1
|
Akimov MG, Dudina PV, Fomina-Ageeva EV, Gretskaya NM, Bosaya AA, Rudakova EV, Makhaeva GF, Kagarlitsky GO, Eremin SA, Tsetlin VI, Bezuglov VV. Neuroprotective and Antioxidant Activity of Arachidonoyl Choline, Its Bis-Quaternized Analogues and Other Acylcholines. DOKL BIOCHEM BIOPHYS 2020; 491:93-97. [PMID: 32483760 DOI: 10.1134/s1607672920020027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 11/23/2022]
Abstract
The antioxidant activity and protective effect in the toxicity model of H2O2 were studied for arachidonic (AA-CHOL), docosahexaenoic (DHA-CHOL), linoleic (Ln-CHOL), and oleic (Ol-CHOL) fatty acids, as well as arachidonoyl dicholine (AA-diCHOL) and O-arachidonoyl bistetramethylaminoisopropanol (ABTAP). AA-CHOL, DHA-CHOL and Ln-CHOL provided a 20% increase in cell survival. AA-CHOL, AA-diCHOL, Ol-CHOL, and ABTAP had a radical-scavenging effect in the ABTS test, approximately equal to the activity of a standard radical scavenger Trolox.
Collapse
Affiliation(s)
- M G Akimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia.
| | - P V Dudina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - E V Fomina-Ageeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - N M Gretskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - A A Bosaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - E V Rudakova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
| | - G F Makhaeva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
| | | | - S A Eremin
- Moscow State University, 119991, Moscow, Russia
| | - V I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - V V Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| |
Collapse
|
2
|
Shin SY, Choi SK, Jang JH, Suh CK. Acute effects of H2O2 on the Na+-Ca2+ exchanger of rat hepatocytes. Mol Cell Toxicol 2012. [DOI: 10.1007/s13273-012-0045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Coombes E, Jiang J, Chu XP, Inoue K, Seeds J, Branigan D, Simon RP, Xiong ZG. Pathophysiologically relevant levels of hydrogen peroxide induce glutamate-independent neurodegeneration that involves activation of transient receptor potential melastatin 7 channels. Antioxid Redox Signal 2011; 14:1815-27. [PMID: 20812867 PMCID: PMC3078500 DOI: 10.1089/ars.2010.3549] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stroke/brain ischemia is a leading cause of death and long-term disabilities. Increased oxidative stress plays an important role in the pathology of brain ischemia. Hydrogen peroxide (H(2)O(2)) is a major oxidant known to cause neuronal injury; however, the detailed mechanism remains unclear. Previous studies have suggested that H(2)O(2)-induced injury is associated with increased intracellular Ca(2+), mediated by glutamate receptors or voltage-gated Ca(2+) channels. Here, we demonstrate that, at concentrations relevant to stroke, H(2)O(2) induces a Ca(2+)-dependent injury of mouse cortical neurons in the absence of activation of these receptors/channels. With the culture medium containing blockers of glutamate receptors and voltage-gated Ca(2+) channels, brief exposure of neurons to H(2)O(2) induced a dose-dependent injury. Reducing [Ca(2+)](e) inhibited whereas increasing [Ca(2+)](e) potentiated the H(2)O(2) injury. Fluorescent Ca(2+) imaging confirmed the increase of [Ca(2+)](i) by H(2)O(2) in the presence of the blockers of glutamate receptors and voltage-gated Ca(2+) channels. Addition of 2-aminoethoxydiphenyl borate, an inhibitor of transient receptor potential melastatin 7 (TRPM7) channels, or the use of TRPM7-small interference RNA, protected the neurons from H(2)O(2) injury. In contrast, overexpressing TRPM7 channels in human embryonic kidney 293 cells increased H(2)O(2) injury. Our findings indicate that H(2)O(2) can induce Ca(2+) toxicity independent of glutamate receptors and voltage-gated Ca(2+) channels. Activation of TRPM7 channels is involved in such toxicity.
Collapse
Affiliation(s)
- Emily Coombes
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Wusteman M, Rauen U, Simmonds J, Hunds N, Pegg DE. Reduction of cryoprotectant toxicity in cells in suspension by use of a sodium-free vehicle solution. Cryobiology 2008; 56:72-9. [DOI: 10.1016/j.cryobiol.2007.10.178] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 10/26/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
|
5
|
Ishii M, Shimizu S, Hara Y, Hagiwara T, Miyazaki A, Mori Y, Kiuchi Y. Intracellular-produced hydroxyl radical mediates H2O2-induced Ca2+ influx and cell death in rat beta-cell line RIN-5F. Cell Calcium 2006; 39:487-94. [PMID: 16546253 DOI: 10.1016/j.ceca.2006.01.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 12/09/2005] [Accepted: 01/30/2006] [Indexed: 11/15/2022]
Abstract
The melastatin-related transient receptor potential channel TRPM2 is a Ca(2+)-permeable channel that is activated by H(2)O(2), and the Ca(2+) influx through TRPM2 mediates cell death. However, the responsible oxidants for TRPM2 activation remain to be identified. In the present study, we investigated the involvement of hydroxyl radical on TRPM2 activation in TRPM2-expressing HEK293 cells and the rat beta-cell line RIN-5F. In both cell types, H(2)O(2) induced Ca(2+) influx in a concentration-dependent manner. However, the addition of hydroxyl radical, which was produced by mixing FeSO(4) and H(2)O(2), to the cells, did not increase intracellular Ca(2+) concentration. Interestingly, when H(2)O(2) was added to the cells under intracellular Fe(2+)-accumulated conditions, Ca(2+) influx was markedly enhanced compared to H(2)O(2) alone. In addition, the H(2)O(2)-induced Ca(2+) influx was reduced by hydroxyl radical scavengers and an iron chelator. Under intracellular Fe(2+)-accumulated conditions, H(2)O(2)-induced RIN-5F cell death through TRPM2 activation was also markedly enhanced. Hydroxyl radical scavengers and an iron chelator suppressed the RIN-5F cell death by H(2)O(2). These results strongly suggest that the intracellular hydroxyl radical plays a key role in the activation of TRPM2 during H(2)O(2) treatment, and TRPM2 activation mediated by hydroxyl radical is implicated in H(2)O(2)-induced cell death in the beta-cell line RIN-5F.
Collapse
Affiliation(s)
- Masakazu Ishii
- Department of Pathophysiology, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Teramoto T, Lambie EJ, Iwasaki K. Differential regulation of TRPM channels governs electrolyte homeostasis in the C. elegans intestine. Cell Metab 2005; 1:343-54. [PMID: 16054081 PMCID: PMC2241660 DOI: 10.1016/j.cmet.2005.04.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 03/15/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
The transient receptor potential (TRP) channels are implicated in various cellular processes, including sensory signal transduction and electrolyte homeostasis. We show here that the GTL-1 and GON-2 TRPM channels regulate electrolyte homeostasis in the C. elegans intestine. GON-2 is responsible for a large outwardly rectifying current of intestinal cells, and its activity is tightly regulated by intracellular Mg(2+) levels, while GTL-1 mainly contributes to appropriate Mg(2+) responsiveness of the outwardly rectifying current. We also used nickel cytotoxicity to study the function of these channels. Both GON-2 and GTL-1 are necessary for intestinal uptake of nickel, but GTL-1 is continuously active while GON-2 is inactivated at higher Mg(2+) levels. This type of differential regulation of intestinal electrolyte absorption ensures a constant supply of electrolytes through GTL-1, while occasional bursts of GON-2 activity allow rapid return to normal electrolyte concentrations following physiological perturbations.
Collapse
Affiliation(s)
- Takayuki Teramoto
- Northwestern University Medical School, Institute for Neuroscience, Department of Molecular Pharmacology and Biological Chemistry, 303 E. Chicago Avenue, Searle 5-551, Chicago, Illinois 60611
| | - Eric J. Lambie
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Kouichi Iwasaki
- Northwestern University Medical School, Institute for Neuroscience, Department of Molecular Pharmacology and Biological Chemistry, 303 E. Chicago Avenue, Searle 5-551, Chicago, Illinois 60611
- *Correspondence:
| |
Collapse
|
7
|
Barros LF, Hermosilla T, Castro J. Necrotic volume increase and the early physiology of necrosis. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:401-9. [PMID: 11913453 DOI: 10.1016/s1095-6433(01)00438-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Whether a lethally injured mammalian cell undergoes necrosis or apoptosis may be determined by the early activation of specific ion channels at the cell surface. Apoptosis requires K+ and Cl- efflux, which leads to cell shrinking, an active phenomenon termed apoptotic volume decrease (AVD). In contrast, necrosis has been shown to require Na+ influx through membrane carriers and more recently through stress-activated non-selective cation channels (NSCCs). These ubiquitous channels are kept dormant in viable cells but become activated upon exposure to free-radicals. The ensuing Na+ influx leads to cell swelling, an active response that may be termed necrotic volume increase (NVI). This review focuses on how AVD and NVI become conflicting forces at the beginning of cell injury, on the events that determine irreversibility and in particular, on the ion fluxes that decide whether a cell is to die by necrosis or by apoptosis.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos CECS, Valdivia, Chile.
| | | | | |
Collapse
|
8
|
Frank A, Rauen U, de Groot H. Protection by glycine against hypoxic injury of rat hepatocytes: inhibition of ion fluxes through nonspecific leaks. J Hepatol 2000; 32:58-66. [PMID: 10673068 DOI: 10.1016/s0168-8278(00)80190-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Glycine has long been shown to exert strong protective effects against hypoxic injury of hepatocytes. Recently, it was suggested that glycine exerts this protection via inhibition of ligand-gated chloride channels, thereby secondarily inhibiting sodium influx. The purpose of this study was to examine this suggestion. METHODS Cultured rat hepatocytes were incubated under normoxic and hypoxic conditions. Loss of viability was determined by release of lactate dehydrogenase. Cytosolic ion concentrations were measured using digital fluorescence microscopy. RESULTS Glycine prevented the hypoxic increase in cytosolic sodium and strongly protected against hypoxic injury. The amino acid was not only protective in Krebs-Henseleit buffer but also in a chloride-free modification thereof and offered additional protection in a sodium-free medium (which already yielded substantial protection in its own right). Glycine also prevented the hypoxic release of the anionic fluorescent dye Newport Green and appeared to prevent the hypoxic entrance of the "nonphysiological" cations cobalt and nickel. CONCLUSION The results strongly argue against inhibition of ligand-gated chloride channels as being responsible for the potent protective effect of glycine against hypoxic injury of hepatocytes. Instead, they suggest that glycine prevents the formation of nonspecific leaks for small ions including sodium, thereby providing protection.
Collapse
Affiliation(s)
- A Frank
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Germany
| | | | | |
Collapse
|