1
|
Hyperoxia Inhibits Proliferation of Retinal Endothelial Cells in a Myc-Dependent Manner. Life (Basel) 2021; 11:life11070614. [PMID: 34202240 PMCID: PMC8304924 DOI: 10.3390/life11070614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023] Open
Abstract
Oxygen supplementation is necessary to prevent mortality in severely premature infants. However, the supraphysiological concentration of oxygen utilized in these infants simultaneously creates retinovascular growth attenuation and vasoobliteration that induces the retinopathy of prematurity. Here, we report that hyperoxia regulates the cell cycle and retinal endothelial cell proliferation in a previously unknown Myc-dependent manner, which contributes to oxygen-induced retinopathy.
Collapse
|
2
|
Truttmann AC, Ginet V, Puyal J. Current Evidence on Cell Death in Preterm Brain Injury in Human and Preclinical Models. Front Cell Dev Biol 2020; 8:27. [PMID: 32133356 PMCID: PMC7039819 DOI: 10.3389/fcell.2020.00027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Despite tremendous advances in neonatal intensive care over the past 20 years, prematurity carries a high burden of neurological morbidity lasting lifelong. The term encephalopathy of prematurity (EoP) coined by Volpe in 2009 encompasses all aspects of the now known effects of prematurity on the immature brain, including altered and disturbed development as well as specific lesional hallmarks. Understanding the way cells are damaged is crucial to design brain protective strategies, and in this purpose, preclinical models largely contribute to improve the comprehension of the cell death mechanisms. While neuronal cell death has been deeply investigated and characterized in (hypoxic–ischemic) encephalopathy of the newborn at term, little is known about the types of cell death occurring in preterm brain injury. Three main different morphological cell death types are observed in the immature brain, specifically in models of hypoxic–ischemic encephalopathy, namely, necrotic, apoptotic, and autophagic cell death. Features of all three types may be present in the same dying neuron. In preterm brain injury, description of cell death types is sparse, and cell loss primarily concerns immature oligodendrocytes and, infrequently, neurons. In the present review, we first shortly discuss the different main severe preterm brain injury conditions that have been reported to involve cell death, including periventricular leucomalacia (PVL), diffuse white matter injury (dWMI), and intraventricular hemorrhages, as well as potentially harmful iatrogenic conditions linked to premature birth (anesthesia and caffeine therapy). Then, we present an overview of current evidence concerning cell death in both clinical human tissue data and preclinical models by focusing on studies investigating the presence of cell death allowing discriminating between the types of cell death involved. We conclude that, to improve brain protective strategies, not only apoptosis but also other cell death (such as regulated necrotic and autophagic) pathways now need to be investigated together in order to consider all cell death mechanisms involved in the pathogenesis of preterm brain damage.
Collapse
Affiliation(s)
- Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Vanessa Ginet
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
3
|
Time Dependent Pathway Activation of Signalling Cascades in Rat Organs after Short-Term Hyperoxia. Int J Mol Sci 2018; 19:ijms19071960. [PMID: 29973540 PMCID: PMC6073502 DOI: 10.3390/ijms19071960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/22/2018] [Accepted: 06/29/2018] [Indexed: 01/04/2023] Open
Abstract
Administration of oxygen is one of the most common interventions in medicine. Previous research showed that differential regulated proteins could be linked to hyperoxia-associated signaling cascades in different tissues. However, it still remains unclear which signaling pathways are activated by hyperoxia. The present study analyses hyperoxia-induced protein alterations in lung, brain, and kidney tissue using a proteomic and bioinformatic approach. Pooled data of 36 Wistar rats exposed to hyperoxia were used. To identify possible hyperoxia biomarkers, and to evaluate the relationship between protein alterations in hyperoxia affected organs and blood, proteomics data from brain, lung, and kidney were analyzed. Functional network analyses (IPA®, PathwaysStudio®, and GENEmania®) in combination with hierarchical cluster analysis (Perseus®) was used to identify relevant pathways and key proteins. Data of 54 2D-gels with more than 2500 significantly regulated spots per gel were collected. Thirty-eight differentially expressed proteins were identified and consecutively analyzed by bioinformatic methods. Most differences between hyperoxia and normoxia (21 proteins up-regulated, 17 proteins down-regulated) were found immediately after hyperoxia (15 protein spots), followed by day 3 (13 spots), and day 7 (10 spots). A highly significant association with inflammation and the inflammatory response was found. Cell proliferation, oxidative stress, apoptosis and cell death as well as cellular functions were revealed to be affected. Three hours of hyperoxia resulted in significant alterations of protein expression in different organs (brain, lung, kidney) up to seven days after exposure. Further studies are required to interpret the relevance of protein alterations in signaling cascades during/after hyperoxia.
Collapse
|
4
|
Serdar M, Herz J, Kempe K, Winterhager E, Jastrow H, Heumann R, Felderhoff-Müser U, Bendix I. Protection of Oligodendrocytes Through Neuronal Overexpression of the Small GTPase Ras in Hyperoxia-Induced Neonatal Brain Injury. Front Neurol 2018; 9:175. [PMID: 29619004 PMCID: PMC5871665 DOI: 10.3389/fneur.2018.00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/06/2018] [Indexed: 12/29/2022] Open
Abstract
Prematurely born infants are highly susceptible to various environmental factors, such as inflammation, drug exposure, and also high environmental oxygen concentrations. Hyperoxia induces perinatal brain injury affecting white and gray matter development. It is well known that mitogen-activated protein kinase signaling is involved in cell survival, proliferation, and differentiation. Therefore, we aim to elucidate cell-specific responses of neuronal overexpression of the small GTPase Ras on hyperoxia-mediated brain injury. Six-day-old (P6) synRas mice (neuronal Ras overexpression under the synapsin promoter) or wild-type littermates were kept under hyperoxia (80% oxygen) or room air (21% oxygen) for 24 h. Apoptosis was analyzed by Western blot of cleaved Caspase-3 and neuronal and oligodendrocyte degeneration via immunohistochemistry. Short-term differentiation capacity of oligodendrocytes was assessed by quantification of myelin basic protein expression at P11. Long-lasting changes of hyperoxia-induced alteration of myelin structures were evaluated via transmission electron microscopy in young adult animals (P42). Western blot analysis of active Caspase-3 demonstrates a significant upregulation in wild-type littermates exposed to hyperoxia whereas synRas mice did not show any marked alteration of cleaved Caspase-3 protein levels. Immunohistochemistry revealed a protective effect of neuronal Ras overexpression on neuron and oligodendrocyte survival. Hyperoxia-induced hypomyelination in wild-type littermates was restored in synRas mice. These short-term protective effects through promotion of neuronal survival translated into long-lasting improvement of ultrastructural alterations of myelin sheaths in mice with neuronal overexpression of Ras compared with hyperoxic wild-type mice. Our data suggest that transgenic increase of neuronal Ras activity in the immature brain results in secondary protection of oligodendrocytes from hyperoxia-induced white matter brain injury.
Collapse
Affiliation(s)
- Meray Serdar
- Department of Pediatrics I, Neonatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Josephine Herz
- Department of Pediatrics I, Neonatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Karina Kempe
- Department of Pediatrics I, Neonatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Elke Winterhager
- Imaging Center Essen, EM Unit, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Holger Jastrow
- Imaging Center Essen, EM Unit, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rolf Heumann
- Biochemistry II, Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology, University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Terraneo L, Samaja M. Comparative Response of Brain to Chronic Hypoxia and Hyperoxia. Int J Mol Sci 2017; 18:ijms18091914. [PMID: 28880206 PMCID: PMC5618563 DOI: 10.3390/ijms18091914] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 12/25/2022] Open
Abstract
Two antithetic terms, hypoxia and hyperoxia, i.e., insufficient and excess oxygen availability with respect to needs, are thought to trigger opposite responses in cells and tissues. This review aims at summarizing the molecular and cellular mechanisms underlying hypoxia and hyperoxia in brain and cerebral tissue, a context that may prove to be useful for characterizing not only several clinically relevant aspects, but also aspects related to the evolution of oxygen transport and use by the tissues. While the response to acute hypoxia/hyperoxia presumably recruits only a minor portion of the potentially involved cell machinery, focusing into chronic conditions, instead, enables to take into consideration a wider range of potential responses to oxygen-linked stress, spanning from metabolic to genic. We will examine how various brain subsystems, including energetic metabolism, oxygen sensing, recruitment of pro-survival pathways as protein kinase B (Akt), mitogen-activated protein kinases (MAPK), neurotrophins (BDNF), erythropoietin (Epo) and its receptors (EpoR), neuroglobin (Ngb), nitric oxide (NO), carbon monoxide (CO), deal with chronic hypoxia and hyperoxia to end-up with the final outcomes, oxidative stress and brain damage. A more complex than expected pattern results, which emphasizes the delicate balance between the severity of the stress imposed by hypoxia and hyperoxia and the recruitment of molecular and cellular defense patterns. While for certain functions the expectation that hypoxia and hyperoxia should cause opposite responses is actually met, for others it is not, and both emerge as dangerous treatments.
Collapse
Affiliation(s)
- Laura Terraneo
- Department of Health Science, University of Milan, I-20142 Milano, Italy.
| | - Michele Samaja
- Department of Health Science, University of Milan, I-20142 Milano, Italy.
| |
Collapse
|
6
|
Olguín-Albuerne M, Morán J. ROS produced by NOX2 control in vitro development of cerebellar granule neurons development. ASN Neuro 2015; 7:7/2/1759091415578712. [PMID: 25873309 PMCID: PMC4720178 DOI: 10.1177/1759091415578712] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Reactive oxygen species (ROS) act as signaling molecules that regulate nervous system physiology. ROS have been related to neural differentiation, neuritogenesis, and programmed cell death. Nevertheless, little is known about the mechanisms involved in the regulation of ROS during neuronal development. In this study, we evaluated the mechanisms by which ROS are regulated during neuronal development and the implications of these molecules in this process. Primary cultures of cerebellar granule neurons (CGN) were used to address these issues. Our results show that during the first 3 days of CGN development in vitro (days in vitro; DIV), the levels of ROS increased, reaching a peak at 2 and 3 DIV under depolarizing (25 mM KCl) and nondepolarizing (5 mM KCl) conditions. Subsequently, under depolarizing conditions, the ROS levels markedly decreased, but in nondepolarizing conditions, the ROS levels increased gradually. This correlated with the extent of CGN maturation. Also, antioxidants and NADPH-oxidases (NOX) inhibitors reduced the expression of Tau and MAP2. On the other hand, the levels of glutathione markedly increased at 1 DIV. We inferred that the ROS increase at this time is critical for cell survival because glutathione depletion leads to axonal degeneration and CGN death only at 2 DIV. During the first 3 DIV, NOX2 was upregulated and expressed in filopodia and growth cones, which correlated with the hydrogen peroxide (H2O2) distribution in the cell. Finally, NOX2 KO CGN showed shorter neurites than wild-type CGN. Taken together, these results suggest that the regulation of ROS is critical during the early stages of CGN development.
Collapse
Affiliation(s)
- Mauricio Olguín-Albuerne
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
7
|
Shoji H, Ikeda N, Hosozawa M, Ohkawa N, Matsunaga N, Suganuma H, Hisata K, Tanaka K, Shimizu T. Oxidative stress early in infancy and neurodevelopmental outcome in very low-birthweight infants. Pediatr Int 2014; 56:709-13. [PMID: 24617865 DOI: 10.1111/ped.12332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 01/22/2014] [Accepted: 02/04/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND Reactive oxygen species may be involved in serious diseases in premature infants. The objective of this study was to assess the relationship between neurodevelopmental outcome and oxidative stress marker level in the urine of very low-birthweight (VLBW) infants. METHODS Spot urine samples were collected from 35 VLBW infants. Urinary excretion of 8-hydroxy-2″-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, and 8-iso-prostaglandin F2α (8-isoPGF), a marker of lipid peroxidation, was measured at 1, 2, 4, and 6 weeks of age. Neurodevelopmental outcome at 18 months' corrected age was assessed using the Bayley Scales of Infant Development (BSID)-II. RESULTS Significant correlations were found between urinary 8-OHdG at 2 and 4 weeks and the Mental Development Index of the BSID-II. No significant correlation was found between urinary 8-isoPGF and indices of the BSID-II. CONCLUSIONS In VLBW infants, urinary 8-OHdG level correlated with mental development rather than psychomotor development at 18 months' corrected age; urinary 8-OHdG might be a predictive marker of neurodevelopmental outcome in VLBW infants.
Collapse
Affiliation(s)
- Hiromichi Shoji
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Postnatal hyperoxia exposure differentially affects hepatocytes and liver haemopoietic cells in newborn rats. PLoS One 2014; 9:e105005. [PMID: 25115881 PMCID: PMC4130630 DOI: 10.1371/journal.pone.0105005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/17/2014] [Indexed: 11/29/2022] Open
Abstract
Premature newborns are frequently exposed to hyperoxic conditions and experimental data indicate modulation of liver metabolism by hyperoxia in the first postnatal period. Conversely, nothing is known about possible modulation of growth factors and signaling molecules involved in other hyperoxic responses and no data are available about the effects of hyperoxia in postnatal liver haematopoiesis. The aim of the study was to analyse the effects of hyperoxia in the liver tissue (hepatocytes and haemopoietic cells) and to investigate possible changes in the expression of Vascular Endothelial Growth Factor (VEGF), Matrix Metalloproteinase 9 (MMP-9), Hypoxia-Inducible Factor-1α (HIF-1α), endothelial Nitric Oxide Synthase (eNOS), and Nuclear Factor-kB (NF-kB). Experimental design of the study involved exposure of newborn rats to room air (controls), 60% O2 (moderate hyperoxia), or 95% O2 (severe hyperoxia) for the first two postnatal weeks. Immunohistochemical and Western blot analyses were performed. Severe hyperoxia increased hepatocyte apoptosis and MMP-9 expression and decreased VEGF expression. Reduced content in reticular fibers was found in moderate and severe hyperoxia. Some other changes were specifically produced in hepatocytes by moderate hyperoxia, i.e., upregulation of HIF-1α and downregulation of eNOS and NF-kB. Postnatal severe hyperoxia exposure increased liver haemopoiesis and upregulated the expression of VEGF (both moderate and severe hyperoxia) and eNOS (severe hyperoxia) in haemopoietic cells. In conclusion, our study showed different effects of hyperoxia on hepatocytes and haemopoietic cells and differential involvement of the above factors. The involvement of VEGF and eNOS in the liver haemopoietic response to hyperoxia may be hypothesized.
Collapse
|
9
|
Endesfelder S, Zaak I, Weichelt U, Bührer C, Schmitz T. Caffeine protects neuronal cells against injury caused by hyperoxia in the immature brain. Free Radic Biol Med 2014; 67:221-34. [PMID: 24129198 DOI: 10.1016/j.freeradbiomed.2013.09.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/03/2013] [Accepted: 09/27/2013] [Indexed: 01/01/2023]
Abstract
Caffeine administered to preterm infants has been shown to reduce rates of cerebral palsy and cognitive delay, compared to placebo. We investigated the neuroprotective potential of caffeine for the developing brain in a neonatal rat model featuring transient systemic hyperoxia. Using 6-day-old rat pups, we found that after 24 and 48h of 80% oxygen exposure, apoptotic (TUNEL(+)) cell numbers increased in the cortex, hippocampus, and central gray matter, but not in the hippocampus or dentate gyrus. In the dentate gyrus, high oxygen exposure led to a decrease in the number of proliferating (Ki67(+)) cells and the number of Ki67(+) cells double staining for nestin (immature neurons), doublecortin (progenitors), and NeuN (mature neurons). Absolute numbers of nestin(+), doublecortin(+), and NeuN(+) cells also decreased after hyperoxia. This was mirrored in a decline of transcription factors expressed in immature neurons (Pax6, Sox2), progenitors (Tbr2), and mature neurons (Prox1, Tbr1). Administration of a single dose of caffeine (10mg/kg) before high oxygen exposure almost completely prevented these effects. Our findings suggest that caffeine exerts protection for neonatal neurons exposed to high oxygen, possibly via its antioxidant capacity.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité University Medical Center, D-13353 Berlin, Germany.
| | - Irina Zaak
- Department of Neonatology, Charité University Medical Center, D-13353 Berlin, Germany
| | - Ulrike Weichelt
- Department of Neonatology, Charité University Medical Center, D-13353 Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité University Medical Center, D-13353 Berlin, Germany
| | - Thomas Schmitz
- Department of Neonatology, Charité University Medical Center, D-13353 Berlin, Germany
| |
Collapse
|
10
|
Porzionato A, Macchi V, Zaramella P, Sarasin G, Grisafi D, Dedja A, Chiandetti L, De Caro R. Effects of postnatal hyperoxia exposure on the rat dentate gyrus and subventricular zone. Brain Struct Funct 2013; 220:229-47. [PMID: 24135771 DOI: 10.1007/s00429-013-0650-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 10/04/2013] [Indexed: 12/27/2022]
Abstract
Premature newborns may be exposed to hyperoxia in the first postnatal period, but clinical and experimental works have raised the question of oxygen toxicity for the developing brain. However, specific analysis of hyperoxia exposure on neurogenesis is still lacking. Thus, the aim of the present study was to evaluate possible changes in the morphometric parameters of the main neurogenic sites in newborn rats exposed to 60 or 95 % oxygen for the first 14 postnatal days. The optical disector, a morphometric method based upon unbiased sampling principles of stereology, was applied to analyse cell densities, total volumes, and total cell numbers of the dentate gyrus (DG) and subventricular zone (SVZ). Apoptosis and proliferation were also studied by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling method and anti-ki67 immunohistochemistry, respectively. Severe hyperoxia increased the percentage of apoptotic cells in the DG. Moderate and severe hyperoxia induced a proliferative response both in the DG and SVZ, but the two neurogenic sites showed different changes in their morphometric parameters. The DG of both the hyperoxic groups showed lower volume and total cell number than that of the normoxic one. Conversely, the SVZ of newborn rats exposed to 95 % hyperoxia showed statistically significant higher volume and total cell number than SVZ of rats raised in normoxia. Our findings indicate that hyperoxia exposure in the first postnatal period affects both the neurogenic areas, although in different ways, i.e. reduction of DG and expansion of SVZ.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Anatomy, Department of Molecular Medicine, University of Padova, Via A Gabelli 65, 35127, Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
NF-κB involvement in hyperoxia-induced myocardial damage in newborn rat hearts. Histochem Cell Biol 2013; 140:575-83. [DOI: 10.1007/s00418-013-1092-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2013] [Indexed: 12/30/2022]
|
12
|
Schmitz T, Endesfelder S, Reinert MC, Klinker F, Müller S, Bührer C, Liebetanz D. Adolescent hyperactivity and impaired coordination after neonatal hyperoxia. Exp Neurol 2012; 235:374-9. [PMID: 22449476 DOI: 10.1016/j.expneurol.2012.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/21/2012] [Accepted: 03/04/2012] [Indexed: 12/25/2022]
Abstract
In preterm infants, the risk to develop attention-deficit/hyperactivity disorder is 3 to 4-fold higher than in term infants. Moreover, preterm infants exhibit deficits in motor coordination and balance. Based on clinical data, higher oxygen levels in preterm infants lead to worse neurological outcome, and experimental hyperoxia causes wide-ranging cerebral changes in neonatal rodents. We hypothesize that hyperoxia in the immature brain may affect motor activity in preterm infants. We subjected newborn mice from P6 to P8 to 48 h of hyperoxia (80% O(2)) and tested motor activity in running wheels starting at adolescent age P30. Subsequently, from P44 to P53, regular wheels were replaced by complex wheels with variable crossbar positions to assess motor coordination deficits. MRI with diffusion tensor imaging was performed in the corpus callosum to determine white matter diffusivity in mice after hyperoxia at ages P30 and P53 in comparison to control animals. Adolescent mice after neonatal hyperoxia revealed significantly higher values for maximum velocity and mean velocity in regular wheels than controls (P<0.05). In the complex running wheels, however, maximum velocity was decreased in animals after hyperoxia, as compared to controls (P<0.05). Decreased fractional anisotropy and increased radial diffusion coefficient were observed in the corpus callosum of P30 and P53 mice after neonatal hyperoxia compared to control mice. Hyperoxia in the immature brain causes hyperactivity, motor coordination deficits, and impaired white matter diffusivity in adolescent and young adult mice.
Collapse
Affiliation(s)
- Thomas Schmitz
- Department of Neonatology, Charité University Medical Center, 13353 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Schmitz T, Endesfelder S, Chew LJ, Zaak I, Bührer C. Minocycline protects oligodendroglial precursor cells against injury caused by oxygen-glucose deprivation. J Neurosci Res 2012; 90:933-44. [PMID: 22253205 DOI: 10.1002/jnr.22824] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 12/20/2022]
Abstract
Ischemic brain injury is widely modeled in vitro with paradigms of oxygen-glucose deprivation (OGD), which leads to cell death. The prevention and attenuation of brain injury by the tetracycline antibiotic minocycline has been attributed largely to suppression of microglial activation, but its benefits in oligodendrocyte cells have not been well characterized. Using primary cultures of rat oligodendroglial precursor cells (OPC) exposed to OGD, we investigated the direct effects of minocycline on the survival, proliferation, and maturation of oligodendroglial lineage cells. OGD for 2 hr caused a decrease in the total number of OPC and the amount of proliferating progenitors by 50%, which was attenuated by inclusion of minocycline. The reduced numbers of immature oligodendroglial cells at 72 hr and of mature oligodendrocytes at 120 hr after OGD were partially restored by minocycline. In OPC, OGD caused an increase of reactive oxygen species (ROS) and production of TUNEL-positive cell numbers, which was abolished by minocycline. Minocycline preferentially increased the expression of superoxide dismutase under OGD but not in control OPC. Minocycline also prevented the OGD-induced downregulation of the transcription factors Sox10 and Olig2 and of myelin-specific genes 2'3' cyclic nucleotide phosphodiesterase (CNP) and myelin basic protein (MBP) in response to OGD. These studies demonstrate direct protective actions of minocycline on oligodendroglial-lineage cells, suggesting potential benefit in white matter injury involving OGD.
Collapse
Affiliation(s)
- Thomas Schmitz
- Department for Neonatology, Charité University Medical Center, Berlin, Germany.
| | | | | | | | | |
Collapse
|
14
|
Abstract
Impaired neurological development in premature infants frequently arises from periventricular white matter injury (PWMI), a condition associated with myelination abnormalities. Recently, exposure to hyperoxia was reported to disrupt myelin formation in neonatal rats. To identify the causes of hyperoxia-induced PWMI, we characterized cellular changes in the white matter (WM) using neonatal wild-type 2-3-cyclic nucleotide 3-phosphodiesterase-enhanced green fluorescent protein (EGFP) and glial fibrillary acidic protein (GFAP)-EGFP transgenic mice exposed to 48 h of 80% oxygen from postnatal day 6 (P6) to P8. Myelin basic protein expression and CC1(+) oligodendroglia decreased after hyperoxia at P8, but returned to control levels during recovery between P12 and P15. At P8, hyperoxia caused apoptosis of NG2(+)O4(-) progenitor cells and reduced NG2(+) cell proliferation. This was followed by restoration of the NG2(+) cell population and increased oligodendrogenesis in the WM after recovery. Despite apparent cellular recovery, diffusion tensor imaging revealed WM deficiencies at P30 and P60. Hyperoxia did not affect survival or proliferation of astrocytes in vivo, but modified GFAP and glutamate-aspartate transporter expression. The rate of [(3)H]-d-aspartic acid uptake in WM tissue was also decreased at P8 and P12. Furthermore, cultured astrocytes exposed to hyperoxia showed a reduced capacity to protect oligodendrocyte progenitor cells against the toxic effects of exogenous glutamate. This effect was prevented by 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide treatment. Our analysis reveals a role for altered glutamate homeostasis in hyperoxia-induced WM damage. Understanding the cellular dynamics and underlying mechanisms involved in hyperoxia-induced PWMI will allow for future targeted therapeutic intervention.
Collapse
|
15
|
Zhao HW, Zhou D, Haddad GG. Antimicrobial peptides increase tolerance to oxidant stress in Drosophila melanogaster. J Biol Chem 2010; 286:6211-8. [PMID: 21148307 DOI: 10.1074/jbc.m110.181206] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well appreciated that reactive oxygen species (ROS) are deleterious to mammals, including humans, especially when generated in abnormally large quantities from cellular metabolism. Whereas the mechanisms leading to the production of ROS are rather well delineated, the mechanisms underlying tissue susceptibility or tolerance to oxidant stress remain elusive. Through an experimental selection over many generations, we have previously generated Drosophila melanogaster flies that tolerate tremendous oxidant stress and have shown that the family of antimicrobial peptides (AMPs) is over-represented in these tolerant flies. Furthermore, we have also demonstrated that overexpression of even one AMP at a time (e.g. Diptericin) allows wild-type flies to survive much better in hyperoxia. In this study, we used a number of experimental approaches to investigate the potential mechanisms underlying hyperoxia tolerance in flies with AMP overexpression. We demonstrate that flies with Diptericin overexpression resist oxidative stress by increasing antioxidant enzyme activities and preventing an increase in ROS levels after hyperoxia. Depleting the GSH pool using buthionine sulfoximine limits fly survival, thus confirming that enhanced survival observed in these flies is related to improved redox homeostasis. We conclude that 1) AMPs play an important role in tolerance to oxidant stress, 2) overexpression of Diptericin changes the cellular redox balance between oxidant and antioxidant, and 3) this change in redox balance plays an important role in survival in hyperoxia.
Collapse
Affiliation(s)
- Huiwen W Zhao
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
16
|
Ferrari DC, Nesic O, Perez-Polo JR. Perspectives on neonatal hypoxia/ischemia-induced edema formation. Neurochem Res 2010; 35:1957-65. [PMID: 21136160 DOI: 10.1007/s11064-010-0308-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2010] [Indexed: 11/30/2022]
Abstract
Neonatal hypoxia/ischemia (HI) is the most common cause of developmental neurological, cognitive and behavioral deficits in children, with hyperoxia (HHI) treatment being a clinical therapy for newborn resuscitation. Although cerebral edema is a common outcome after HI, the mechanisms leading to excessive fluid accumulation in the brain are poorly understood. Given the rigid nature of the bone-encased brain matter, knowledge of edema formation in the brain as a consequence of any injury, as well as the importance of water clearance mechanisms and water and ion homeostasis is important to our understanding of its detrimental effects. Knowledge of the pathological process underlying the appearance of dysfunctional outcomes after development of cerebral edema after neonatal HI in the developing brain and the molecular events triggered will allow a rational assessment of HHI therapy for neonatal HI and determine whether this treatment is beneficial or harmful to the developing infant.
Collapse
|
17
|
Ferrari DC, Nesic OB, Perez-Polo JR. Oxygen resuscitation does not ameliorate neonatal hypoxia/ischemia-induced cerebral edema. J Neurosci Res 2010; 88:2056-65. [PMID: 20143414 DOI: 10.1002/jnr.22358] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neonatal hypoxia/ischemia (HI) is a common cause of cognitive and behavioral deficits in children with hyperoxia treatment (HHI) being the current therapy for newborn resuscitation. HI induces cerebral edema that is associated with poor neurological outcomes. Our objective was to characterize cerebral edema after HI and determine the consequences of HHI (40% or 100% O(2)). Dry weight analyses showed cerebral edema 1 to 21 days after HI in the ipsilateral cortex; and 3 to 21 days after HI in the contralateral cortex. Furthermore, HI increased blood-brain barrier (BBB) permeability 1 to 7 days after HI, leading to bilateral cortical vasogenic edema. HHI failed to prevent HI-induced increase in BBB permeability and edema development. At the molecular level, HI increased ipsilateral, but not contralateral, AQP4 cortical levels at 3 and up to 21 days after HI. HHI treatment did not further affect HI-induced changes in AQP4. In addition, we observed developmental increases of AQP4 accompanied by significant reduction in water content and increase permeability of the BBB. Our results suggest that the ipsilateral HI-induced increase in AQP4 may be beneficial and that its absence in the contralateral cortex may account for edema formation after HI. Finally, we showed that HI induced impaired motor coordination 21 days after the insult and HHI did not ameliorate this behavioral outcome. We conclude that HHI treatment is effective as a resuscitating therapy, but does not ameliorate HI-induced cerebral edema and impaired motor coordination.
Collapse
Affiliation(s)
- Diana Carolina Ferrari
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1072, USA
| | | | | |
Collapse
|
18
|
Tyrosine phosphorylation of apoptotic proteins during hyperoxia in mitochondria of the cerebral cortex of newborn piglets. Neurochem Res 2010; 35:1003-9. [PMID: 20213344 DOI: 10.1007/s11064-010-0147-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2010] [Indexed: 01/22/2023]
Abstract
The present study tests the hypothesis that hyperoxia results in increased tyrosine phosphorylation of apoptotic proteins Bcl-2, Bcl-xl, Bax & Bad in the mitochondrial fraction of the cerebral cortex of newborn piglets. Twelve newborn piglets were divided into normoxic [Nx, n = 6], exposed to a FiO(2) of 0.21 for 1 h and hyperoxic [Hyx, n = 6], exposed to FiO(2) of 1.0 for 1 h. PaO(2) in Hyx group was maintained at 400 mmHg while the Nx group was kept at 80 to 100 mmHg. The density (O.D.x mm(2)) of phosphorylated Bcl2 protein on westernblot was 19.3 +/- 3.6 in Nx and 41.5 +/- 18.3 in Hyx, (P < 0.05). The density of phosphorylated Bcl-xl protein density was 26.9 +/- 7.0 in Nx and 47.9 +/- 2.5 in Hyx, (P < 0.05). Phosphorylated Bax density was 43.5 +/- 5.0 in Nx and 43.3 +/- 5.2 in Hyx. Phosphorylated Bad density was 23.6 +/- 3.9 in Nx, 24.4 +/- 4.7 in Hyx. The data show that during hyperoxia there is a significant increase in tyrosine phosphorylation of Bcl2 and Bcl-xl, while the phosphorylation of proapototic proteins Bax & Bad was not altered. We conclude that hyperoxia leads to post translational modification of anti apoptotic proteins Bcl2 and Bcl-xl in cerebral cortical mitochondria. We propose that phosphorylation of Bcl2 will result in loss of its antiapoptotic potential by preventing its dimerization with Bax leading to activation of the caspase pathway and subsequent neuronal death in the cerebral cortex of the newborn piglets.
Collapse
|
19
|
Time-dependent alterations of cerebral proteins following short-term normobaric hyperoxia. Mol Cell Biochem 2010; 339:9-21. [PMID: 20049628 DOI: 10.1007/s11010-009-0365-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
Sufficient oxygenation is indispensable for cognitive performance in mammals. In order to assure adequate oxygenation and to prevent hypoxia in medicine or aviation, different approaches of oxygen delivery are realized. With regard to hyperoxia, it is well known that it increases the risk of tissue toxicity and inflammation by generating radical oxygen species. However, this impact of hyperoxia on the expression of specific brain proteins has not been evaluated in detail yet. The present study analyzes time-dependent changes in protein expression in rat brain after a short-term exposure to normobaric hyperoxia. Thirty-six Wistar rats were randomly assigned to six different groups, three normobaric hyperoxia (NH) groups or three normobaric normoxia (NN) groups, each consisting of n = 6 animals. NH animals were exposed to 100% oxygen, NN rats to 21% oxygen, each group for 3 h. One group of NH and one group of NN were killed immediately after the 3 h, one group each after 3 days and one group each after 7 days. Rat brains were removed for analysis and whole brain detergent protein lysates were separated via two-dimensional gel electrophoresis followed by subsequent identification of protein expression alterations by peptide mass fingerprinting using mass spectrometry. Also, a functional network mapping and molecular pathway analysis were carried out. Statistical analysis was performed using analysis of variance (ANOVA) with Bonferroni correction using P < 0.01. Physiological parameters of the animals did not differ significantly between the two groups except for partial oxygen pressure (580 vs. 89 mmHg; P < 0.05). The expression of nine proteins was found to be significantly altered (five up-regulated: GOT1, CCT2, TCP1, G6PD, and ALB; four down-regulated: PEBP1, PRDX2, ENO1, and MDH1). IPA generated a network with eight focus proteins associated with pathways in "cell death, cancer, and signalling". Although hyperoxia was normobaric and induced for only 3 h, significant changes in brain protein expression were detectable immediately after the 3 h, after 3 days, as well as after 7 days. This may indicate effects on brain protein expression take place in the rat brain following a relatively short period of hyperoxia.
Collapse
|
20
|
Effect of hyperoxia on serine phosphorylation of apoptotic proteins in mitochondrial membranes of the cerebral cortex of newborn piglets. Neurochem Res 2009; 34:1219-25. [PMID: 19169818 DOI: 10.1007/s11064-008-9898-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
Previous studies have shown that hyperoxia results in cerebral cortical neuronal apoptosis. Studies have also shown that phosphorylation of anti-apoptotic proteins Bcl-2 and Bcl-xl results in loss of their anti-apoptotic potential leading to alteration in mitochondrial membrane permeability and the release of apoptogenic proteins in the neuronal cell of the newborn piglets. The present study tests the hypothesis that cerebral hyperoxia will result in increased serine phosphorylation of apoptotic proteins Bcl-2, Bcl-xl, Bax, and Bad in the mitochondrial membranes of the cerebral cortex of newborn piglets. Twelve newborn piglets were divided into normoxic (Nx, n = 6) exposed to an FiO(2) of 0.21 for 1 h and hyperoxic (Hyx, n = 6) exposed to FiO(2) of 1.0 for 1 h. In the Hyx group, PaO(2) was maintained above 400 mmHg while the Nx group was kept at 80-100 mmHg. Cerebral cortical tissue was harvested and mitochondrial fractions were isolated. Mitochondrial membrane proteins were separated using 12% SDS-PAGE, and probed with anti-serine phosphorylated Bcl-2, Bcl-xl, Bax, and Bad antibodies. Protein bands were detected, analyzed by imaging densitometry and density expressed as absorbance (OD x mm(2)). Phosphorylated Bcl-2 (p-Bcl-2) protein density (OD x mm(2)) was 81.81 +/- 9.24 in Nx and 158.34 +/- 10.66 in Hyx (P < 0.05). Phosphorylated Bcl-xl (p-Bcl-xl) protein density was 52.98 +/- 3.59 in Nx and 99.62 +/- 18.22 in Hyx (P < 0.05). Phosphorylated Bax (p-Bax) protein was 161.13 +/- 6.27 in Nx and 174.21 +/- 15.95 in Hyx (P = NS). Phosphorylated Bad (p-Bad) protein was 166.24 +/- 9.47 in Nx 155.38 +/- 12.32 in Hyx (P = NS). The data show that there is a significant increase in serine phosphorylation of Bcl-2 and Bcl-xl proteins while phosphorylation of Bad and Bax proteins were not altered during hyperoxia in the mitochondrial fraction of the cerebral cortex of newborn piglets. We conclude that hyperoxia results in differential post-translational modification of anti-apoptotic proteins Bcl-2 and Bcl-xl as compared to pro-apoptotic proteins Bax and Bad in mitochondria. We speculate that phosphorylation of Bcl-2 and Bcl-xl will result in loss of their anti-apoptotic potential by preventing their dimerization with Bax leading to activation of the caspase cascade of neuronal death.
Collapse
|
21
|
Sedowofia K, Giles D, Wade J, Cunningham S, McColm JR, Minns R, McIntosh N. Myelin expression is altered in the brains of neonatal rats reared in a fluctuating oxygen atmosphere. Neonatology 2008; 94:113-22. [PMID: 18332640 DOI: 10.1159/000119721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 10/25/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Preterm infants receiving supplemental oxygen therapy experience frequent fluctuations in their blood oxygen levels, the magnitude of which has been associated with the incidence and severity of retinopathy of prematurity in such infants. OBJECTIVE Our objective was to investigate in a relevant animal model whether the immature brain with its poorly vascularised white matter might also be susceptible to injury when exposed to such fluctuations in blood oxygen. METHODS Newborn rats were reared in an atmosphere in which a computer reproduced the oxygen fluctuations derived from the transcutaneous oxygen levels of a 24-week preterm infant who had developed severe retinopathy. Following 14 days of exposure, we measured the expression of active caspase-3, myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) in the brains comparing with rat pups raised in room air. RESULTS Compared to room air controls, at day 14, the expression of active caspase-3 was increased by up to 162% (significant increase in 7 of 9 regions), MBP decreased by up to 70% (significant in the hypothalamus only) and GFAP increased by up to 103% (significant in 6 of 7 regions. On day 21, following 7 days of reparative recovery, GFAP levels in most areas of oxygen-exposed brains had returned to near control levels. There were no longer significant differences in caspase-3 levels apart from the cerebral cortex, cerebellum and striatum. In contrast, MBP expression was now much higher in most regions of the treated brains compared to controls. CONCLUSION We conclude that fluctuations in blood oxygen, observed in preterm survivors, may constitute a source of injury to the white matter and corpus striatum of the developing brain and contribute to the neurological sequelae in extremely premature infants.
Collapse
Affiliation(s)
- Kofi Sedowofia
- Child Life and Health Section, Division of Reproductive and Developmental Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Chang E, Hornick K, Fritz KI, Mishra OP, Delivoria-Papadopoulos M. Effect of hyperoxia on cortical neuronal nuclear function and programmed cell death mechanisms. Neurochem Res 2007; 32:1142-9. [PMID: 17401666 DOI: 10.1007/s11064-007-9282-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
There is growing concern over detrimental neurologic effects to human newborns caused by increased inspired oxygen concentrations. We hypothesize that hyperoxia (FiO(2)>0.95) results in increased high-affinity Ca(2+)-ATPase activity, Ca(2+)-influx, and proapoptotic protein expression in cortical neuronal nuclei of newborn piglets. Neuronal cerebral energy metabolism was documented by determining ATP and phosphocreatine levels. Neuronal nuclear conjugated dienes and fluorescent compounds were measured as indices of lipid peroxidation. High-affinity Ca(2+)-ATPase activity and ATP-dependent Ca(2+)-influx were determined to document neuronal nuclear membrane function. Hyperoxia resulted in increases in lipid peroxidation, high-affinity Ca(2+)-ATPase activity, ATP-dependent Ca(2+)-influx, and Bax/Bcl-2 ratio in the cortical neuronal nuclei of newborn piglets. We conclude that hyperoxia results in modification of neuronal nuclear membrane function leading to increased nuclear Ca(2+)-influx, and propose that hyperoxia-induced increases in intranuclear Ca(2+) activates the Ca(2+)/calmodulin-dependent protein kinase pathway, triggering increased CREB protein-mediated apoptotic protein expression in hyperoxic neurons.
Collapse
Affiliation(s)
- Eddie Chang
- Department of Pediatrics, St. Christopher's Neonatal Research, Drexel University College of Medicine, 245 N. 15th Street, Mail Stop 1029, New College Building, Room 7402, Philadelphia, PA 19102, USA.
| | | | | | | | | |
Collapse
|
23
|
Karlnoski R, Wilcock D, Dickey C, Ronan V, Gordon MN, Zhang W, Morgan D, Taglialatela G. Up-regulation of Bcl-2 in APP transgenic mice is associated with neuroprotection. Neurobiol Dis 2006; 25:179-88. [PMID: 17067805 PMCID: PMC1885419 DOI: 10.1016/j.nbd.2006.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 08/18/2006] [Accepted: 09/05/2006] [Indexed: 01/15/2023] Open
Abstract
Abeta-induced neurodegeneration is limited in APP and APP+PS1 transgenic mice. In middle-aged APP + PS1 transgenic mice, we found significantly increased Bcl-2 expression. The increase in Bcl-2 is restricted to amyloid-containing brain regions and is not found at young ages, suggesting that Abeta deposition is the stimulus for increased Bcl-2. Western blot results were confirmed with immunohistochemistry and qRT-PCR. In addition, we found that APP transgenic mice were protected from neurotoxicity caused by an injection of bak BH3 fusion peptides, known to induce apoptosis by antagonizing bcl protein activity. Nissl and fluorojade-stained slides showed that the active bak BH3 peptide caused substantial neuronal loss in the dentate gyrus and CA3 regions of nontransgenic, but not APP mice. The inactive mutant bak BH3 peptide did not cause degeneration in any mice. These data demonstrate that the increased Bcl-2 expression in brain regions containing Abeta deposits is associated with neuroprotection.
Collapse
Affiliation(s)
- Rachel Karlnoski
- Alzheimer’s Research Laboratory, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| | - Donna Wilcock
- Alzheimer’s Research Laboratory, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| | - Chad Dickey
- Alzheimer’s Research Laboratory, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| | - Victoria Ronan
- Alzheimer’s Research Laboratory, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| | - Marcia N. Gordon
- Alzheimer’s Research Laboratory, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| | - Wenru Zhang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Texas
| | - Dave Morgan
- Alzheimer’s Research Laboratory, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| | - Giulio Taglialatela
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Texas
| |
Collapse
|
24
|
Sirinyan M, Sennlaub F, Dorfman A, Sapieha P, Gobeil F, Hardy P, Lachapelle P, Chemtob S. Hyperoxic exposure leads to nitrative stress and ensuing microvascular degeneration and diminished brain mass and function in the immature subject. Stroke 2006; 37:2807-15. [PMID: 17008616 DOI: 10.1161/01.str.0000245082.19294.ff] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Neonates that survive very preterm birth have a high prevalence of cognitive impairment in later life. A common factor detected in premature infants is their postnatal exposure to high oxygen tension relative to that in utero. Hyperoxia is known to elicit injury to premature lung and retina. Because data on the exposure of the brain to hyperoxia are limited, we studied the effects of high oxygen on this tissue. METHODS Rat pups were exposed from birth until day 6 to 21% or 80% O(2). Cerebral vascular density was quantified by lectin immunohistochemistry. Immunoblots for several proteins were performed on brain extracts. We assessed cerebral functional deficits by visual evoked potentials. RESULTS Exposure of pups to hyperoxia leads to cerebral microvascular degeneration, diminished brain mass, and cerebral functional deficits. These effects are preceded by an upregulation of endothelial nitric oxide synthase (eNOS) in cerebral capillaries and a downregulation of Cu/Zn superoxide dismutase (SOD). The imbalance in nitric oxide (NO) production and antioxidant defenses favors the formation of nitrating agents in the microvessels revealed by increased nitrotyrosine (3-nt) immunoreactivity and decreased expression of NF-kappaB and the dependent vascular endothelial growth factor receptor 2. NOS inhibitors and eNOS deletion as well as an SOD mimetic (CuDIPS) restore vascular endothelial growth factor receptor-2 levels and nearly abolish the vasoobliteration. NOS inhibitors and SOD mimetic also prevent O(2)-induced diminished brain mass and functional deficit. CONCLUSIONS Data identify NO and nitrating agents as major mediators of cerebral microvascular damage, ensuing impaired brain development and function in immature subjects exposed to hyperoxia.
Collapse
Affiliation(s)
- Mirna Sirinyan
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gerstner B, Bührer C, Rheinländer C, Polley O, Schüller A, Berns M, Obladen M, Felderhoff-Mueser U. Maturation-dependent oligodendrocyte apoptosis caused by hyperoxia. J Neurosci Res 2006; 84:306-15. [PMID: 16673399 DOI: 10.1002/jnr.20880] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the immature human brain, periventricular leukomalacia (PVL) is the predominant white matter injury underlying the development of cerebral palsy. PVL has its peak incidence during a well-defined period in human brain development (23-32 weeks postconceptional age) characterized by extensive oligodendrocyte migration and maturation. We hypothesized that the dramatic rise of oxygen tissue tension associated with mammalian birth and additional oxygen exposure of the preterm infant during intensive care may be harmful to immature oligodendrocytes (OLs). We therefore investigated the effects of hyperoxia on rat oligodendroglia cells in vitro and in vivo. Immature OLs (OLN-93), their progenitors [preoligodendrocytes (pre-OL)], and mature OLs were subjected to 80% hyperoxia (24-96 hr). Flow cytometry was used to assess cell death. Cell viability was measured by metabolism of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT). In addition, 6-day-old rat pups were subjected to 80% oxygen (24 hr) and then sacrificed, and their brains were processed for immunfluorescence staining. Apoptosis was detected at various stages (annexin-V, activated caspase-3) after 24-48 hr of incubation in 80% oxygen in pre- and immature OLs. Mature OLs were resistant to oxygen exposure. These results were confirmed by MTT assay. This cell death was blocked by administration of the pan-caspase inhibitor zVAD-fmk. Degeneration of OLs was confirmed in 7-day-old rat brains by positive staining for activated caspase-3. Hyperoxia triggers maturation-dependent apoptosis in immature and pre-OLs and involves caspase activation. This mechanism may be relevant to the white matter injury observed in infants born preterm.
Collapse
Affiliation(s)
- Bettina Gerstner
- Department of Neonatology, Charité Campus Virchow-Klinikum, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Seifert EL, Sant Anna GM, Rohlicek CV. Effect of body warming on regional blood flow distribution in conscious hypoxic one-month-old rabbits. Neonatology 2006; 90:104-12. [PMID: 16549907 DOI: 10.1159/000092069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 10/27/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND Previous experiments have shown that warming hypoxic infants reduces total peripheral vascular resistance. This suggests that the usual vasoconstriction of less essential vascular beds during hypoxia may be reduced and that the normal redistribution of blood flow to more vital organs may be compromised. OBJECTIVE Evaluate the effect of body warming during hypoxia on the distribution of blood flow. METHODS The fluorescent microsphere technique was used to compare regional blood flow in 1-month-old rabbits during systemic hypoxia (10% inspired O2) with (n = 9) and without (n = 10) body warming. Blood flow was measured in brain, stomach, small intestine, hindlimb muscle, skin, and kidneys. Arterial blood pressure, whole-body O2 consumption, arterial blood O2 saturation and blood gases were also measured. MEASUREMENTS AND MAIN RESULTS In hypoxia all animals decreased body temperature (-2 degrees C). With hypoxia blood flow increased to brain and hindlimb muscle; decreased to stomach, small intestine, and kidneys, and was unchanged in skin. The increase in brain-blood flow maintained O2 delivery at normoxic levels. Rewarming to the normoxic body temperature significantly changed blood flow in hypoxia. Brain blood flow increased by 102 +/- 30% (mean +/- SEM) thereby increasing O2 delivery by 50 +/- 23% above normoxic values. Blood flow also increased to skin, stomach, and small intestine. However, O2 delivery to these tissues remained below normoxic levels. CONCLUSIONS Warming during hypoxia may impose an additional cardiovascular demand. The changes in the pattern of blood flow distribution with mild warming during hypoxia support the hypothesis that warming represents a significant heat stress.
Collapse
Affiliation(s)
- Erin L Seifert
- Montreal Children's Hospital, McGill UniversityResearch Institute, McGill University Health Centre, Montreal, Canada
| | | | | |
Collapse
|
27
|
Yeung MY. Influence of early postnatal nutritional management on oxidative stress and antioxidant defence in extreme prematurity. Acta Paediatr 2006; 95:153-63. [PMID: 16449020 DOI: 10.1080/08035250500301133] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
UNLABELLED The increased survival of infants born at mid-gestation in the last decade is associated with significant oxygen free radical-mediated morbidities. Resuscitation with 100% oxygen, oxidant load from parenteral nutrition fluids, and oxidant stress inherent to the systemic inflammatory state subsequent to infection and tissue injury are all contributory. CONCLUSION Improving early postnatal protein nutrition and the formulation of parenteral nutrition fluids would potentially reduce the oxidative stress and enhance the antioxidant defence of extremely premature newborns.
Collapse
Affiliation(s)
- Melinda Y Yeung
- Department of Pharmacy, The Children's Hospital at Westmead, New South Wales, Australia.
| |
Collapse
|
28
|
Rossner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR. Alzheimer's disease beta-secretase BACE1 is not a neuron-specific enzyme. J Neurochem 2005; 92:226-34. [PMID: 15663471 DOI: 10.1111/j.1471-4159.2004.02857.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The brains of Alzheimer's disease (AD) patients are morphologically characterized by neurofibrillar abnormalities and by parenchymal and cerebrovascular deposits of beta-amyloid peptides. The generation of beta-amyloid peptides by proteolytical processing of the amyloid precursor protein (APP) requires the enzymatic activity of the beta-site APP cleaving enzyme 1 (BACE1). The expression of this enzyme has been localized to the brain, in particular to neurons, indicating that neurons are the major source of beta-amyloid peptides in brain. Astrocytes, on the contrary, are known to be important for beta-amyloid clearance and degradation, for providing trophic support to neurons, and for forming a protective barrier between beta-amyloid deposits and neurons. However, under certain conditions related to chronic stress, the role of astrocytes may not be beneficial. Here we present evidence demonstrating that astrocytes are an alternative source of BACE1 and therefore may contribute to beta-amyloid plaque formation. While resting astroyctes in brain do not express BACE1 at detectable levels, cultured astrocytes display BACE1 promoter activity and express BACE1 mRNA and enzymatically active BACE1 protein. Additionally, in animal models of chronic gliosis and in brains of AD patients, there is BACE1 expression in reactive astrocytes. This would suggest that the mechanism for astrocyte activation plays a role in the development of AD and that therapeutic strategies that target astrocyte activation in brain may be beneficial for the treatment of AD. Also, there are differences in responses to chronic versus acute stress, suggesting that one consequence of chronic stress is an incremental shift to different phenotypic cellular states.
Collapse
Affiliation(s)
- Steffen Rossner
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Leipzig, Germany.
| | | | | | | |
Collapse
|
29
|
Felderhoff-Mueser U, Sifringer M, Polley O, Dzietko M, Leineweber B, Mahler L, Baier M, Bittigau P, Obladen M, Ikonomidou C, Bührer C. Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain. Ann Neurol 2004; 57:50-9. [PMID: 15622543 DOI: 10.1002/ana.20322] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Infants born prematurely may develop neurocognitive deficits without an obvious cause. Oxygen, which is widely used in neonatal medicine, constitutes one possible contributing neurotoxic factor, because it can trigger neuronal apoptosis in the developing brain of rodents. We hypothesized that two caspase-1-processed cytokines, interleukin (IL)-1beta and IL-18, are involved in oxygen-induced neuronal cell death. Six-day-old Wistar rats or C57/BL6 mice were exposed to 80% oxygen for various time periods (2, 6, 12, 24, and 48 hours). Neuronal cell death in the brain, as assessed by Fluoro-Jade B and silver staining, peaked at 12 to 24 hours and was preceded by a marked increase in mRNA and protein levels of caspase 1, IL-1beta, IL-18, and IL-18 receptor alpha (IL-18Ralpha). Intraperitoneal injection of recombinant human IL-18-binding protein, a specific inhibitor of IL-18, attenuated hyperoxic brain injury. Mice deficient in IL-1 receptor-associated kinase 4 (IRAK-4), which is pivotal for both IL-1beta and IL-18 signal transduction, were protected against oxygen-mediated neurotoxicity. These findings causally link IL-1beta and IL-18 to hyperoxia-induced cell death in the immature brain. These cytokines might serve as useful targets for therapeutic approaches aimed at preserving neuronal function in the immature brain, which is exquisitely sensitive to a variety of iatrogenic measures including oxygen.
Collapse
Affiliation(s)
- Ursula Felderhoff-Mueser
- Department of Neonatology, Charité, Campus Virchow Klinikum, Humboldt University Medical Center, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Felderhoff-Mueser U, Bittigau P, Sifringer M, Jarosz B, Korobowicz E, Mahler L, Piening T, Moysich A, Grune T, Thor F, Heumann R, Bührer C, Ikonomidou C. Oxygen causes cell death in the developing brain. Neurobiol Dis 2004; 17:273-82. [PMID: 15474364 DOI: 10.1016/j.nbd.2004.07.019] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 07/05/2004] [Accepted: 07/30/2004] [Indexed: 01/19/2023] Open
Abstract
Substantial neurologic morbidity occurs in survivors of premature birth. Premature infants are exposed to partial oxygen pressures that are fourfold higher compared to intrauterine conditions, even if no supplemental oxygen is administered. Here we report that short exposures to nonphysiologic oxygen levels can trigger apoptotic neurodegeneration in the brains of infant rodents. Vulnerability to oxygen neurotoxicity is confined to the first 2 weeks of life, a period characterized by rapid growth, which in humans expands from the sixth month of pregnancy to the third year of life. Oxygen caused oxidative stress, decreased expression of neurotrophins, and inactivation of survival signaling proteins Ras, extracellular signal-regulated kinase (ERK 1/2), and protein kinase B (Akt). The synRas-transgenic mice overexpressing constitutively activated Ras and phosphorylated kinases ERK1/2 in the brain were protected against oxygen neurotoxicity. Our findings reveal a mechanism that could potentially damage the developing brain of human premature neonates.
Collapse
Affiliation(s)
- Ursula Felderhoff-Mueser
- Department of Neonatology, Humboldt University Berlin, Charité, Campus Virchow Klinikum, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hu X, Qiu J, Grafe MR, Rea HC, Rassin DK, Perez-Polo JR. Bcl‐2 family members make different contributions to cell death in hypoxia and/or hyperoxia in rat cerebral cortex. Int J Dev Neurosci 2003; 21:371-7. [PMID: 14599483 DOI: 10.1016/s0736-5748(03)00089-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hypoxic brain injury during fetal or neonatal development leads to damaged immature neurons and can result in cognitive or behavioral dysfunction. Hyperoxia therapy (treatment with oxygen) is commonly applied to infants with signs of perinatal hypoxia-anoxia. Both hypoxia and hyperoxia have been shown to result in apoptosis in the brains of rats in several animal models. One determinant of cellular commitment to cell death is the differential expression of the Bcl-2 family of proteins in response to trauma. Here, we characterize cell death and the expression of Bcl-2 homologous proteins in 7-day-old neonatal rat cerebral cortex after hypoxia (5% O(2) for 40 min) and/or hyperoxia (>95% O(2) for 2 h after hypoxia). The expression of Bcl-2 and Bcl-X(L), two anti-apoptotic proteins, decreased at 24 h after hypoxia. Bcl-X(L) increased after either hyperoxia or hypoxia+hyperoxia. We did not detect significant changes in the cytoplasmic levels of pro-apoptotic protein Bax after any of these three treatments. Using cell death ELISA and DNA FragEL assays, we observed increased cell death at 24h after hypoxia, hyperoxia or hypoxia+hyperoxia treatments. At 24 h after either hypoxia, hyperoxia or hypoxia+hyperoxia, caspase 3 activity also increased significantly. Our results suggest that both hypoxia and hyperoxia alone can induce cell death. The Bcl-2 --> cytochrome c --> caspase 3 pathway played a role in hypoxia-induced cell death, while other pathways may be involved in hyperoxia-induced cell death.
Collapse
Affiliation(s)
- Xiaoming Hu
- Department of Anatomy and Neuroscience, University of Texas Medical Branch, Galveston, TX 77555-0652, USA
| | | | | | | | | | | |
Collapse
|
32
|
Rassin DK, Smith KE. Nutritional approaches to improve cognitive development during infancy: antioxidant compounds. ACTA PAEDIATRICA (OSLO, NORWAY : 1992). SUPPLEMENT 2003; 92:34-41. [PMID: 12948003 DOI: 10.1111/j.1651-2227.2003.tb00661.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D K Rassin
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas 77555-0344, USA
| | | |
Collapse
|
33
|
Hoehn T, Felderhoff-Mueser U, Maschewski K, Stadelmann C, Sifringer M, Bittigau P, Koehne P, Hoppenz M, Obladen M, Bührer C. Hyperoxia causes inducible nitric oxide synthase-mediated cellular damage to the immature rat brain. Pediatr Res 2003; 54:179-84. [PMID: 12761356 DOI: 10.1203/01.pdr.0000075220.17631.f1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Relative hyperoxia is a condition frequently encountered in premature infants, either spontaneously or during treatment in the Neonatal Intensive Care Unit. The effects of high inspiratory oxygen concentrations on immature brain cells and their signaling cascades are largely unknown. The aim of the study was to investigate the effect of hyperoxia on the amount and topographic distribution of iNOS-expression (inducible nitric oxide synthase) in the immature rat brain, and to localize hyperoxia-induced formation of peroxynitrite as a potential marker of cellular damage to immature cerebral structures. Seven-day-old Wistar rat pups were exposed to >80% oxygen for 24 h and were then transcardially perfused. Following paraformaldehyde fixation, brains were paraffin-embedded and immunohistochemically stained for iNOS and nitrotyrosine. iNOS protein was quantified by Western blot; iNOS mRNA expression was studied by RT-PCR. Total brain iNOS mRNA was up-regulated, demonstrating a peak at 6 h following the onset of hyperoxia. Immunohistochemical staining was predominantly observed in microglial cells of hippocampus and frontal cortex with some iNOS reactivity in endothelial and perivascular cells. Nitrotyrosine staining was positive in apical dendrites of neurons in the frontal cortex. There was no positive staining for iNOS or nitrotyrosine in control animals. Hyperoxia causes iNOS mRNA and protein up-regulation in microglial cells of the immature rat brain. Positive neuronal nitrotyrosine staining indicates formation of peroxynitrite with potential deleterious effects for immature cellular structures in the neonatal brain.
Collapse
Affiliation(s)
- Thomas Hoehn
- Neonatology and Pediatric Intensive Care, University Children's Hospital, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tong L, Toliver-Kinsky T, Rassin D, Werrbach-Perez K, Perez-Polo JR. Hyperoxia increases AP-1 DNA binding in rat brain. Neurochem Res 2003. [PMID: 12587669 DOI: 10.1023/a: 1021656430576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oxidative stress appears to contribute to neurodegenerative outcomes after ischemia, hypoxia, and hyperoxia. The AP-1 transcription factor is made up of a family of regulatory proteins that can be activated by oxidative stress. In the present study, we examined AP-1 DNA binding activity in terms of specific participating AP-1 proteins in rat brain after hyperoxia. Male Sprague-Dawley rats were exposed to 100% oxygen under isobaric conditions over time. The AP-1 DNA binding activity present in the rat hippocampus and basal forebrain was characterized by electrophoretic mobility shift analysis (EMSA) and the participating AP-1 proteins identified by immunodepletion/supershift and Western blotting analyses. The Fos and Jun proteins were localized by immunohistochemistry to hippocampus. There were significant increases in AP-1 DNA binding in both hippocampus and basal forebrain after hyperoxia. There was also a significant increase in c-Jun protein levels and the proportion of c-Jun present in AP-1 DNA binding complexes in hippocampal nuclei after hyperoxia. These results suggest that AP-1 activation via c-Jun binding to DNA is an important component of brain responses to oxidative stress.
Collapse
Affiliation(s)
- LiQi Tong
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, Texas, 77555-0652, USA
| | | | | | | | | |
Collapse
|
35
|
Tong L, Toliver-Kinsky T, Rassin D, Werrbach-Perez K, Perez-Polo JR. Hyperoxia increases AP-1 DNA binding in rat brain. Neurochem Res 2003; 28:111-5. [PMID: 12587669 DOI: 10.1023/a:1021656430576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oxidative stress appears to contribute to neurodegenerative outcomes after ischemia, hypoxia, and hyperoxia. The AP-1 transcription factor is made up of a family of regulatory proteins that can be activated by oxidative stress. In the present study, we examined AP-1 DNA binding activity in terms of specific participating AP-1 proteins in rat brain after hyperoxia. Male Sprague-Dawley rats were exposed to 100% oxygen under isobaric conditions over time. The AP-1 DNA binding activity present in the rat hippocampus and basal forebrain was characterized by electrophoretic mobility shift analysis (EMSA) and the participating AP-1 proteins identified by immunodepletion/supershift and Western blotting analyses. The Fos and Jun proteins were localized by immunohistochemistry to hippocampus. There were significant increases in AP-1 DNA binding in both hippocampus and basal forebrain after hyperoxia. There was also a significant increase in c-Jun protein levels and the proportion of c-Jun present in AP-1 DNA binding complexes in hippocampal nuclei after hyperoxia. These results suggest that AP-1 activation via c-Jun binding to DNA is an important component of brain responses to oxidative stress.
Collapse
Affiliation(s)
- LiQi Tong
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, Texas, 77555-0652, USA
| | | | | | | | | |
Collapse
|
36
|
Tong L, Toliver-Kinsky T, Edwards M, Rassin DK, Werrbach-Perez K, Perez-Polo JR. Attenuated transcriptional responses to oxidative stress in the aged rat brain. J Neurosci Res 2002; 70:318-26. [PMID: 12391591 DOI: 10.1002/jnr.10428] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aged nervous system displays impaired cognitive functions, and these impairments are exacerbated in several neurodegenerative diseases. A role for oxidative stress has been suggested for several of these age-associated dysfunctions. In addition, recovery from more acute traumatic insults that also generate oxidative stress is impaired in the aged. Here we examine the response of aged rat hippocampi to normobaric hyperoxia treatments and demonstrate an attenuation in the DNA binding activity of the AP-1 and nuclear factor-kappa B transcription factors, which are important components of stress response signal transduction pathways and can determine shifts in cellular commitments to necrosis, apoptosis, or functional recovery in the central nervous system.
Collapse
Affiliation(s)
- LiQi Tong
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0652, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hipólide DC, D'Almeida V, Raymond R, Tufik S, Nobrega JN. Sleep deprivation does not affect indices of necrosis or apoptosis in rat brain. Int J Neurosci 2002; 112:155-66. [PMID: 12325404 DOI: 10.1080/00207450212022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent indications of oxidative stress in hypothalamus of sleep deprived rats prompted us to address the possibility that sleep deprivation may induce pathological cell loss changes in brain. Indices of necrosis and apoptosis were quantified after 96 h of sleep deprivation induced by the classical platform technique in rats. Binding of the "peripheral-type" benzodiazepine ligand [3H]PK 11195 to reactive astrocytes, a reliable and sensitive index of necrotic changes, was not altered in any of 14 brain regions examined. Likewise, no changes were found in mRNA levels of the apoptosis-related genes bcl-2 and bax in any of 24 brain regions examined. This was corroborated by quantitative TUNEL analyses in hypothalamus, amygdala, and cortex, which also revealed no effects in sleep deprived animals. These results are consistent with other recent evidence that sleep deprivation does not induce necrotic or apoptotic cell loss in brain. This suggests that recent findings of oxidative stress in sleep deprived brains do not result in cell loss. The possibility that sleep deprivation may result in functional deficits, or that structural changes may emerge after repeated episodes of sleep deprivation, remains to be addressed.
Collapse
Affiliation(s)
- Débora C Hipólide
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
38
|
Hoehn T, Felderhoff U, Altstaedt J, Obladen M, Bührer C. Hyperoxia- and hypoxia-mediated activation of polymorphonuclear leukocytes: a comparison of cord and adult venous blood. Resuscitation 2001; 51:63-8. [PMID: 11719175 DOI: 10.1016/s0300-9572(01)00375-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Among the most prominent changes occurring in newborn infants is the exposure of tissues and blood cells to increased oxygen tension. This increase is even more pronounced in neonatal resuscitation using 100% oxygen, currently recommended in the published guidelines. OBJECTIVE To analyse the response of neonatal and adult polymorphonuclear neutrophils (PMN) to high or low oxygen tension in vitro. MATERIALS Neonatal cord blood and adult venous blood without previous contact to ambient air was exposed to 0, 21, or 100% oxygen for 30 min followed by incubation for up to 24 h. METHODS Flow cytometry was used to assess PMN activation as indicated by downregulation of L-selectin expression. Cell viability was quantified by the amount of propidium iodide uptake. RESULTS In adult PMN, L-selectin downregulation was greatly accelerated by hypoxia (PO2=27.2+/-3.4 mmHg) compared with both normoxia (PO2=71.0+/-11.0 mmHg) or hyperoxia (PO2=653.2+/-9.4) (P<0.05). In contrast, hyperoxia was the most potent stimulus for cord blood PMN, compared with both normoxia and hypoxia (P<0.05). Evidence of necrosis as indicated by positive staining for propidium iodide was similar in cord blood (10 h: 5.83% in oxygen) and in adult blood (10 h: 6.45% in oxygen). No differences were found between exposure to hypoxia, normoxia, or hyperoxia. CONCLUSION Oxygen exposure of neonatal PMN leads to a more pronounced activation as compared with adult cells. Exposure towards high concentrations of oxygen may contribute to inflammatory processes during early neonatal life.
Collapse
Affiliation(s)
- T Hoehn
- Department of Neonatology, Humboldt University, Charité, Campus Virchow Hospital, Augustenburger Platz 1, 13353, Berlin, Germany.
| | | | | | | | | |
Collapse
|
39
|
Hargitai B, Szabó V, Hajdú J, Pataki M, Farid P, Papp Z, Szende B. Apoptosis in various organs of preterm infants: histopathologic study of lung, kidney, liver, and brain of ventilated infants. Pediatr Res 2001; 50:110-4. [PMID: 11420427 DOI: 10.1203/00006450-200107000-00020] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apoptosis, the well-characterized form of active programmed cell death, is a physiologic phenomenon in embryonal and fetal life in developing organs. Severe hypoxia, which occurs in most preterm infants, also leads to cell death, which may be necrotic or apoptotic. The aim of our study was to examine the incidence of apoptosis in various organs (such as lung, kidney, and brain) of preterm infants who suffered from clinically proven respiratory distress causing infantile respiratory distress syndrome (IRDS), cardiac failure, and periventricular leukomalacia (PVL). Twenty-four autopsy cases were studied histologically to detect the apoptotic ratio, which was performed on the basis of hematoxylin and eosin staining and validated by terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) reaction. Elevated apoptotic ratio was found in stages II, III, and IV of bronchopulmonary dysplasia (BPD) among alveolar and bronchiolar cells. The apoptotic activity was very low in stage I of BPD. High apoptotic ratio was detected in hypoxic injuries of the central nervous system (CNS) of preterm infants. Features of apoptosis were present in proximal and excreting tubules of the kidney. Significant elevation of apoptotic activity may play a role in the development of BPD, ischemic brain lesions, and renal failure.
Collapse
Affiliation(s)
- B Hargitai
- First Institute of Pathology and Experimental Cancer Research, Semmelweis University Budapest, Budapest, Ullõi út 26. H-1085 Hungary.
| | | | | | | | | | | | | |
Collapse
|
40
|
Cataldi A, Grilli A, Antonucci A, Bosco D, Di Giulio C, Castorina S, Felaco M. Ultrastructural modifications and phosphatidylinositol-3-kinase expression and activity in myocardial tissue deriving from rats in different experimental conditions. Cell Struct Funct 2001; 26:87-93. [PMID: 11482457 DOI: 10.1247/csf.26.87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Oxygen supply is essential in the maintenance of the physiological cell metabolism. In fact, both lower and higher O2 concentrations induce modifications of the enzymatic activity of the cell which determine, in turn, morphological changes at nuclear and cytoplasmic level. Among the molecules involved in the maintenance of the cellular homeostasis, the signal transduction pathway PI-3-kinase/AKT-1 should be included. Here we suggest a relationship between the modulation of this pathway and the morphological modifications occurring "in vivo" in myocardial tissue upon hypoxic and hyperoxic stress. In particular, down regulation of this pathway, which when activated is known to deliver an anti-apoptotic signal, is concomitant to the maintenance of the apoptotic events occurring in these cells in response to oxidative stresses.
Collapse
Affiliation(s)
- A Cataldi
- Dipartimento di Biomorfologia, Università G. D 'Annunzio, Chieti, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kaufmann JA, Bickford PC, Taglialatela G. Oxidative-stress-dependent up-regulation of Bcl-2 expression in the central nervous system of aged Fisher-344 rats. J Neurochem 2001; 76:1099-108. [PMID: 11181830 DOI: 10.1046/j.1471-4159.2001.00118.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxidative stress has been shown to play a role in aging and in neurodegenerative disorders. Some of the consequences of oxidative stress are DNA base modifications, lipid peroxidation, and protein modifications such as formation of carbonyls and nitrotyrosine. These events may play a role in apoptosis, another factor in aging and neurodegeneration, in response to uncompensated oxidative stress. Bcl-2 is a mitochondrial protein that protects neurons from apoptotic stimuli including oxidative stress. Using immunohistochemistry and western blot analysis, here we show that Bcl-2 is up-regulated in the hippocampus and cerebellum of aged (24 months) Fisher 344 rats. Treatment with the free radical spin trap N-tert-butyl-alpha-phenylnitrone (PBN) effectively reverses this age-dependent Bcl-2 up-regulation indicating that this response is redox sensitive. This conclusion was further supported by inducing the same regional Bcl-2 up-regulation in young (3 months) Fisher 344 rats exposed to 100% normobaric O(2) for 48 h. Our results indicate that Bcl-2 expression is increased in the aged brain, possibly as a consequence of oxidative stress challenges. These results also illustrate the effectiveness of antioxidants in reversing age-related changes in the CNS and support further research to investigate their use in aging and in age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- J A Kaufmann
- The Marine Biomedical Institute and Department of Anatomy & Neurosciences, University of Texas Medical Branch at Galveston, Texas 77555-1043, USA
| | | | | |
Collapse
|
42
|
Olivieri G, Baysang G, Meier F, Müller-Spahn F, Stähelin HB, Brockhaus M, Brack C. N-acetyl-L-cysteine protects SHSY5Y neuroblastoma cells from oxidative stress and cell cytotoxicity: effects on beta-amyloid secretion and tau phosphorylation. J Neurochem 2001; 76:224-33. [PMID: 11145996 DOI: 10.1046/j.1471-4159.2001.00090.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Redox changes within neurones are increasingly being implicated as an important causative agent in brain ageing and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD). Cells have developed a number of defensive mechanisms to maintain intracellular redox homeostasis, including the glutathione (GSH) system and antioxidant enzymes. Here we examine the effects of N-acetyl-L-cysteine (NAC) on beta-amyloid (A beta) secretion and tau phosphorylation in SHSY5Y neuroblastoma cells after exposure to oxidative stress inducing/cytotoxic compounds (H(2)O(2), UV light and toxic A beta peptides). A beta and tau protein are hallmark molecules in the pathology of AD while the stress factors are implicated in the aetiology of AD. The results show that H(2)O(2), UV light, A beta 1-42 and toxic A beta 25-35, but not the inactive A beta 35-25, produce a significant induction of oxidative stress and cell cytotoxicity. The effects are reversed when cells are pre-treated with 30 mM NAC. Cells exposed to H(2)O(2), UV light and A beta 25-35, but not A beta 35-25, secrete significantly higher amounts of A beta 1-40 and A beta 1-42 into the culture medium. NAC pre-treatment increased the release of A beta 1-40 compared with controls and potentiated the release of both A beta 1-40 and A beta 1-42 in A beta 25-35-treated cells. Tau phosphorylation was markedly reduced by H(2)O(2) and UV light but increased by A beta 25-35. NAC strongly lowered phospho-tau levels in the presence or absence of stress treatment.
Collapse
Affiliation(s)
- G Olivieri
- Neurobiology Laboratory, Psychiatric University Hospital, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
43
|
Metodiewa D, Kośka C. Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotox Res 2000; 1:197-233. [PMID: 12835102 DOI: 10.1007/bf03033290] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed under physiological conditions in the human body and are removed by cellular antioxidant defense system. During oxidative stress their increased formation leads to tissue damage and cell death. This process may be especially important in the central nervous system (CNS) which is vulnerable to ROS and RNS damage as the result of the brain high O(2) consumption, high lipid content and the relatively low antioxidant defenses in brain, compared with other tissues. Recently there has been an increased number of reports suggesting the involvement of free radicals and their non-radical derivatives in a variety of pathological events and multistage disorders including neurotoxicity, apoptotic death of neurons and neural disorders: Alzheimer's (AD), Parkinson's disease (PD) and schizophrenia. Taking into consideration the basic molecular chemistry of ROS and RNS, their overall generation and location, in order to control or suppress their action it is essential to understand the fundamental aspects of this problem. In this presentation we review and summarize the basics of all the recently known and important properties, mechanisms, molecular targets, possible involvement in cellular (neural) degeneration and apoptotic death and in pathogenesis of AD, PD and schizophrenia. The aim of this article is to provide an overview of our current knowledge of this problem and to inspire experimental strategies for the evaluation of optimum innovative therapeutic trials. Another purpose of this work is to shed some light on one of the most exciting recent advances in our understanding of the CNS: the realisation that RNS pathway is highly relevant to normal brain metabolism and to neurologic disorders as well. The interactions of RNS and ROS, their interconversions and the ratio of RNS/ROS could be an important neural tissue injury mechanism(s) involved into etiology and pathogenesis of AD, PD and schizophrenia. It might be possible to direct therapeutic efforts at oxidative events in the pathway of neuron degeneration and apoptotic death. From reviewed data, no single substance can be recommended for use in human studies. Some of the recent therapeutic strategies and neuroprotective trials need further development particularly those of antioxidants enhancement. Such an approach should also consider using combinations of radical(s) scavengers rather than a single substance.
Collapse
Affiliation(s)
- D Metodiewa
- Institute of Applied Radiation Chemistry, Technical University of Łódz, Poland.
| | | |
Collapse
|
44
|
Englander EW, Greeley GH, Wang G, Perez-Polo JR, Lee HM. Hypoxia-induced mitochondrial and nuclear DNA damage in the rat brain. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991015)58:2<262::aid-jnr6>3.0.co;2-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|