decreased cross-linking of SP-D and increased SP-D-dependent aggregating activity in the pneumonia model. Thus, MPO-derived oxidants can lead to modifications of SP-D structure with associated alterations in its characteristic aggregating activity.
Collapse
Affiliation(s)
- Erika C Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Song W, Wei S, Zhou Y, Lazrak A, Liu G, Londino JD, Squadrito GL, Matalon S. Inhibition of lung fluid clearance and epithelial Na+ channels by chlorine, hypochlorous acid, and chloramines. J Biol Chem 2010; 285:9716-9728. [PMID: 20106988 DOI: 10.1074/jbc.m109.073981] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We investigated the mechanisms by which chlorine (Cl(2)) and its reactive byproducts inhibit Na(+)-dependent alveolar fluid clearance (AFC) in vivo and the activity of amiloride-sensitive epithelial Na(+) channels (ENaC) by measuring AFC in mice exposed to Cl(2) (0-500 ppm for 30 min) and Na(+) and amiloride-sensitive currents (I(Na) and I(amil), respectively) across Xenopus oocytes expressing human alpha-, beta-, and gamma-ENaC incubated with HOCl (1-2000 microm). Both Cl(2) and HOCl-derived products decreased AFC in mice and whole cell and single channel I(Na) in a dose-dependent manner; these effects were counteracted by serine proteases. Mass spectrometry analysis of the oocyte recording medium identified organic chloramines formed by the interaction of HOCl with HEPES (used as an extracellular buffer). In addition, chloramines formed by the interaction of HOCl with taurine or glycine decreased I(Na) in a similar fashion. Preincubation of oocytes with serine proteases prevented the decrease of I(Na) by HOCl, whereas perfusion of oocytes with a synthetic 51-mer peptide corresponding to the putative furin and plasmin cleaving segment in the gamma-ENaC subunit restored the ability of HOCl to inhibit I(Na). Finally, I(Na) of oocytes expressing wild type alpha- and gamma-ENaC and a mutant form of beta ENaC (S520K), known to result in ENaC channels locked in the open position, were not altered by HOCl. We concluded that HOCl and its reactive intermediates (such as organic chloramines) inhibit ENaC by affecting channel gating, which could be relieved by proteases cleavage.
Collapse
Affiliation(s)
- Weifeng Song
- Departments of Anesthesiology, Birmingham, Alabama 35205; Centers for Pulmonary Injury and Repair, Birmingham, Alabama 35205
| | - Shipeng Wei
- Departments of Anesthesiology, Birmingham, Alabama 35205; Centers for Pulmonary Injury and Repair, Birmingham, Alabama 35205
| | - Yongjian Zhou
- Departments of Anesthesiology, Birmingham, Alabama 35205
| | - Ahmed Lazrak
- Departments of Anesthesiology, Birmingham, Alabama 35205; Centers for Pulmonary Injury and Repair, Birmingham, Alabama 35205
| | - Gang Liu
- Centers for Pulmonary Injury and Repair, Birmingham, Alabama 35205; Medicine, Birmingham, Alabama 35205
| | - James D Londino
- Departments of Anesthesiology, Birmingham, Alabama 35205; Centers for Pulmonary Injury and Repair, Birmingham, Alabama 35205
| | - Giuseppe L Squadrito
- Centers for Pulmonary Injury and Repair, Birmingham, Alabama 35205; Environmental Health Sciences, Schools of Medicine and Public Health, Birmingham, Alabama 35205; Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35205
| | - Sadis Matalon
- Departments of Anesthesiology, Birmingham, Alabama 35205; Centers for Pulmonary Injury and Repair, Birmingham, Alabama 35205; Medicine, Birmingham, Alabama 35205; Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35205.
| |
Collapse
|
13
|
Chroneos ZC, Sever-Chroneos Z, Shepherd VL. Pulmonary surfactant: an immunological perspective. Cell Physiol Biochem 2009; 25:13-26. [PMID: 20054141 DOI: 10.1159/000272047] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2009] [Indexed: 11/19/2022] Open
Abstract
Pulmonary surfactant has two crucial roles in respiratory function; first, as a biophysical entity it reduces surface tension at the air water interface, facilitating gas exchange and alveolar stability during breathing, and, second, as an innate component of the lung's immune system it helps maintain sterility and balance immune reactions in the distal airways. Pulmonary surfactant consists of 90% lipids and 10% protein. There are four surfactant proteins named SP-A, SP-B, SP-C, and SP-D; their distinct interactions with surfactant phospholipids are necessary for the ultra-structural organization, stability, metabolism, and lowering of surface tension. In addition, SP-A and SP-D bind pathogens, inflict damage to microbial membranes, and regulate microbial phagocytosis and activation or deactivation of inflammatory responses by alveolar macrophages. SP-A and SP-D, also known as pulmonary collectins, mediate microbial phagocytosis via SP-A and SP-D receptors and the coordinated induction of other innate receptors. Several receptors (SP-R210, CD91/calreticulin, SIRPalpha, and toll-like receptors) mediate the immunological functions of SP-A and SP-D. However, accumulating evidence indicate that SP-B and SP-C and one or more lipid constituents of surfactant share similar immuno-regulatory properties as SP-A and SP-D. The present review discusses current knowledge on the interaction of surfactant with lung innate host defense.
Collapse
Affiliation(s)
- Zissis C Chroneos
- The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX 75708-3154, USA.
| | | | | |
Collapse
|
14
|
Matalon S, Shrestha K, Kirk M, Waldheuser S, McDonald B, Smith K, Gao Z, Belaaouaj A, Crouch EC. Modification of surfactant protein D by reactive oxygen-nitrogen intermediates is accompanied by loss of aggregating activity, in vitro and in vivo. FASEB J 2009; 23:1415-30. [PMID: 19126597 DOI: 10.1096/fj.08-120568] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Surfactant protein D (SP-D) is an important effector of innate immunity. We have previously shown that SP-D accumulates at sites of acute bacterial infection and neutrophil infiltration, a setting associated with the release of reactive species such as peroxynitrite. Incubation of native SP-D or trimeric SP-D lectin domains (NCRDs) with peroxynitrite resulted in nitration and nondisulfide cross-linking. Modifications were blocked by peroxynitrite scavengers or pH inactivation of peroxynitrite, and mass spectroscopy confirmed nitration of conserved tyrosine residues within the C-terminal neck and lectin domains. Mutant NCRDs lacking one or more of the tyrosines allowed us to demonstrate preferential nitration of Tyr314 and the formation of Tyr228-dependent cross-links. Although there was no effect of peroxynitrite or tyrosine mutations on lectin activity, incubation of SP-D dodecamers or murine lavage with peroxynitrite decreased the SP-D-dependent aggregation of lipopolysaccharide-coated beads, supporting our hypothesis that defective aggregation results from abnormal cross-linking. We also observed nitration, cross-linking of SP-D, and a significant decrease in SP-D-dependent aggregating activity in the lavage of mice acutely exposed to nitrogen dioxide. Thus, modification of SP-D by reactive oxygen-nitrogen species could contribute to alterations in the structure and function of SP-D at sites of inflammation in vivo.
Collapse
Affiliation(s)
- Sadis Matalon
- Department of Anesthesiology, University of Alabama, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Shelton JL, Wang L, Cepinskas G, Sandig M, Scott JA, North ML, Inculet R, Mehta S. Inducible NO synthase (iNOS) in human neutrophils but not pulmonary microvascular endothelial cells (PMVEC) mediates septic protein leak in vitro. Microvasc Res 2007; 74:23-31. [PMID: 17451752 DOI: 10.1016/j.mvr.2007.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 02/21/2007] [Accepted: 02/28/2007] [Indexed: 01/29/2023]
Abstract
Sepsis-induced acute lung injury (ALI) is characterized by injury of the pulmonary microvascular endothelial cells (PMVEC) leading to high-protein pulmonary edema. Inducible NO synthase (iNOS) mediates trans-PMVEC protein leak in septic mice in vivo and in murine PMVEC under septic conditions in vitro, but the role of iNOS in human PMVEC protein leak has not been addressed. We hypothesized that iNOS in human neutrophils, but not human PMVEC, mediates septic trans-PMVEC protein leak in vitro. We isolated human PMVEC from lung tissue using magnetic bead-bound anti-PECAM antibody and assessed Evans blue albumin leak across human PMVEC monolayers under septic conditions in the presence/absence of human neutrophils. PMVEC were used at passages 3-4, seeded on 3 mum Transwell inserts and grown to confluence. Cytomix-stimulated trans-PMVEC albumin leak was not attenuated by pre-treatment with 1400 W, a selective iNOS inhibitor, or l-NAME, a non-selective NOS inhibitor. In neutrophil-PMVEC co-culture, basal unstimulated trans-EB-albumin leak was 0.6+/-0.3%, which was increased by cytomix stimulation to 11.5+/-4.4%, p<0.01. Cytomix-stimulated EB-albumin leak in neutrophil-PMVEC co-cultures was inhibited by pre-treatment with 1400 W (3.8+/-1.0%, p<0.05) or l-NAME (4.0+/-1.1%, p<0.05). Pre-treatment of neutrophil-PMVEC co-cultures with PEG-SOD (superoxide scavenger) and FeTPPS (peroxynitrite scavenger) also significantly attenuated neutrophil-dependent cytomix-stimulated leak (4.7+/-3.0%, p<0.05; 0.5+/-1.0%, p<0.01, respectively). In conclusion, trans-human PMVEC albumin leak under septic conditions is dependent on iNOS activity specifically in neutrophils, but not in PMVEC themselves. Septic neutrophil-dependent trans-PMVEC albumin leak may be mediated by peroxynitrite.
Collapse
Affiliation(s)
- Jennifer L Shelton
- Centre for Critical Illness Research, Lawson Health Research Institute, Division of Respirology, Department of Medicine, London Health Sciences Center-Victoria Hospital, University of Western Ontario, 800 Commissioner's Road, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Haque R, Umstead TM, Ponnuru P, Guo X, Hawgood S, Phelps DS, Floros J. Role of surfactant protein-A (SP-A) in lung injury in response to acute ozone exposure of SP-A deficient mice. Toxicol Appl Pharmacol 2006; 220:72-82. [PMID: 17307210 PMCID: PMC1906716 DOI: 10.1016/j.taap.2006.12.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 12/01/2006] [Accepted: 12/02/2006] [Indexed: 10/23/2022]
Abstract
Millions are exposed to ozone levels above recommended limits, impairing lung function, causing epithelial damage and inflammation, and predisposing some individuals to pneumonia, asthma, and other lung conditions. Surfactant protein-A (SP-A) plays a role in host defense, the regulation of inflammation, and repair of tissue damage. We tested the hypothesis that the lungs of SP-A(-/-) (KO) mice are more susceptible to ozone-induced damage. We compared the effects of ozone on KO and wild type (WT) mice on the C57BL/6 genetic background by exposing them to 2 parts/million of ozone for 3 or 6 h and sacrificing them 0, 4, and 24 h later. Lungs were subject to bronchoalveolar lavage (BAL) or used to measure endpoints of oxidative stress and inflammation. Despite more total protein in BAL of KO mice after a 3 h ozone exposure, WT mice had increased oxidation of protein and had oxidized SP-A dimers. In KO mice there was epithelial damage as assessed by increased LDH activity and there was increased phospholipid content. In WT mice there were more BAL PMNs and elevated macrophage inflammatory protein (MIP)-2 and monocyte chemoattractant protein (MCP)-1. Changes in MIP-2 and MCP-1 were observed in both KO and WT, however mRNA levels differed. In KO mice MIP-2 mRNA levels changed little with ozone, but in WT levels they were significantly increased. In summary, several aspects of the inflammatory response differ between WT and KO mice. These in vivo findings appear to implicate SP-A in regulating inflammation and limiting epithelial damage in response to ozone exposure.
Collapse
Affiliation(s)
- Rizwanul Haque
- Departments of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Todd M. Umstead
- Departments of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Padmavathi Ponnuru
- Departments of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Xiaoxuan Guo
- Departments of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Samuel Hawgood
- Department of Pediatrics and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - David S. Phelps
- Departments of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Joanna Floros
- Departments of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033
- Departments of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
- Departments of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
17
|
Starosta V, Starosta V, Griese M. Oxidative damage to surfactant protein D in pulmonary diseases. Free Radic Res 2006; 40:419-25. [PMID: 16517507 DOI: 10.1080/10715760600571248] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Surfactant protein D is an important innate host defence molecule that has been shown to interact with a variety of pathogens and to play a role in surfactant homeostasis. The aim of this study was to examine the influence of oxidation on surfactant protein D in different lung diseases. Bronchoalveolar lavage fluids (BALFs) from patients with different grade of protein oxidation were examined for changes in the primary chain and the quaternary structure of surfactant protein D. Significant changes of quaternary surfactant protein-D (SP-D) structure were detected under oxidative conditions in vitro and in vivo. The functional capacity of surfactant protein D to agglutinate bacteria was impaired by oxidation. We conclude that surfactant protein D is an important target of free radicals generated in the lungs. Host defence may be impaired due to the oxidation of surfactant protein D and may contribute to the suppurative lung diseases like cystic fibrosis (CF).
Collapse
Affiliation(s)
- Vitaliy Starosta
- Lung Research Group, Children's Hospital of Ludwig Maximilians University, Munich, Germany
| | | | | |
Collapse
|
18
|
Kuzmenko AI, Wu H, McCormack FX. Pulmonary collectins selectively permeabilize model bacterial membranes containing rough lipopolysaccharide. Biochemistry 2006; 45:2679-85. [PMID: 16489761 PMCID: PMC3156245 DOI: 10.1021/bi0522652] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have reported that Gram-negative organisms decorated with rough lipopolysaccharide (LPS) are particularly susceptible to the direct antimicrobial actions of the pulmonary collectins, surfactant proteins A (SP-A) and D (SP-D). In this study, we examined the lipid and LPS components required for the permeabilizing effects of the collectins on model bacterial membranes. Liposomes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), with or without rough Escherichia coli LPS (J5), smooth E. coli LPS (B5), or cholesterol, were loaded with self-quenching probes and exposed to native or oxidatively modified SP-A. Fluorescence that resulted from permeabilization of liposomes and diffusion of dyes was assessed by microscopy or fluorimetry. Human SP-A and melittin increased the permeability of J5 LPS/POPE liposomes, but not B5 LPS/POPE liposomes or control (POPE only) liposomes. At a human SP-A concentration of 100 microg/mL, the permeability of the J5 LPS/POPE membranes increased 4.4-fold (p < 0.02) compared to the control with no added SP-A. Rat SP-A and SP-D also permeabilized the J5-containing liposomes. Incorporation of cholesterol into J5 LPS/POPE liposomes at a POPE:cholesterol molar ratio of 1:0.15 blocked human SP-A or melittin-induced permeability (p < 0.05) compared to cholesterol-free liposomes. Exposure of human SP-A to surfactant lipid peroxidation blocked the permeabilizing activity of the protein. We conclude that SP-A permeabilizes phospholipid membranes in an LPS-dependent and rough LPS-specific manner, that the effect is neither SP-A- nor species-specific, and that oxidative damage to SP-A abolishes its membrane destabilizing properties. Incorporation of cholesterol into the membrane enhances resistance to permeabilization by SP-A, most likely by increasing the packing density and membrane rigidity.
Collapse
Affiliation(s)
| | | | - Francis X. McCormack
- Corresponding Author Footnote: Prof. Francis X. McCormack, University of Cincinnati, MSB Room 6053, 231 Albert Sabin Way, Cincinnati, OH 45267-0564, Tel. 513-558-4831, FAX 513-558-4858, E-mail:
| |
Collapse
|
19
|
Starosta V, Rietschel E, Paul K, Baumann U, Griese M. Oxidative Changes of Bronchoalveolar Proteins in Cystic Fibrosis. Chest 2006; 129:431-437. [PMID: 16478863 DOI: 10.1378/chest.129.2.431] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Chronic bacterial infection and severe, polymorphonuclear neutrophil-dominated endobronchial inflammation are characteristic hallmarks of cystic fibrosis (CF) lung disease. The free radicals generated can be deleterious for structure and function of many proteins. The goal of this study was to investigate the degree of oxidation of pulmonary epithelial lining fluid proteins. BAL fluid (BALF) from 55 children with CF and from 11 patients in a control group were investigated by dot-blot assay for content and by two-dimensional electrophoresis and Western blotting for the pattern of distribution of oxidized proteins. The highest level of oxidative stress, as assessed by the level of protein carbonyls, was found in patients with FEV1 < 80% of predicted or with highly elevated neutrophil counts. Compared to control subjects without lung disease, CF patients with normal lung function and CF patients with a normal neutrophil count in their BALF had significantly higher protein carbonyl levels. The extent of protein oxidation was directly related to the neutrophil granulocyte count and inversely to lung function. Our data support the hypothesis that oxidative damage of pulmonary proteins during chronic and excessive neutrophilic endobronchial inflammation may contribute to the decline of lung function in CF patients.
Collapse
Affiliation(s)
- Vitaliy Starosta
- Lung Research Group, Children's Hospital of Ludwig Maximilians University, Munich
| | - Ernst Rietschel
- Department of Pediatric Pneumology and Allergology, Childrens' Hospital University of Cologne, Cologne
| | - Karl Paul
- Department of Pediatric Pneumology and Immunology, Charité, Humboldt-University, Berlin
| | - Ulrich Baumann
- Department of Pediatric Pulmonology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Matthias Griese
- Lung Research Group, Children's Hospital of Ludwig Maximilians University, Munich.
| |
Collapse
|
20
|
Abstract
The oxidation of proteins may play an important role in the pathogenesis of chronic inflammatory lung diseases, and may contribute to lung damage. However, the extent of oxidation and the distribution among proteins are not known for most pediatric lung diseases. In this work, protein oxidation was assessed as protein carbonyls. Bronchoalveolar lavages (BAL) from children with chronic lung diseases were investigated by dot-blot assay for content and for pattern of distribution of oxidized proteins by two-dimensional (2D) electrophoresis and Western blotting. Significantly higher levels of protein oxidation than in healthy controls were determined in groups of patients with interstitial lung disease, gastro-esophageal reflux disease, and pulmonary alveolar proteinosis. The proteins most sensitive to oxidation were serum albumin, surfactant protein A, and alpha1-antitrypsin. Our data show increased oxidative stress in lungs of children with chronic pulmonary diseases, with significant interindividual variations. The extent of protein oxidation was proportional to the count of neutrophilic granulocytes in BAL fluid. These findings strongly support the concept that an abundance of reactive oxygen species produced during neutrophilic inflammation may be a deleterious factor, leading to pulmonary damage in these patients.
Collapse
Affiliation(s)
- V Starosta
- Lung Research Group, Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | | |
Collapse
|
21
|
Moraes TJ, Plumb J, Martin R, Vachon E, Cherepanov V, Koh A, Loeve C, Jongstra-Bilen J, Zurawska JH, Kus JV, Burrows LL, Grinstein S, Downey GP. Abnormalities in the pulmonary innate immune system in cystic fibrosis. Am J Respir Cell Mol Biol 2005; 34:364-74. [PMID: 16293782 PMCID: PMC2644201 DOI: 10.1165/rcmb.2005-0146oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pulmonary infection is the dominant clinical feature of cystic fibrosis (CF), but the basis for this susceptibility remains incompletely understood. One hypothesis is that CF airway surface liquid (ASL) is abnormal and interferes with neutrophil function. To study this possibility, we developed an in vitro system in which we collected ASL from primary cultures of normal and CF airway epithelial cells. Microbial killing was less efficient when bacteria were incubated with neutrophils in the presence of ASL from CF epithelia compared with normal ASL. Antimicrobial functions of human neutrophils were assessed in ASL from CF and normal epithelia using a combination of quantitative bacterial culture, flow cytometry, and microfluorescence imaging. The results of these assays of neutrophil function were indistinguishable in CF and normal ASL. In contrast, the direct bactericidal activity of ASL to Escherichia coli and to clinical isolates of Staphylococcus aureus and Pseudomonas aeruginosa was substantially less in CF than in normal ASL, even when highly diluted in media of identical ionic strength. Together, these observations indicate that the antimicrobial properties of ASL in CF are compromised in a manner independent of ionic strength of the ASL, and that this effect is not mediated through a direct effect of the ASL on phagocyte function.
Collapse
Affiliation(s)
- Theo J Moraes
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tsoumakidou M, Tzanakis N, Chrysofakis G, Siafakas NM. Nitrosative Stress, Heme Oxygenase-1 Expression and Airway Inflammation During Severe Exacerbations of COPD. Chest 2005; 127:1911-8. [PMID: 15947302 DOI: 10.1378/chest.127.6.1911] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVES The aim of this study was to examine the relationship between airway inflammation, nitrosative stress, heme-oxygenase expression, and acute severe exacerbations of COPD. DESIGN We measured heme oxygenase (HO)-1, inducible nitric oxide (NO) synthase expression and nitrotyrosine formation, as well as eosinophilic cationic protein, myeloperoxidase (MPO), interleukin (IL-8), and granulocyte macrophage-colony stimulating factor levels in induced sputum samples from 12 COPD patients (mean +/- SD; FEV1 40 +/- 14% predicted) at the onset of an acute severe exacerbation of COPD requiring hospital admission and 16 weeks after remission. RESULTS We demonstrated increased percentages (p = 0.001) and absolute numbers (p = 0.028) of total nitrotyrosine positive (+ve) inflammatory cells (ie, polymorphonuclear cells and macrophages), increased percentages (p = 0.04) and absolute numbers (p = 0.05) of total HO-1 +ve inflammatory cells, and increased MPO (p = 0.005) and IL-8 levels (p = 0.028) during severe exacerbation compared with the stable state. CONCLUSIONS Our results support the hypothesis of an involvement of inflammatory and nitrosative stress in severe COPD exacerbations. Future therapeutic strategies may aim at regulating inflammation and NO synthesis during COPD exacerbations.
Collapse
Affiliation(s)
- Maria Tsoumakidou
- Department of Thoracic Medicine, University of Crete, Medical School, PO Box 1352, 71110 Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
23
|
Patsoukis N, Papapostolou I, Georgiou CD. Interference of non-specific peroxidases in the fluorescence detection of superoxide radical by hydroethidine oxidation: a new assay for H2O2. Anal Bioanal Chem 2005; 381:1065-72. [PMID: 15690180 DOI: 10.1007/s00216-004-2999-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Revised: 10/18/2004] [Accepted: 11/30/2004] [Indexed: 11/29/2022]
Abstract
The present study shows that hydroethidine (HE), used for in-vivo qualitative fluorescent detection of superoxide anion, can be also oxidized by H2O2 via non-specific peroxidase (horseradish peroxidase and myeloperoxidase) catalysis, forming fluorescent oxidation products. These products give broad excitation/emission peaks (490-495/580-600 nm) near the excitation/emission peaks (475/580 nm) of the HE-superoxide oxidation product, and this may pose serious interference problems to the fluorescent detection of the superoxide radical. The study suggests cautionary use of the HE-superoxide anion assay mainly for detection of reactive oxygen species. A byproduct of this study was the development of a simple and sensitive HE-horseradish peroxidase assay for the in-vitro quantification of H2O2 in biological tissues with a sensitivity of 1 micromol L(-1).
Collapse
|
24
|
Reynaert NL, Ckless K, Wouters EFM, van der Vliet A, Janssen-Heininger YMW. Nitric oxide and redox signaling in allergic airway inflammation. Antioxid Redox Signal 2005; 7:129-43. [PMID: 15650402 DOI: 10.1089/ars.2005.7.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A number of diseases of the respiratory tract, as exemplified in this review by asthma, are associated with increased amounts of nitric oxide (NO) in the expired breath. Asthma is furthermore characterized by increased production of reactive oxygen species that scavenge NO to form more reactive nitrogen species as demonstrated by the enhanced presence of nitrated proteins in the lungs of these patients. This increased oxidative metabolism leaves less bioavailable NO and coincides with lower amounts of S-nitrosothiols. In this review, we speculate on mechanisms responsible for the increased amounts of NO in inflammatory airway disease and discuss the apparent paradox of higher levels of NO as opposed to decreased amounts of S-nitrosothiols. We will furthermore give an overview of the regulation of NO production and biochemical events by which NO transduces signals into cellular responses, with a particular focus on modulation of inflammation by NO. Lastly, difficulties in studying NO signaling and possible therapeutic uses for NO will be highlighted.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
25
|
Crowther JE, Kutala VK, Kuppusamy P, Ferguson JS, Beharka AA, Zweier JL, McCormack FX, Schlesinger LS. Pulmonary surfactant protein a inhibits macrophage reactive oxygen intermediate production in response to stimuli by reducing NADPH oxidase activity. THE JOURNAL OF IMMUNOLOGY 2004; 172:6866-74. [PMID: 15153505 DOI: 10.4049/jimmunol.172.11.6866] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alveolar macrophages are important host defense cells in the human lung that continuously phagocytose environmental and infectious particles that invade the alveolar space. Alveolar macrophages are prototypical alternatively activated macrophages, with up-regulated innate immune receptor expression, down-regulated costimulatory molecule expression, and limited production of reactive oxygen intermediates (ROI) in response to stimuli. Surfactant protein A (SP-A) is an abundant protein in pulmonary surfactant that has been shown to alter several macrophage (Mphi) immune functions. Data regarding SP-A effects on ROI production are contradictory, and lacking with regard to human Mphi. In this study, we examined the effects of SP-A on the oxidative response of human Mphi to particulate and soluble stimuli using fluorescent and biochemical assays, as well as electron paramagnetic resonance spectroscopy. SP-A significantly reduced Mphi superoxide production in response to the phorbol ester PMA and to serum-opsonized zymosan (OpZy), independent of any effect by SP-A on zymosan phagocytosis. SP-A was not found to scavenge superoxide. We measured Mphi oxygen consumption in response to stimuli using a new oxygen-sensitive electron paramagnetic resonance probe to determine the effects of SP-A on NADPH oxidase activity. SP-A significantly decreased Mphi oxygen consumption in response to PMA and OpZy. Additionally, SP-A reduced the association of NADPH oxidase component p47(phox) with OpZy phagosomes as determined by confocal microscopy, suggesting that SP-A inhibits NADPH oxidase activity by altering oxidase assembly on phagosomal membranes. These data support an anti-inflammatory role for SP-A in pulmonary homeostasis by inhibiting Mphi production of ROI through a reduction in NADPH oxidase activity.
Collapse
Affiliation(s)
- Joy E Crowther
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52240, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hirsch J, Hansen KC, Burlingame AL, Matthay MA. Proteomics: current techniques and potential applications to lung disease. Am J Physiol Lung Cell Mol Physiol 2004; 287:L1-23. [PMID: 15187006 DOI: 10.1152/ajplung.00301.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteomics aims to study the whole protein content of a biological sample in one set of experiments. Such an approach has the potential value to acquire an understanding of the complex responses of an organism to a stimulus. The large vascular and air space surface area of the lung expose it to a multitude of stimuli that can trigger a variety of responses by many different cell types. This complexity makes the lung a promising, but also challenging, target for proteomics. Important steps made in the last decade have increased the potential value of the results of proteomics studies for the clinical scientist. Advances in protein separation and staining techniques have improved protein identification to include the least abundant proteins. The evolution in mass spectrometry has led to the identification of a large part of the proteins of interest rather than just describing changes in patterns of protein spots. Protein profiling techniques allow the rapid comparison of complex samples and the direct investigation of tissue specimens. In addition, proteomics has been complemented by the analysis of posttranslational modifications and techniques for the quantitative comparison of different proteomes. These methodologies have made the application of proteomics on the study of specific diseases or biological processes under clinically relevant conditions possible. The quantity of data that is acquired with these new techniques places new challenges on data processing and analysis. This article provides a brief review of the most promising proteomics methods and some of their applications to pulmonary research.
Collapse
Affiliation(s)
- Jan Hirsch
- Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Ave. HSW 825, San Francisco, CA 94143-0130, USA.
| | | | | | | |
Collapse
|
27
|
Huang W, Wang G, Phelps DS, Al-Mondhiry H, Floros J. Human SP-A genetic variants and bleomycin-induced cytokine production by THP-1 cells: effect of ozone-induced SP-A oxidation. Am J Physiol Lung Cell Mol Physiol 2003; 286:L546-53. [PMID: 14617519 DOI: 10.1152/ajplung.00267.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein A (SP-A) plays a role in innate host defense. Human SP-A is encoded by two functional genes (SP-A1 and SP-A2), and several alleles have been characterized for each gene. We assessed the effect of in vitro expressed human SP-A genetic variants, on TNF-alpha and IL-8 production by THP-1 cells in the presence of bleomycin, either before or after ozone-induced oxidation of the variants. The oligomerization of SP-A variants was also examined. We found 1) cytokine levels induced by SP-A2 (1A, 1A(0)) were significantly higher than those by SP-A1 (6A(2), 6A(4)) in the presence of bleomycin. 2) In the presence of bleomycin, ozone-induced oxidation significantly decreased the ability of 1A and 1A/6A(4), but not of 6A(4), to stimulate TNF-alpha production. 3) The synergistic effect of bleomycin/SP-A, either before or after oxidation, can be inhibited to the level of bleomycin alone by surfactant lipids. 4) Differences in oligomerization were also observed between SP-A1 and SP-A2. The results indicate that differences among SP-A variants may partly explain the individual variability of pulmonary complications observed during bleomycin chemotherapy and/or in an environment that may promote protein oxidation.
Collapse
Affiliation(s)
- Weixiong Huang
- Departments of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|