1
|
ROS as Regulators of Cellular Processes in Melanoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1208690. [PMID: 34725562 PMCID: PMC8557056 DOI: 10.1155/2021/1208690] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
In this review, we examine the multiple roles of ROS in the pathogenesis of melanoma, focusing on signal transduction and regulation of gene expression. In recent years, different studies have analyzed the dual role of ROS in regulating the redox system, with both negative and positive consequences on human health, depending on cell concentration of these agents. High ROS levels can result from an altered balance between oxidant generation and intracellular antioxidant activity and can produce harmful effects. In contrast, low amounts of ROS are considered beneficial, since they trigger signaling pathways involved in physiological activities and programmed cell death, with protective effects against melanoma. Here, we examine these beneficial roles, which could have interesting implications in melanoma treatment.
Collapse
|
2
|
Novel and Converging Ways of NOX2 and SOD3 in Trafficking and Redox Signaling in Macrophages. Antioxidants (Basel) 2021; 10:antiox10020172. [PMID: 33503855 PMCID: PMC7911390 DOI: 10.3390/antiox10020172] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Macrophages and related tissue macrophage populations use the classical NADPH oxidase (NOX2) for the regulated production of superoxide and derived oxidants for pathogen combat and redox signaling. With an emphasis on macrophages, we discuss how sorting into secretory storage vesicles, agonist-responsive membrane trafficking, and segregation into sphingolipid and cholesterol-enriched microdomains (lipid rafts) determine the subcellular distribution and spatial organization of NOX2 and superoxide dismutase-3 (SOD3). We discuss how inflammatory activation of macrophages, in part through small GTPase Rab27A/B regulation of the secretory compartments, mediates the coalescence of these two proteins on the cell surface to deliver a focalized hydrogen peroxide output. In interplay with membrane-embedded oxidant transporters and redox sensitive target proteins, this arrangement allows for the autocrine and paracrine signaling, which govern macrophage activation states and transcriptional programs. By discussing examples of autocrine and paracrine redox signaling, we highlight why formation of spatiotemporal microenvironments where produced superoxide is rapidly converted to hydrogen peroxide and conveyed immediately to reach redox targets in proximal vicinity is required for efficient redox signaling. Finally, we discuss the recent discovery of macrophage-derived exosomes as vehicles of NOX2 holoenzyme export to other cells.
Collapse
|
3
|
Beheshti F, Hosseini M, Arab Z, Asghari A, Anaeigoudari A. Ameliorative role of metformin on lipopolysaccharide-mediated liver malfunction through suppression of inflammation and oxidative stress in rats. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1833037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Arab
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Asghari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
4
|
Anthony D, Papanicolaou A, Wang H, Seow HJ, To EE, Yatmaz S, Anderson GP, Wijburg O, Selemidis S, Vlahos R, Bozinovski S. Excessive Reactive Oxygen Species Inhibit IL-17A + γδ T Cells and Innate Cellular Responses to Bacterial Lung Infection. Antioxid Redox Signal 2020; 32:943-956. [PMID: 31190552 DOI: 10.1089/ars.2018.7716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aims: Excessive reactive oxygen species (ROS) are detrimental to immune cellular functions that control pathogenic microbes; however, the mechanisms are poorly understood. Our aim was to determine the immunological consequences of increased ROS levels during acute bacterial infection. Results: We used a model of Streptococcus pneumoniae (Spn) lung infection and superoxide dismutase 3-deficient (SOD3-/-) mice, as SOD3 is a major antioxidant enzyme that catalyses the dismutation of superoxide radicals. First, we observed that in vitro, macrophages from SOD3-/- mice generated excessive phagosomal ROS during acute bacterial infection. In vivo, there was a significant reduction in infiltrating neutrophils in the bronchoalveolar lavage fluid and reduced peribronchial and alveoli inflammation in SOD3-/- mice 2 days after Spn infection. Annexin V/propidium iodide staining revealed enhanced apoptosis in neutrophils from Spn-infected SOD3-/- mice. In addition, SOD3-/- mice showed an altered macrophage phenotypic profile, with markedly diminished recruitment of monocytes (CD11clo, CD11bhi) in the airways. Further investigation revealed significantly lower levels of the monocyte chemokine CCL-2, and cytokines IL-23, IL-1β, and IL-17A in Spn-infected SOD3-/- mice. There were also significantly fewer IL-17A-expressing gamma-delta T cells (γδ T cells) in the lungs of Spn-infected SOD3-/- mice. Innovation: Our data demonstrate that SOD3 deficiency leads to an accumulation of phagosomal ROS levels that initiate early neutrophil apoptosis during pneumococcal infection. Consequent to these events, there was a failure to initiate innate γδ T cell responses. Conclusion: These studies offer new cellular and mechanistic insights into how excessive ROS can regulate innate immune responses to bacterial infection.
Collapse
Affiliation(s)
- Desiree Anthony
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia.,Department of Pharmacology & Therapeutics, Lung Health Research Centre, The University of Melbourne, Melbourne, Australia
| | - Angelica Papanicolaou
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Hao Wang
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Huei Jiunn Seow
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia.,Department of Pharmacology & Therapeutics, Lung Health Research Centre, The University of Melbourne, Melbourne, Australia
| | - Eunice E To
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Selcuk Yatmaz
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Gary P Anderson
- Department of Pharmacology & Therapeutics, Lung Health Research Centre, The University of Melbourne, Melbourne, Australia
| | - Odilia Wijburg
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | - Stavros Selemidis
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Ross Vlahos
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia.,Department of Pharmacology & Therapeutics, Lung Health Research Centre, The University of Melbourne, Melbourne, Australia
| | - Steven Bozinovski
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia.,Department of Pharmacology & Therapeutics, Lung Health Research Centre, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Allawzi A, McDermott I, Delaney C, Nguyen K, Banimostafa L, Trumpie A, Hernandez-Lagunas L, Riemondy K, Gillen A, Hesselberth J, El Kasmi K, Sucharov CC, Janssen WJ, Stenmark K, Bowler R, Nozik-Grayck E. Redistribution of EC-SOD resolves bleomycin-induced inflammation via increased apoptosis of recruited alveolar macrophages. FASEB J 2019; 33:13465-13475. [PMID: 31560857 PMCID: PMC6894081 DOI: 10.1096/fj.201901038rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/26/2019] [Indexed: 01/16/2023]
Abstract
A human single nucleotide polymorphism (SNP) in the matrix-binding domain of extracellular superoxide dismutase (EC-SOD), with arginine to glycine substitution at position 213 (R213G), redistributes EC-SOD from the matrix into extracellular fluids. We reported that, following bleomycin (bleo), knockin mice harboring the human R213G SNP (R213G mice) exhibit enhanced resolution of inflammation and protection against fibrosis, compared with wild-type (WT) littermates. In this study, we tested the hypothesis that the EC-SOD R213G SNP promotes resolution via accelerated apoptosis of recruited alveolar macrophage (AM). RNA sequencing and Ingenuity Pathway Analysis 7 d postbleo in recruited AM implicated increased apoptosis and blunted inflammatory responses in the R213G strain exhibiting accelerated resolution. We validated that the percentage of apoptosis was significantly elevated in R213G recruited AM vs. WT at 3 and 7 d postbleo in vivo. Recruited AM numbers were also significantly decreased in R213G mice vs. WT at 3 and 7 d postbleo. ChaC glutathione-specific γ-glutamylcyclotransferase 1 (Chac1), a proapoptotic γ-glutamyl cyclotransferase that depletes glutathione, was increased in the R213G recruited AM. Overexpression of Chac1 in vitro induced apoptosis of macrophages and was blocked by administration of cell-permeable glutathione. In summary, we provide new evidence that redistributed EC-SOD accelerates the resolution of inflammation through redox-regulated mechanisms that increase recruited AM apoptosis.-Allawzi, A., McDermott, I., Delaney, C., Nguyen, K., Banimostafa, L., Trumpie, A., Hernandez-Lagunas, L., Riemondy, K., Gillen, A., Hesselberth, J., El Kasmi, K., Sucharov, C. C., Janssen, W. J., Stenmark, K., Bowler, R., Nozik-Grayck, E. Redistribution of EC-SOD resolves bleomycin-induced inflammation via increased apoptosis of recruited alveolar macrophages.
Collapse
Affiliation(s)
- Ayed Allawzi
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ivy McDermott
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cassidy Delaney
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kianna Nguyen
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laith Banimostafa
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ashley Trumpie
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura Hernandez-Lagunas
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Austin Gillen
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jay Hesselberth
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Karim El Kasmi
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Boehringer Ingelheim Pharma, Biberach, Germany
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; and
| | | | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Russell Bowler
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
6
|
Khalifa J, François S, Rancoule C, Riccobono D, Magné N, Drouet M, Chargari C. Gene therapy and cell therapy for the management of radiation damages to healthy tissues: Rationale and early results. Cancer Radiother 2019; 23:449-465. [PMID: 31400956 DOI: 10.1016/j.canrad.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Nowadays, ionizing radiations have numerous applications, especially in medicine for diagnosis and therapy. Pharmacological radioprotection aims at increasing detoxification of free radicals. Radiomitigation aims at improving survival and proliferation of damaged cells. Both strategies are essential research area, as non-contained radiation can lead to harmful effects. Some advances allowing the comprehension of normal tissue injury mechanisms, and the discovery of related predictive biomarkers, have led to developing several highly promising radioprotector or radiomitigator drugs. Next to these drugs, a growing interest does exist for biotherapy in this field, including gene therapy and cell therapy through mesenchymal stem cells. In this review article, we provide an overview of the management of radiation damages to healthy tissues via gene or cell therapy in the context of radiotherapy. The early management aims at preventing the occurrence of these damages before exposure or just after exposure. The late management offers promises in the reversion of constituted late damages following irradiation.
Collapse
Affiliation(s)
- J Khalifa
- Départment de radiothérapie, institut Claudius-Regaud, institut universitaire du cancer de Toulouse - Oncopole, 1, avenue Irène-Joliot-Curie, 31100 Toulouse, France.
| | - S François
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - C Rancoule
- Département de radiothérapie, institut de cancérologie de la Loire Lucien-Neuwirth, 108 bis, avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France; Laboratoire de radiobiologie cellulaire et moléculaire, UMR 5822, institut de physique nucléaire de Lyon (IPNL), 69622 Villeurbanne, France; UMR 5822, CNRS, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université Lyon 1, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université de Lyon, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France
| | - D Riccobono
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - N Magné
- Département de radiothérapie, institut de cancérologie de la Loire Lucien-Neuwirth, 108 bis, avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France; Laboratoire de radiobiologie cellulaire et moléculaire, UMR 5822, institut de physique nucléaire de Lyon (IPNL), 69622 Villeurbanne, France; UMR 5822, CNRS, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université Lyon 1, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université de Lyon, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France
| | - M Drouet
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - C Chargari
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France; Service de santé des armées, école du Val-de-Grâce, 74, boulevard de Port-Royal, 75005 Paris, France; Département de radiothérapie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vailant, 94805 Villejuif, France
| |
Collapse
|
7
|
The dynamic uptake and release of SOD3 from intracellular stores in macrophages modulates the inflammatory response. Redox Biol 2019; 26:101268. [PMID: 31326693 PMCID: PMC6639747 DOI: 10.1016/j.redox.2019.101268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022] Open
Abstract
Superoxide dismutase 3 (SOD3) is an extracellular enzyme with the capacity to modulate extracellular redox conditions by catalyzing the dismutation of superoxide to hydrogen peroxide. In addition to synthesis and release of this extracellular protein via the secretory pathway, several studies have shown that the protein also localizes to intracellular compartments in neutrophils and macrophages. Here we show that human macrophages release SOD3 from an intracellular compartment within 30 min following LPS stimulation. This release acutely increases the level of SOD3 on the cell surface as well as in the extracellular environment. Generation of the intracellular compartment in macrophages is supported by endocytosis of extracellular SOD3 via the LDL receptor-related protein 1 (LRP1). Using bone marrow-derived macrophages established from wild-type and SOD3−/− mice, we further show that the pro-inflammatory profile established in LPS-stimulated cells is altered in the absence of SOD3, suggesting that the active release of this protein affects the inflammatory response. The internalization and acute release from stimulated macrophages indicates that SOD3 not only functions as a passive antioxidant in the extracellular environment, but also plays an active role in modulating redox signaling to support biological responses. Stimulated macrophages release SOD3 from a pre-formed intracellular compartment. The intracellular compartment is established by receptor-mediated endocytosis. Release of SOD3 from stimulated macrophages modulates the inflammatory response. The level of SOD3 in the extracellular space is actively controlled.
Collapse
|
8
|
Zelko IN, Zhu J, Roman J. Role of SOD3 in silica-related lung fibrosis and pulmonary vascular remodeling. Respir Res 2018; 19:221. [PMID: 30453980 PMCID: PMC6245633 DOI: 10.1186/s12931-018-0933-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Work-place exposure to silica dust may lead to progressive lung inflammation culminating in the development of silicosis, an irreversible condition that can be complicated by onset of pulmonary hypertension (PH). The molecular mechanisms leading to the development of PH and lung fibrosis in response to silica are not well understood. Oxidant/antioxidant imbalance in the lung may promote fibroproliferation and vascular smooth muscle proliferation, ultimately leading to the development of PH. Herein, we analyze the development of PH and lung fibrosis in mice deficient in extracellular superoxide dismutase (SOD3), an enzyme with anti-oxidant activity. METHODS PH and silicosis were induced in wild-type and Sod3-/- mice through intratracheal injection of crystalline silica at dose 0.4 g/kg. Pulmonary hypertension and lung fibrosis were characterized by changes in right ventricular systolic pressure (RVSP) and collagen deposition 28 days following silica injections. Vascular remodeling was analyzed using immunohistochemistry and morphometric analysis. The expression of genes were analyzed using qRT-PCR and Western blot. RESULTS C57BL6 mice exposed to silica showed attenuated expression of Sod3 in the lung suggesting a protective role for Sod3. Consistent with this, Sod3-/- mice developed more severe fibrotic inflammatory nodules with increased collagen deposition. Furthermore, the expression of genes involved in tissue remodeling (Timp1), fibrotic lesion formation (Fsp1) and inflammatory response (Mcp1) were significantly elevated in Sod3-/- mice compared to Sod3+/+ mice treated with silica. Infiltration of neutrophils and activated macrophages into affected lung was significantly higher in Sod3 deficient mice. In addition, silica produced more profound effects on elevation of RVSP in Sod3-/- compared to wild-type littermate. Increase in RVSP was concomitant with hypertrophy of pulmonary arteries located in silicotic nodules of both mouse strains, however, vascular remodeling in unaffected areas of lung was detected only in Sod3-/- mice. CONCLUSIONS Our data suggest that Sod3 and extracellular oxidative stress may play an important role in the development of pneumoconiosis and pulmonary vascular remodeling following exposure to environmental and occupational silica.
Collapse
Affiliation(s)
- Igor N Zelko
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Louisville, 505 S. Hancock Street, CTR Bldg., room 524, Louisville, KY, 40202, USA.
- Department of Biochemistry and Molecular Genetics, University of Louisville, 505 S. Hancock Street, CTR Bldg., room 524, Louisville, KY, 40202, USA.
| | - Jianxin Zhu
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Louisville, 505 S. Hancock Street, CTR Bldg., room 524, Louisville, KY, 40202, USA
| | - Jesse Roman
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Louisville, 505 S. Hancock Street, CTR Bldg., room 524, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, 40202, USA
- Robley Rex VA Medical Center, Louisville, KY, 40202, USA
| |
Collapse
|
9
|
Katzer D, Pauli L, Mueller A, Reutter H, Reinsberg J, Fimmers R, Bartmann P, Bagci S. Melatonin Concentrations and Antioxidative Capacity of Human Breast Milk According to Gestational Age and the Time of Day. J Hum Lact 2016; 32:NP105-NP110. [PMID: 27121237 DOI: 10.1177/0890334415625217] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND While changes in the composition of breast milk throughout the lactation period are well known, little is known about the antioxidative capacity of breast milk and its regulation as a function of time of day. OBJECTIVE The aim of this study was to evaluate the antioxidative capacity in breast milk and its regulation by time of day. METHODS Melatonin, superoxide dismutase (SOD), glutathione peroxidase 3 (Gpx3) concentrations, and the total antioxidative capacity (TAOC) were analyzed in 105 breast milk samples and 12 maternal serum samples from 21 healthy nursing mothers. RESULTS Comparison between daytime breast milk (collected from 1000-2200 h) and nighttime breast milk (collected from 2200-1000 h) revealed significantly higher concentrations of melatonin and Gpx3 in nighttime milk (melatonin: 1.5 pg/mL [1.0-2.1] day vs 7.3 pg/mL [3.8-13.6] night, median [quartiles], with an estimated mean night-to-day ratio of 5.2 [3.9, 7.1], P < .001; Gpx3: 1436 ng/mL [765-2060] day vs 1800 ng/mL [1242-2297] night, night-to-day difference 192.1 [0.6, 383.7], P = .049). Subgroup analysis showed that melatonin had a circadian rhythm in both preterm and term milk, with a significantly higher nighttime concentration ( P < .001), while antioxidant enzymes had a circadian rhythm only in preterm milk, with a significantly higher nighttime concentration for Gpx3 and a significant higher daytime concentration for SOD and TAOC ( P = .041 and P = .049, respectively). We found no significant correlation between the concentration of melatonin and the concentration of SOD, Gpx3, or TAOC. Moreover, there were no significant correlations observed between gestational age and the concentration of melatonin and antioxidant enzymes. CONCLUSION Because of its higher melatonin and Gpx3 content, future research is needed to determine if preterm nighttime milk ought to be the first choice in the feeding of high-risk preterm infants.
Collapse
Affiliation(s)
- David Katzer
- 1 Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Lisa Pauli
- 1 Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Andreas Mueller
- 1 Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Heiko Reutter
- 1 Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany.,2 Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Jochen Reinsberg
- 3 Department of Gynecological Endocrinology, University of Bonn, Bonn, Germany
| | - Rolf Fimmers
- 4 Medical Statistics and Epidemiology, University of Bonn, Bonn, Germany
| | - Peter Bartmann
- 1 Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Soyhan Bagci
- 1 Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Iversen MB, Gottfredsen RH, Larsen UG, Enghild JJ, Praetorius J, Borregaard N, Petersen SV. Extracellular superoxide dismutase is present in secretory vesicles of human neutrophils and released upon stimulation. Free Radic Biol Med 2016; 97:478-488. [PMID: 27394172 DOI: 10.1016/j.freeradbiomed.2016.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 11/18/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages and polymorphonuclear leukocytes (neutrophils) and increasing evidence supports a role for EC-SOD in the development of an inflammatory response. Here we show that human EC-SOD is present at the cell surface of isolated neutrophils as well as stored within secretory vesicles. Interestingly, we find that EC-SOD mRNA is absent throughout neutrophil maturation indicating that the protein is synthesized by other cells and subsequently endocytosed by the neutrophil. When secretory vesicles were mobilized by neutrophil stimulation using formyl-methionyl-leucyl-phenylalanine (fMLF) or phorbol 12-myristate 13-acetate (PMA), the protein was released into the extracellular space and found to associate with DNA released from stimulated cells. The functional consequences were evaluated by the use of neutrophils isolated from wild-type and EC-SOD KO mice, and showed that EC-SOD release significantly reduce the level of superoxide in the extracellular space, but does not affect the capacity to generate neutrophil extracellular traps (NETs). Consequently, our data signifies that EC-SOD released from activated neutrophils affects the redox conditions of the extracellular space and may offer protection against highly reactive oxygen species such as hydroxyl radicals otherwise generated as a result of respiratory burst activity of activated neutrophils.
Collapse
Affiliation(s)
- Marie B Iversen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | | | - Ulrike G Larsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
| | - Jeppe Praetorius
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Niels Borregaard
- Department of Hematology, Copenhagen University Hospital, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Steen V Petersen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark.
| |
Collapse
|
11
|
Morales K, Olesen MN, Poulsen ET, Larsen UG, Enghild JJ, Petersen SV. The effects of hypochlorous acid and neutrophil proteases on the structure and function of extracellular superoxide dismutase. Free Radic Biol Med 2015; 81:38-46. [PMID: 25582887 DOI: 10.1016/j.freeradbiomed.2014.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/02/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) is expressed by both macrophages and neutrophils and is known to influence the inflammatory response. Upon activation, neutrophils generate hypochlorous acid (HOCl) and secrete proteases to combat invading microorganisms. This produces a hostile environment in which enzymatic activity in general is challenged. In this study, we show that EC-SOD exposed to physiologically relevant concentrations of HOCl remains enzymatically active and retains the heparin-binding capacity, although HOCl exposure established oxidative modification of the N-terminal region (Met32) and the formation of an intermolecular cross-link in a fraction of the molecules. The cross-linking was also induced by activated neutrophils. Moreover, we show that the neutrophil-derived proteases human neutrophil elastase and cathepsin G cleaved the N-terminal region of EC-SOD irrespective of HOCl oxidation. Although the cleavage by elastase did not affect the quaternary structure, the cleavage by cathepsin G dissociated the molecule to produce EC-SOD monomers. The present data suggest that EC-SOD is stable and active at the site of inflammation and that neutrophils have the capacity to modulate the biodistribution of the protein by generating EC-SOD monomers that can diffuse into tissue.
Collapse
Affiliation(s)
- Karla Morales
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Ebbe Toftgaard Poulsen
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center and Center for Insoluble Protein Structures, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ulrike G Larsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center and Center for Insoluble Protein Structures, Aarhus University, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
12
|
Gottfredsen RH, Goldstrohm DA, Hartney JM, Larsen UG, Bowler RP, Petersen SV. The cellular distribution of extracellular superoxide dismutase in macrophages is altered by cellular activation but unaffected by the naturally occurring R213G substitution. Free Radic Biol Med 2014; 69:348-56. [PMID: 24512907 PMCID: PMC4440334 DOI: 10.1016/j.freeradbiomed.2014.01.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/09/2014] [Accepted: 01/30/2014] [Indexed: 11/17/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) is responsible for the dismutation of the superoxide radical produced in the extracellular space and known to be expressed by inflammatory cells, including macrophages and neutrophils. Here we show that EC-SOD is produced by resting macrophages and associated with the cell surface via the extracellular matrix (ECM)-binding region. Upon cellular activation induced by lipopolysaccharide, EC-SOD is relocated and detected both in the cell culture medium and in lipid raft structures. Although the secreted material presented a significantly reduced ligand-binding capacity, this could not be correlated to proteolytic removal of the ECM-binding region, because the integrity of the material recovered from the medium was comparable to that of the cell surface-associated protein. The naturally occurring R213G amino acid substitution located in the ECM-binding region of EC-SOD is known to affect the binding characteristics of the protein. However, the analysis of macrophages expressing R213G EC-SOD did not present evidence of an altered cellular distribution. Our results suggest that EC-SOD plays a dynamic role in the inflammatory response mounted by activated macrophages.
Collapse
Affiliation(s)
| | | | - John M Hartney
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Ulrike G Larsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Russell P Bowler
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Steen V Petersen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark.
| |
Collapse
|
13
|
Melo AC, Valença SS, Gitirana LB, Santos JC, Ribeiro ML, Machado MN, Magalhães CB, Zin WA, Porto LC. Redox markers and inflammation are differentially affected by atorvastatin, pravastatin or simvastatin administered before endotoxin-induced acute lung injury. Int Immunopharmacol 2013; 17:57-64. [PMID: 23747588 DOI: 10.1016/j.intimp.2013.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 05/03/2013] [Accepted: 05/20/2013] [Indexed: 11/29/2022]
Abstract
Statins are standard therapy for the treatment of lipid disorders, and the field of redox biology accepts that statins have antioxidant properties. Our aim in this report was to consider the pleiotropic effects of atorvastatin, pravastatin and simvastatin administered prior to endotoxin-induced acute lung injury. Male mice were divided into 5 groups and intraperitoneally injected with LPS (10 mg/kg), LPS plus atorvastatin (10 mg/kg/day; A + LPS group), LPS plus pravastatin (5 mg/kg/day; P + LPS group) or LPS plus simvastatin (20 mg/kg/day; S + LPS group). The control group received saline. All mice were sacrificed one day later. There were fewer leukocytes in the P + LPS and S + LPS groups than in the LPS group. MCP-1 cytokine levels were lower in the P + LPS group, while IL-6 levels were lower in the P + LPS and S + LPS groups. TNF-α was lower in all statin-treated groups. Levels of redox markers (superoxide dismutase and catalase) were lower in the A + LPS group (p < 0.01). The extent of lipid peroxidation (malondialdehyde and hydroperoxides) was reduced in all statin-treated groups (p < 0.05). Myeloperoxidase was lower in the P + LPS group (p < 0.01). Elastance levels were significantly greater in the LPS group compared to the statin groups. Our results suggest that atorvastatin and pravastatin but not simvastatin exhibit anti-inflammatory and antioxidant activity in endotoxin-induced acute lung injury.
Collapse
Affiliation(s)
- Adriana Correa Melo
- Programa de Pós-graduação em Biologia Humana e Experimental, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lee JS, Lee YS, Jeon B, Jeon YJ, Yoo H, Kim TY. EC-SOD induces apoptosis through COX-2 and galectin-7 in the epidermis. J Dermatol Sci 2012; 65:126-33. [DOI: 10.1016/j.jdermsci.2011.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 01/13/2023]
|
15
|
Manni ML, Epperly MW, Han W, Blackwell TS, Duncan SR, Piganelli JD, Oury TD. Leukocyte-derived extracellular superoxide dismutase does not contribute to airspace EC-SOD after interstitial pulmonary injury. Am J Physiol Lung Cell Mol Physiol 2011; 302:L160-6. [PMID: 22003088 DOI: 10.1152/ajplung.00360.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) is abundant in the lung and is known to limit inflammation and fibrosis following numerous pulmonary insults. Previous studies have reported a loss of full-length EC-SOD from the pulmonary parenchyma with accumulation of proteolyzed EC-SOD in the airspace after an interstitial lung injury. However, following airspace only inflammation, EC-SOD accumulates in the airspace without a loss from the interstitium, suggesting this antioxidant may be released from an extrapulmonary source. Because leukocytes are known to express EC-SOD and are prevalent in the bronchoalveolar lavage fluid (BALF) after injury, it was hypothesized that these cells may transport and release EC-SOD into airspaces. To test this hypothesis, C57BL/6 wild-type and EC-SOD knockout mice were irradiated and transplanted with bone marrow from either wild-type mice or EC-SOD knockout mice. Bone marrow chimeric mice were then intratracheally treated with asbestos and killed 3 and 7 days later. At both 3 and 7 days following asbestos injury, mice without pulmonary EC-SOD expression but with EC-SOD in infiltrating and resident leukocytes did not have detectable levels of EC-SOD in the airspaces. In addition, leukocyte-derived EC-SOD did not significantly lessen inflammation or early stage fibrosis that resulted from asbestos injury in the lungs. Although it is not influential in the asbestos-induced interstitial lung injury model, EC-SOD is still known to be present in leukocytes and may play an influential role in attenuating pneumonias and other inflammatory diseases.
Collapse
Affiliation(s)
- Michelle L Manni
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Extracellular superoxide dismutase in macrophages augments bacterial killing by promoting phagocytosis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2752-9. [PMID: 21641397 DOI: 10.1016/j.ajpath.2011.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 01/26/2011] [Accepted: 02/01/2011] [Indexed: 11/22/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) is abundant in the lung and limits inflammation and injury in response to many pulmonary insults. To test the hypothesis that EC-SOD has an important role in bacterial infections, wild-type and EC-SOD knockout (KO) mice were infected with Escherichia coli to induce pneumonia. Although mice in the EC-SOD KO group demonstrated greater pulmonary inflammation than did wild-type mice, there was less clearance of bacteria from their lungs after infection. Macrophages and neutrophils express EC-SOD; however, its function and subcellular localization in these inflammatory cells is unclear. In the present study, immunogold electron microscopy revealed EC-SOD in membrane-bound vesicles of phagocytes. These findings suggest that inflammatory cell EC-SOD may have a role in antibacterial defense. To test this hypothesis, phagocytes from wild-type and EC-SOD KO mice were evaluated. Although macrophages lacking EC-SOD produced more reactive oxygen species than did cells expressing EC-SOD after stimulation, they demonstrated significantly impaired phagocytosis and killing of bacteria. Overall, this suggests that EC-SOD facilitates clearance of bacteria and limits inflammation in response to infection by promoting bacterial phagocytosis.
Collapse
|
17
|
Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 2011; 15:1583-606. [PMID: 21473702 PMCID: PMC3151424 DOI: 10.1089/ars.2011.3999] [Citation(s) in RCA: 1304] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excessive reactive oxygen species Revised abstract, especially superoxide anion (O₂•-), play important roles in the pathogenesis of many cardiovascular diseases, including hypertension and atherosclerosis. Superoxide dismutases (SODs) are the major antioxidant defense systems against (O₂•-), which consist of three isoforms of SOD in mammals: the cytoplasmic Cu/ZnSOD (SOD1), the mitochondrial MnSOD (SOD2), and the extracellular Cu/ZnSOD (SOD3), all of which require catalytic metal (Cu or Mn) for their activation. Recent evidence suggests that in each subcellular location, SODs catalyze the conversion of (O₂•-), H2O2, which may participate in cell signaling. In addition, SODs play a critical role in inhibiting oxidative inactivation of nitric oxide, thereby preventing peroxynitrite formation and endothelial and mitochondrial dysfunction. The importance of each SOD isoform is further illustrated by studies from the use of genetically altered mice and viral-mediated gene transfer. Given the essential role of SODs in cardiovascular disease, the concept of antioxidant therapies, that is, reinforcement of endogenous antioxidant defenses to more effectively protect against oxidative stress, is of substantial interest. However, the clinical evidence remains controversial. In this review, we will update the role of each SOD in vascular biologies, physiologies, and pathophysiologies such as atherosclerosis, hypertension, and angiogenesis. Because of the importance of metal cofactors in the activity of SODs, we will also discuss how each SOD obtains catalytic metal in the active sites. Finally, we will discuss the development of future SOD-dependent therapeutic strategies.
Collapse
Affiliation(s)
- Tohru Fukai
- Section of Cardiology, Department of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA.
| | | |
Collapse
|
18
|
Yu DH, Kim MO, Kim SH, Shin MJ, Kim BS, Kim HJ, Lee SR, Lee SG, Yoo SA, Kim WU, Hyun BH, Park YS, Kim TY, Ryoo ZY. The Therapeutic Effect of Extracellular Superoxide Dismutase (EC-SOD) Mouse Embryonic Fibroblast (MEF) on Collagen-Induced Arthritis (CIA) Mice. Cell Transplant 2008; 17:1371-80. [DOI: 10.3727/096368908787648029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Rheumatoid arthritis is a chronic inflammatory disease. The generation of reactive oxygen species (ROS) within an inflamed joint has been suggested as playing a significant pathogenic role. Extracellular superoxide dismutase (EC-SOD) is a major scavenger enzyme of ROS, which has received growing attention for its therapeutic potential. To investigate the therapeutic effect of EC-SOD in mice with collagen-induced arthritis (CIA), we used mouse embryonic fibroblast (MEF) of transgenic mice that overexpresses EC-SOD on the skin by using hK14 promoter. DBA/1 mice that had been treated with bovine type II collagen were administrated subcutaneous injections of EC-SOD transgenic MEF (each at 1.4 × 106 cells) on days 28, 35, and 42 after primary immunization. To test EC-SOD activity, blood samples were collected in each group on day 49. The EC-SOD activity was nearly 1.5-fold higher in the transgenic MEF-treated group than in the non-transgenic MEF-treated group (p < 0.05). The severity of arthritis in mice was scored in a double-blind manner, with each paw being assigned a separate clinical score. The severity of arthritis in EC-SOD transgenic MEF-treated mice was significantly suppressed in the arthritic clinical score (p < 0.05). To investigate the alteration of cytokine levels, ELISA was used to measure blood samples. Levels of IL-1β and TNF-α were reduced in the transgenic MEF-treated group (p < 0.05). Abnormalities of the joints were examined by H&E staining. There were no signs of inflammation except for mild hyperplasia of the synovium in the transgenic MEF-treated group. The proliferation of CII-specific T cells was lower in the transgenic MEF-treated mice than in those in the other groups. The transfer of EC-SOD transgenic MEF has shown a therapeutic effect in CIA mice and this approach may be a safer and more effective form of therapy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Dong Hoon Yu
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Myoung Ok Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Sung Hyun Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Mi Jung Shin
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Bong Soo Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Hei Jung Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Sang Ryeul Lee
- Department of Immunology and Dermatology, College of Medicine, Catholic University, Seoul, 137-040, Korea
| | - Sang Gyu Lee
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Seung-Ah Yoo
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Korea, Seoul, Korea
| | - Wan Uk Kim
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Korea, Seoul, Korea
| | - Byung Hwa Hyun
- Disease Model Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| | - Young Sik Park
- School of Life and Food Sciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Tae Yoon Kim
- Department of Immunology and Dermatology, College of Medicine, Catholic University, Seoul, 137-040, Korea
| | - Zae Young Ryoo
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| |
Collapse
|
19
|
Ueda J, Starr ME, Takahashi H, Du J, Chang LY, Crapo JD, Evers BM, Saito H. Decreased pulmonary extracellular superoxide dismutase during systemic inflammation. Free Radic Biol Med 2008; 45:897-904. [PMID: 18640266 PMCID: PMC2953464 DOI: 10.1016/j.freeradbiomed.2008.06.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 06/06/2008] [Accepted: 06/17/2008] [Indexed: 01/09/2023]
Abstract
Oxidative damage is a major cause of lung injury during systemic inflammatory response syndrome. In this study, the expression of an antioxidant enzyme, extracellular superoxide dismutase (EC-SOD), and its protective role against pulmonary oxidative damage were investigated using mouse models of systemic inflammation. Intraperitoneal injection with bacterial endotoxin lipopolysaccharides (LPS; 20 mg/kg) caused oxidative damage in lungs as assessed by increased tyrosine nitration in proteins. LPS administration also resulted in a rapid and significant loss of more than 80% of pulmonary EC-SOD in a time- and dose-dependent manner, but other types of SODs, cytoplasmic CuZn-SOD and mitochondrial Mn-SOD, were not affected. EC-SOD protein is most abundant in lungs but also present at high levels in other tissues such as heart and white fat; however, the LPS-mediated decrease in this enzyme was most apparent in the lungs. Intravenous injection of mice with tumor necrosis factor alpha (10 microg per mouse) also caused a 60% decrease in EC-SOD in the lungs, suggesting that the EC-SOD down-regulation is mediated by this LPS-inducible inflammatory cytokine. A protective role for EC-SOD against LPS-mediated systemic inflammation was shown by an increased survival rate (75% vs 29% in 5 days) and decreased pulmonary oxidative damage in EC-SOD transgenic mice that overexpress the human EC-SOD gene. These results demonstrate that the inflammation-mediated EC-SOD down-regulation has a major pathophysiological impact during the systemic inflammatory response syndrome.
Collapse
Affiliation(s)
- Junji Ueda
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
| | - Marlene E. Starr
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
| | - Hitoshi Takahashi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
| | - Jie Du
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Ling Yi Chang
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206
| | - James D. Crapo
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206
| | - B. Mark Evers
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Hiroshi Saito
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Corresponding author: Hiroshi Saito, Department of Surgery, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0536, Phone: 409-772-6354, Fax: 409-772-6344,
| |
Collapse
|
20
|
Kinnula VL, Myllärniemi M. Oxidant-antioxidant imbalance as a potential contributor to the progression of human pulmonary fibrosis. Antioxid Redox Signal 2008; 10:727-38. [PMID: 18177235 DOI: 10.1089/ars.2007.1942] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pneumonia. IPF is a disease with poor prognosis and an aggressive nature, and poses major challenges to clinicians. Thus, a large part of research in the area has focused on the pathogenesis on IPF. Characteristic features in IPF include fibrotic lesions devoid of inflammatory cell infiltrates. There are experimental models of lung fibrosis (e.g., bleomycin-induced fibrosis), but they typically contain a prominent inflammatory pattern in the lung, which leads to relatively diffuse lung fibrosis. Nonetheless, experimental models have provided important information about the progression and pathways contributing to the lung fibrosis, including activation of transforming growth factor beta (TGF-beta). Both patient material and experimental models of lung fibrosis have displayed marked elevation of several markers of oxidant burden and signs for disturbed antioxidant/oxidant balance. Several studies also suggest that reactive oxygen species can cause activation of growth-regulatory cytokines, including TGF-beta. In addition, there are indications that endogenous and exogenous antioxidants/redox modulators can influence fibrogenesis, protect the lung against fibrosis, and prevent its progression. Factors that restore the antioxidant capacity and prevent sustained activation of growth-regulatory cytokines may have a therapeutic role in IPF.
Collapse
Affiliation(s)
- Vuokko L Kinnula
- Department of Medicine, Division of Pulmonary Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | | |
Collapse
|
21
|
Gao F, Kinnula VL, Myllärniemi M, Oury TD. Extracellular superoxide dismutase in pulmonary fibrosis. Antioxid Redox Signal 2008; 10:343-54. [PMID: 17999630 PMCID: PMC2290736 DOI: 10.1089/ars.2007.1908] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Disruption of the oxidant/antioxidant balance in the lung is thought to be a key step in the development of many airway pathologies. Hence, antioxidant enzymes play key roles in controlling or preventing pulmonary diseases related to oxidative stress. The superoxide dismutases (SOD) are a family of enzymes that play a pivotal role protecting tissues from damage by oxidant stress by scavenging superoxide anion, which prevents the formation of other more potent oxidants such as peroxynitrite and hydroxyl radical. Extracellular SOD (EC-SOD) is found predominantly in the extracellular matrix of tissues and is ideally situated to prevent cell and tissue damage initiated by extracellularly produced ROS. EC-SOD has been shown to be protective in several models of interstitial lung disease, including pulmonary fibrosis. In addition, alterations in EC-SOD expression are also present in human idiopathic pulmonary fibrosis (IPF). This review discusses EC-SOD regulation in response to pulmonary fibrosis in animals and humans and reviews possible mechanisms by which EC-SOD may protect against fibrosis.
Collapse
Affiliation(s)
- Fei Gao
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | |
Collapse
|
22
|
Kim HW, Lin A, Guldberg RE, Ushio-Fukai M, Fukai T. Essential role of extracellular SOD in reparative neovascularization induced by hindlimb ischemia. Circ Res 2007; 101:409-19. [PMID: 17601801 DOI: 10.1161/circresaha.107.153791] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neovascularization is an important physiological repair mechanism in response to ischemic injury, and its process is dependent on reactive oxygen species (ROS). Overproduction of superoxide anion (O2-) rather contributes to various cardiovascular diseases. The extracellular superoxide dismutase (ecSOD) is one of the major antioxidant enzymes against O2- in blood vessels; however, its role in neovascularization induced by tissue ischemia is unknown. Here we show that hindlimb ischemia of mice stimulates a significant increase in ecSOD activity in ischemic tissues where ecSOD protein is highly expressed at arterioles. In mice lacking ecSOD, ischemia-induced increase in blood flow recovery, collateral vessel formation, and capillary density are significantly inhibited. Impaired neovascularization in ecSOD(-/-) mice is associated with enhanced O2- production, TUNEL-positive apoptotic cells and decreased levels of NO2-/NO3- and cGMP in ischemic tissues as compared with wild-type mice, and it is rescued by infusion of the SOD mimetic tempol. Recruitment of inflammatory cells into ischemic tissues as well as numbers of inflammatory cells and endothelial progenitor cells (c-kit+/CD31+ cells) in both peripheral blood and bone marrow (BM) are significantly reduced in these knockout mice. Of note, ecSOD expression is markedly increased in BM after ischemia. NO2-/NO3- and cGMP levels are decreased in ecSOD(-/-) BM. Transplantation of wild-type BM into ecSOD(-/-) mice rescues the defective neovascularization. Thus, ecSOD in BM and ischemic tissues induced by hindlimb ischemia may represent an important compensatory mechanism that blunts the overproduction of O2-, which may contribute to reparative neovascularization in response to ischemic injury.
Collapse
Affiliation(s)
- Ha Won Kim
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
23
|
Kinnula VL, Hodgson UA, Lakari EK, Tan RJ, Sormunen RT, Soini YM, Kakko SJ, Laitinen TH, Oury TD, Pääkkö PK. Extracellular superoxide dismutase has a highly specific localization in idiopathic pulmonary fibrosis/usual interstitial pneumonia. Histopathology 2006; 49:66-74. [PMID: 16842247 PMCID: PMC1847412 DOI: 10.1111/j.1365-2559.2006.02470.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIMS Recent studies suggest the importance of oxidant stress in the progression of pulmonary fibrosis. The aim of this study was to investigate extracellular superoxide dismutase (ECSOD), the major antioxidant enzyme of the extracellular matrix of human lung, in biopsy-proven idiopathic pulmonary fibrosis (IPF) related to usual interstitial pneumonia (UIP). METHODS AND RESULTS Fibrotic areas and fibroblastic foci in UIP lungs were notable for absence of ECSOD by immunohistochemistry. Western blotting showed significantly lowered immunoreactivity of ECSOD in fibrotic compared with non-fibrotic areas of the diseased lung. The only cell type that showed intense ECSOD positivity in UIP was the interstitial mast cell. In order to investigate the mechanism for ECSOD depletion in fibrotic areas, alveolar epithelial cells were exposed to tumour necrosis factor-alpha and transforming growth factor (TGF)-beta1; TGF-beta suggested a trend towards decreased synthesis. Patients with UIP were also assessed to determine whether this disease is associated with a naturally occurring mutation in ECSOD (Arg213Gly) which leads to a loss of tissue binding of ECSOD. No significant differences could be found in the allele or genotype frequencies of this polymorphism between 63 UIP patients and 61 control subjects. CONCLUSION Overall, consistent with several other antioxidant enzymes, ECSOD is very low in fibrotic areas of UIP, which may further increase the oxidant burden in this disease.
Collapse
Affiliation(s)
- V L Kinnula
- University of Helsinki, Department of Medicine, PO Box 22, 00014 Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ha HY, Kim Y, Ryoo ZY, Kim TY. Inhibition of the TPA-induced cutaneous inflammation and hyperplasia by EC-SOD. Biochem Biophys Res Commun 2006; 348:450-8. [PMID: 16890203 DOI: 10.1016/j.bbrc.2006.07.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 07/16/2006] [Indexed: 11/15/2022]
Abstract
This study reports the roles of extracellular superoxide dismutase (EC-SOD) in the cutaneous inflammation and hyperplasia with 12-O-tetradecanoylphorbol-3-acetate (TPA) application in EC-SOD transgenic mice (Tg EC-SOD). Topical double TPA treatment induced the various inflammatory changes including the epidermal thickness, elevated the PCNA-labeling index, the edema formation, and increased production of hydrogen peroxide (H2O2) in wild type mice (WT). These changes were markedly suppressed in TPA-treated Tg EC-SOD. The expressions of the inflammatory cytokines, IL-1alpha and IL-1beta, were reduced in the TPA-treated Tg EC-SOD compared with those in TPA-treated WT. The expression of IL-1alpha was significantly increased in the skin of TPA-treated WT, especially in the basal and suprabasal layers, but it was restricted focally in basal layer of the skin of TPA-treated Tg EC-SOD. The number of infiltrating inflammatory cells and the IL-1beta expressing cells was obviously reduced in TPA-treated Tg EC-SOD in comparison with TPA-treated WT. The result suggests that EC-SOD might play an important role in the suppression of TPA-induced cutaneous inflammation and epidermal hyperplasia by regulating the expression of IL-1alpha and IL-1beta, although the mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Hye-Yeong Ha
- Department of Dermatology and Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-040, Republic of Korea
| | | | | | | |
Collapse
|
25
|
Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol 2006; 533:222-39. [PMID: 16500642 DOI: 10.1016/j.ejphar.2005.12.087] [Citation(s) in RCA: 478] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 12/31/2022]
Abstract
Although oxygen is a prerequisite to life, at concentrations beyond the physiological limits it may be hazardous to the cells. Since the lungs are directly exposed to very high amounts of oxygen, it is imperative for the organ to possess defences against possible oxidative challenge. The lungs are therefore endowed with an armamentarium of a battery of endogenous agents called antioxidants. The antioxidant species help the lungs ward off the deleterious consequences of a wide variety of oxidants/reactive oxygen species such as superoxide anion, hydroxyl radical, hypohalite radical, hydrogen peroxide and reactive nitrogen species such as nitric oxide, peroxynitrite, nitrite produced endogenously and sometimes accessed through exposure to the environment. The major non-enzymatic antioxidants of the lungs are glutathione, vitamins C and E, beta-carotene, uric acid and the enzymatic antioxidants are superoxide dismutases, catalase and peroxidases. These antioxidants are the first lines of defence against the oxidants and usually act at a gross level. Recent insights into cellular redox chemistry have revealed the presence of certain specialized proteins such as peroxiredoxins, thioredoxins, glutaredoxins, heme oxygenases and reductases, which are involved in cellular adaptation and protection against an oxidative assault. These molecules usually exert their action at a more subtle level of cellular signaling processes. Aberrations in oxidant: antioxidant balance can lead to a variety of airway diseases, such as asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis which is the topic of discussion in this review.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Division of Lung Biology and Disease, University of Rochester Medical Center, 601 Elmwood Ave., Box 850, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
26
|
Young RP, Hopkins R, Black PN, Eddy C, Wu L, Gamble GD, Mills GD, Garrett JE, Eaton TE, Rees MI. Functional variants of antioxidant genes in smokers with COPD and in those with normal lung function. Thorax 2006; 61:394-9. [PMID: 16467073 PMCID: PMC2111196 DOI: 10.1136/thx.2005.048512] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is predominantly the consequence of chronic smoking exposure, but its development may be influenced by genetic variants that affect lung remodelling, inflammation, and defence from oxidant stress. A study was undertaken to determine whether genetic variants within genes encoding the antioxidant enzymes superoxide dismutase (SOD) and catalase may be associated with the development of impaired lung function. METHODS In a case-control study, the allele and genotype frequencies of functional polymorphisms from SOD1 (CuZnSOD), SOD2 (MnSOD), SOD3 (extracellular SOD), and catalase (CAT) were compared in chronic smokers with normal lung function (resistant smokers) and in those with COPD. RESULTS Significantly higher frequencies of the G allele and CG/GG genotype of the 213 SOD3 polymorphism were found in resistant smokers (odds ratios (ORs) 4.3 (95% CI 1.5 to 13.3) and 4.2, 95% CI 1.4 to 13.3), Bonferroni corrected p = 0.02 and p = 0.02, respectively) than in those with COPD. There were no differences between the COPD and resistant smokers for the SOD1, SOD2, or CAT polymorphisms tested. CONCLUSIONS The 213Gly variant of the SOD3 gene may, through antioxidant or anti-inflammatory effects, confer a degree of resistance in some smokers to the development of COPD.
Collapse
Affiliation(s)
- R P Young
- Department of Medicine, University of Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tan RJ, Lee JS, Manni ML, Fattman CL, Tobolewski JM, Zheng M, Kolls JK, Martin TR, Oury TD. Inflammatory cells as a source of airspace extracellular superoxide dismutase after pulmonary injury. Am J Respir Cell Mol Biol 2005; 34:226-32. [PMID: 16224105 PMCID: PMC2644184 DOI: 10.1165/rcmb.2005-0212oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Extracellular superoxide dismutase (EC-SOD) is an antioxidant abundant in the lung. Previous studies demonstrated depletion of lung parenchymal EC-SOD in mouse models of interstitial lung disease coinciding with an accumulation of EC-SOD in airspaces. EC-SOD sticks to the matrix by a proteolytically sensitive heparin-binding domain; therefore, we hypothesized that interstitial inflammation and matrix remodeling contribute to proteolytic redistribution of EC-SOD from lung parenchyma into the airspaces. To determine if inflammation limited to airspaces leads to EC-SOD redistribution, we examined a bacterial pneumonia model. This model led to increases in airspace polymorphonuclear leukocytes staining strongly for EC-SOD. EC-SOD accumulated in airspaces at 24 h without depletion of EC-SOD from lung parenchyma. This led us to hypothesize that airspace EC-SOD was released from inflammatory cells and was not a redistribution of matrix EC-SOD. To test this hypothesis, transgenic mice with lung-specific expression of human EC-SOD were treated with asbestos or bleomycin to initiate an interstitial lung injury. In these studies, EC-SOD accumulating in airspaces was entirely the mouse isoform, demonstrating an extrapulmonary source (inflammatory cells) for this EC-SOD. We also demonstrate that EC-SOD knockout mice possess greater lung inflammation in response to bleomycin and bacteria when compared with wild types. We conclude that the source of accumulating EC-SOD in airspaces in interstitial lung disease is inflammatory cells and not the lung and that interstitial processes such as those found in pulmonary fibrosis are required to remove EC-SOD from lung matrix.
Collapse
Affiliation(s)
- Roderick J Tan
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Accumulated evidence has shown that reactive oxygen species (ROS) are important mediators of cell signaling events such as inflammatory reactions (superoxide) and the maintenance of vascular tone (nitric oxide). However, overproduction of ROS such as superoxide has been associated with the pathogenesis of a variety of diseases including cardiovascular diseases, neurological disorders, and pulmonary diseases. Antioxidant enzymes are, in part, responsible for maintaining low levels of these oxygen metabolites in tissues and may play key roles in controlling or preventing these conditions. One key antioxidant enzyme implicated in the regulation of ROS-mediated tissue damage is extracellular superoxide dismutase (EC-SOD). EC-SOD is found in the extracellular matrix of tissues and is ideally situated to prevent cell and tissue damage initiated by extracellularly produced ROS. In addition, EC-SOD is likely to play an important role in mediating nitric oxide-induced signaling events, since the reaction of superoxide and nitric oxide can interfere with nitric oxide signaling. This review will discuss the regulation of EC-SOD and its role in a variety of oxidant-mediated diseases.
Collapse
Affiliation(s)
- Cheryl L Fattman
- Medical Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
29
|
Abstract
The lungs are directly exposed to higher oxygen concentrations than most other tissues. Increased oxidative stress is a significant part of the pathogenesis of obstructive lung diseases such as asthma and chronic obstructive pulmonary disease, parenchymal lung diseases (e.g., idiopathic pulmonary fibrosis and lung granulomatous diseases), and lung malignancies. Lung tissue is protected against these oxidants by a variety of antioxidant mechanisms among which the superoxide dismutases (SODs) are the only ones converting superoxide radicals to hydrogen peroxide. There are three SODs: cytosolic copper-zinc, mitochondrial manganese, and extracellular SODs. These enzymes have specific distributions and functions. Their importance in protecting lung tissue has been confirmed in transgenic and knockout animal studies. Relatively few studies have been conducted on these enzymes in the normal human lung or in human lung diseases. Most human studies suggest that there is induction of manganese SOD and, possibly, extracellular SOD during inflammatory, but not fibrotic, phases of parenchymal lung diseases and that both copper-zinc SOD and manganese SOD may be downregulated in asthmatic airways. Many previous antioxidant therapies have been disappointing, but newly characterized SOD mimetics are being shown to protect against oxidant-related lung disorders in animal models.
Collapse
|
30
|
Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 2002; 33:337-49. [PMID: 12126755 DOI: 10.1016/s0891-5849(02)00905-x] [Citation(s) in RCA: 1432] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Superoxide dismutases are an ubiquitous family of enzymes that function to efficiently catalyze the dismutation of superoxide anions. Three unique and highly compartmentalized mammalian superoxide dismutases have been biochemically and molecularly characterized to date. SOD1, or CuZn-SOD (EC 1.15.1.1), was the first enzyme to be characterized and is a copper and zinc-containing homodimer that is found almost exclusively in intracellular cytoplasmic spaces. SOD2, or Mn-SOD (EC 1.15.1.1), exists as a tetramer and is initially synthesized containing a leader peptide, which targets this manganese-containing enzyme exclusively to the mitochondrial spaces. SOD3, or EC-SOD (EC 1.15.1.1), is the most recently characterized SOD, exists as a copper and zinc-containing tetramer, and is synthesized containing a signal peptide that directs this enzyme exclusively to extracellular spaces. What role(s) these SODs play in both normal and disease states is only slowly beginning to be understood. A molecular understanding of each of these genes has proven useful toward the deciphering of their biological roles. For example, a variety of single amino acid mutations in SOD1 have been linked to familial amyotrophic lateral sclerosis. Knocking out the SOD2 gene in mice results in a lethal cardiomyopathy. A single amino acid mutation in human SOD3 is associated with 10 to 30-fold increases in serum SOD3 levels. As more information is obtained, further insights will be gained.
Collapse
Affiliation(s)
- Igor N Zelko
- Division of Pulmonary and Critical Care, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
31
|
Bowler RP, Nicks M, Warnick K, Crapo JD. Role of extracellular superoxide dismutase in bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2002; 282:L719-26. [PMID: 11880297 DOI: 10.1152/ajplung.00058.2001] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bleomycin administration results in well-described intracellular oxidative stress that can lead to pulmonary fibrosis. The role of alveolar interstitial antioxidants in this model is unknown. Extracellular superoxide dismutase (EC-SOD) is the primary endogenous extracellular antioxidant enzyme and is abundant in the lung. We hypothesized that EC-SOD plays an important role in attenuating bleomycin-induced lung injury. Two weeks after intratracheal bleomycin administration, we found that wild-type mice induced a 106 +/- 25% increase in lung EC-SOD. Immunohistochemical staining revealed that a large increase in EC-SOD occurred in injured lung. Using mice that overexpress EC-SOD specifically in the lung, we found a 53 +/- 14% reduction in bleomycin-induced lung injury assessed histologically and a 17 +/- 6% reduction in lung collagen content 2 wk after bleomycin administration. We conclude that EC-SOD plays an important role in reducing the magnitude of lung injury from extracellular free radicals after bleomycin administration.
Collapse
Affiliation(s)
- Russell P Bowler
- Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | | | |
Collapse
|
32
|
Fukui S, Ookawara T, Nawashiro H, Suzuki K, Shima K. Post-ischemic transcriptional and translational responses of EC-SOD in mouse brain and serum. Free Radic Biol Med 2002; 32:289-98. [PMID: 11827754 DOI: 10.1016/s0891-5849(01)00804-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) is neuroprotective, but its role in cerebral ischemia remains to be determined. We herein describe the topographical localization and quantitative changes in EC-SOD and its mRNA expression following cerebral ischemia in mice. Mice were subjected to transient forebrain ischemia and varied intervals of reperfusion. The measurements of EC-SOD using ELISA showed increased brain EC-SOD after 24 h of reperfusion and an increase in EC-SOD brain/serum ratio after 3 h. The immunohistochemical examination in normal mice showed strong EC-SOD immunoreactivity in the choroid plexus, pia mater, and ventral tuberal area of the hypothalamus. EC-SOD immunoreactivity in cortical and striatal capillary wall was conspicuous after 3 h. EC-SOD immunoreactivity was also noted in cortical neurons after 24 h. Northern blot analysis showed an increased EC-SOD mRNA expression in the brain after 24 h. An in situ hybridization study in normal mice demonstrated the mRNA expression of EC-SOD in choroid plexus and neurons through the brain especially in the cortex or ventral tuberal area of the hypothalamus, but demonstrated no mRNA expression of EC-SOD in the capillary wall. These findings suggest that EC-SOD accumulates on endothelial cells in response to this injury by an unknown mechanism, while cortical neurons produce EC-SOD themselves after cerebral ischemia with reperfusion.
Collapse
Affiliation(s)
- Shinji Fukui
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan.
| | | | | | | | | |
Collapse
|
33
|
Kinnula VL, Soini Y, Kvist-Mäkelä K, Savolainen ER, Koistinen P. Antioxidant defense mechanisms in human neutrophils. Antioxid Redox Signal 2002; 4:27-34. [PMID: 11970840 DOI: 10.1089/152308602753625825] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neutrophils have a short half-life and high tendency to undergo apoptosis. One feature that may influence these characteristics is the antioxidant/oxidant balance of these cells. There are few studies on the levels of antioxidant enzymes in human neutrophils. We have analyzed by immunohistochemistry of paraffin-embedded cells and from cytospin preparations the most important antioxidant proteins in human neutrophils, and compared their levels with those in blood monocytes. Neutrophils showed moderate to high catalase, weak to moderate extracellular superoxide dismutase, and weak copper zinc superoxide dismutase and gamma-glutamylcysteine synthetase immunoreactivities. There were no detectable levels of manganese superoxide dismutase, thioredoxin, and heme oxygenase 1. Some differences were observed between the samples prepared by embedding in paraffin or by cytospin. These results, in combination with a recent study from this laboratory, suggest that a prominent feature in neutrophils is their high catalase activity but lower level of glutathione-dependent antioxidant enzymes. The differences in antioxidant profiles in neutrophils and monocytes may have important effects on the life span of human neutrophils, in both healthy and diseased tissues.
Collapse
Affiliation(s)
- Vuokko L Kinnula
- Department of Internal Medicine, University of Oulu and Oulu University Central Hospital, Oulu, Finland.
| | | | | | | | | |
Collapse
|
34
|
Fattman CL, Chu CT, Kulich SM, Enghild JJ, Oury TD. Altered expression of extracellular superoxide dismutase in mouse lung after bleomycin treatment. Free Radic Biol Med 2001; 31:1198-207. [PMID: 11705698 DOI: 10.1016/s0891-5849(01)00699-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) is highly expressed in the extracellular matrix of lung tissue and is believed to protect the lung from oxidative damage that results in diseases such as pulmonary fibrosis. This study tests the hypothesis that proteolytic removal of the heparin-binding domain of EC-SOD results in clearance of the enzyme from the extracellular matrix of pulmonary tissues and leads to a loss of antioxidant protection. Using a polyclonal antibody to mouse EC-SOD, the immunodistribution of EC-SOD in normal and bleomycin-injured lungs was examined. EC-SOD labeling was strong in the matrix of vessels, airways, and alveolar surfaces and septa in control lungs. At 2 d post-treatment, a slight increase in EC-SOD staining was evident. In contrast, lungs examined 4 or 7 d post-treatment, showed an apparent loss of EC-SOD from the matrix and surface of alveolar septa. Notably, at 7 d post-treatment, the truncated form of EC-SOD was found in the bronchoalveolar lavage fluid of bleomycin-treated mice, suggesting that EC-SOD is being removed from the extracellular matrix through proteolysis. However, loss of EC-SOD through proteolysis did not correlate with a decrease in overall pulmonary EC-SOD activity. The negligible effect on EC-SOD activity may reflect the large influx of intensely staining inflammatory cells at day 7. These results indicate that injuries leading to pulmonary fibrosis have a significant effect on EC-SOD distribution due to proteolytic removal of the heparin-binding domain and may be important in enhancing pulmonary injuries by altering the oxidant/antioxidant balance in alveolar interstitial spaces.
Collapse
Affiliation(s)
- C L Fattman
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
35
|
Fattman CL, Enghild JJ, Crapo JD, Schaefer LM, Valnickova Z, Oury TD. Purification and characterization of extracellular superoxide dismutase in mouse lung. Biochem Biophys Res Commun 2000; 275:542-8. [PMID: 10964700 DOI: 10.1006/bbrc.2000.3327] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) is the major isozyme of SOD in arteries, but is also abundant in lungs. In particular, mouse lungs contain large amounts of EC-SOD compared to lungs in other mammals. This suggests that EC-SOD may have an amplified function in the mouse lung. This study describes the purification and characterization of mouse EC-SOD as well as its localization in mouse lung. Mouse EC-SOD exists primarily as a homotetramer composed of a pair of dimers linked through disulfide bonds present in the heparin-binding domains of each subunit. In addition, mouse EC-SOD can exist in active multimeric forms. We developed and utilized a polyclonal antibody to mouse EC-SOD to immunolocalize EC-SOD in mouse lung. EC-SOD labeling is strongest in the matrix of vessels, airways, and alveolar septa. This localization suggests that EC-SOD may have important functions in pulmonary biology, perhaps in the modulation of nitric oxide-dependent responses.
Collapse
Affiliation(s)
- C L Fattman
- Department of Pathology, University of Pittsburgh Medical Center, Scaife Hall, Seventh Floor, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
36
|
Vermeiren GL, Claeys MJ, Van Bockstaele D, Grobben B, Slegers H, Bossaert L, Jorens PG. Reperfusion injury after focal myocardial ischaemia: polymorphonuclear leukocyte activation and its clinical implications. Resuscitation 2000; 45:35-61. [PMID: 10838237 DOI: 10.1016/s0300-9572(00)00168-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The only way to rescue ischaemic tissue is to re-instate the oxygen supply to the tissue. However reperfusion of the ischaemic area not only oxygenates the tissue but also initiates a cascade of processes, which may in some cases result in temporary dysfunction of the myocardium. In order to devise protective measures, it is essential to understand the mechanisms and the triggers of this reperfusion phenomenon. In this review we will mainly focus on the inflammatory response caused by reperfusion. We will cover the different steps of polymorphonuclear leukocyte activation and will briefly discuss the molecular biology of the receptors involved. The currently used pharmacological medications in acute cardiology will be reviewed and in particular their actions on polymorphonuclear leukocyte activation, adhesion and degranulation. This review is a compilation of the current knowledge in the field and the therapeutic progress in the prevention of reperfusion injury made today.
Collapse
Affiliation(s)
- G L Vermeiren
- Department of Intensive Care, University Hospital of Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
37
|
Yamamoto H, Sasaki J, Nomura T, Nawa T. Expression of manganese superoxide dismutase in rat submandibular gland demonstrated by in situ hybridization and immunohistochemistry. Ann Anat 1999; 181:519-22. [PMID: 10609048 DOI: 10.1016/s0940-9602(99)80056-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Superoxide, an active oxygen species, plays an important role in protecting against bacterial infection. However, it also has adverse effects on health. Manganese superoxide dismutase (Mn-SOD) is a scavenger of superoxide. Antioxygen enzymes such as Mn-SOD exist in various tissues, and provide protections against oxidative injury. We investigated both the expression of Mn-SOD mRNA and the localization of Mn-SOD in adult rat submandibular glands using in situ hybridization and immunohistochemistry. Both Mn-SOD mRNA and Mn-SOD were detected in striated duct cells, and in some granular duct cells and excretory duct cells. With immunoelectron microscopy, many immunolabelings were observed on the mitochondria. These findings suggest that the expression of Mn-SOD mRNA and the localization of Mn-SOD in submandibular glands correlate with the number of mitochondria in cells.
Collapse
Affiliation(s)
- H Yamamoto
- Department of Oral Anatomy, School of Dentistry, Iwate Medical University, Morioka, Japan
| | | | | | | |
Collapse
|