1
|
Huang L, Jang WY, Yoon JH, Piao Z, Su J, Kim DS, Kwon KW, Kim JW, Park SH, Kim S, Kim JH, Cho JY. Protective effect of Korean red ginseng water extract on levothyroxine-induced hyperthyroidism and propylthiouracil-induced hypothyroidism in rats. Integr Med Res 2024; 13:101071. [PMID: 39263445 PMCID: PMC11388169 DOI: 10.1016/j.imr.2024.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Background Korean red ginseng extract (KRGE) (Family: Araliaceae) is one of the most widely used traditional herbs in Asia. Multiple studies have shown that KRGE has anti-inflammation, anti-fatigue, anti-obesity, anti-oxidant, and anti-cancer effects. Methods Sprague-Dawley rats were divided into five groups for PTU-induced hypothyroidism and six groups for LT4-induced hyperthyroidism. At the experiment's conclusion, rats were sacrificed, and blood, thyroid gland, and liver samples were collected. Body weight was recorded weekly, and serum hormone levels were assessed using enzyme-linked immunoassay. Thyroid gland and liver tissues were stained with hematoxylin and eosin. KRGE was prepared in 0.5% CMC and stored at 4 °C before administration. Results In the LT4-induced hyperthyroidism model, KRGE prevented decreases in body weight, thyroid gland weight, liver weight, serum glucose, and thyroid hormone levels compared to the PTU group. It also reduced increases in T3, T4, and serum aspartate aminotransferase levels after LT4 treatment. Additionally, KRGE improved thyroid gland and liver histopathology, effects not observed in the PTU-induced hypothyroidism model. Conclusion All things considered, our research points to KRGE's potential protective role in rat hyperthyroidism caused by LT4 by lowering thyroid hormone production.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Won Young Jang
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Ji Hye Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Zhenyan Piao
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jinghan Su
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Dong Seon Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Woong Kwon
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Ji Won Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sunggyu Kim
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology College of Medicine, Chonbuk National University Iksan, Republic of Korea
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
2
|
Najafi Z, Chamani E, Zarban A, Rezaei Z, Sharifzadeh G. The molecular evaluation of thioredoxin (TXN1 & TXN2), thioredoxin reductase 1 (TXNRd1), and oxidative stress markers in a binary rat model of hypo- and hyperthyroidism after treatment with gallic acid. Drug Chem Toxicol 2023; 46:1108-1115. [PMID: 36314079 DOI: 10.1080/01480545.2022.2131812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/03/2022]
Abstract
Oxidative stress plays an important role in the pathology of thyroid disorders. This study examined the effect of gallic acid (GA) on the oxidative status and expression of liver antioxidant genes including thioredoxin (TXN1 & TXN2) and thioredoxin reductase1 (TXNRd1) in hypo- and hyperthyroid rat models. Forty-nine male Wistar rats were randomly assigned into seven groups as follows: control group, hypothyroid and hyperthyroid groups respectively induced by propylthiouracil and levothyroxine, hypo- and hyper thyroid-treated groups (where the groups were separately treated with 50 and 100 mg/kg of GA daily, orally). The levels of thyroid hormones and serum oxidative stress markers were evaluated after 5 weeks. The relative expression of TXN1,2 and TXNRd1 genes was measured via real-time qRT-PCR. The mean level of total antioxidant capacity (TAC), malondialdehyde, and uric acid index diminished in the hypothyroid group. Increased TAC reached almost the level of control in hypothyroid groups treated with GA. Elevation of thiol index in the hypothyroid group was observed (p < 0.01), which diminished to the control level after GA treatment. The relative expression of TXN1, TXNRd1, and TXN2 genes in the hypothyroid and hyperthyroid groups significantly increased compared to the control group (p ≥ 0.05), but in the groups treated with GA, the expression of these genes declined significantly (p ≥ 0.05). Our results indicated GA can affect the expression of TXN system genes in the rat liver. Also, the results suggest GA has a more positive effect on modulating serum oxidative parameters in hypothyroid rat models than in hyperthyroid.
Collapse
Affiliation(s)
- Zohreh Najafi
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Elham Chamani
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Asghar Zarban
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Gholamreza Sharifzadeh
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
3
|
Samy JVRA, Sayanam RRA, Balasubramanian C, Vijayakumar N, Sung-JinKim, Vijayakumar S, Gatasheh MK, Ola MS, Basudan OA, Daoud MS, Al-Bagmi MS, Hazazi BT. Effect of a polyherbal formulation on L-thyroxine induced hyperthyroidism in a rat model: In vitro and in vivo analysis and identification of bioactive phytochemicals. Int J Biol Macromol 2023; 237:124140. [PMID: 36965568 DOI: 10.1016/j.ijbiomac.2023.124140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
An excess of thyroid hormones in the blood characterizes hyperthyroidism. Long-term use of prescription medications to treat hyperthyroidism has substantial adverse effects, and when discontinued, the symptoms frequently recur. Several plant species have been utilized to cure hyperthyroidism. In the present work, we investigated the impact of polyherbal extract (POH) of four medicinal plants to treat hyperthyroidism. Biochemical analysis revealed the presence of a high concentration of phytochemicals in the POHs. The in vitro antioxidant study revealed their antioxidant and free radical scavenging capacity. The gas chromatography coupled mass spectrometry analysis of the POHs showed the presence of 13 bioactive phytochemical compounds. The effect of various concentrations of POHs on L-thyroxine-induced hyperthyroidism in Wistar albino rats was evaluated for 18 days. The TSH, T3, and T4 levels increased significantly and reduced the increase of liver enzymes caused by hyperthyroidism in POH-treated rats. The data showed that POH therapy could restore thyroid function to normal. The injection of POH increased the size comprising vacuolated cells, columnar follicular cells, and highly coloured nuclei with increasing POH content, and the number of normal thyroid follicles rose. The findings indicate that polyherbal formulations of these medicinal plants include credible antithyroid compounds that may offer a protective and effective alternative treatment to synthetic thyroid medications.
Collapse
Affiliation(s)
- Jose Vinoth Raja Antony Samy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | | | - Chitra Balasubramanian
- Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous) affiliated to Bharathidasan University, Thiruvanaikoil 620005, Trichy, Tamil Nadu, India.
| | - Natesan Vijayakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India.
| | - Sung-JinKim
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | | | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Omar Ahmed Basudan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Saad Daoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Moneera Saud Al-Bagmi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Badr Tayeb Hazazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Baghcheghi Y, Beheshti F, Hosseini M, Gowhari-Shabgah A, Ali-Hassanzadeh M, Hedayati-Moghadam M. Cardiovascular protective effects of PPARγ agonists in hypothyroid rats: protection against oxidative stress. Clin Exp Hypertens 2022; 44:539-547. [PMID: 35722928 DOI: 10.1080/10641963.2022.2079669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hypothyroidism disturbs redox homeostasis and takes part in cardiovascular system dysfunction. Considering antioxidant and cardio-protective effects of PPAR-γ agonists including pioglitazone (POG) and rosiglitazone (RSG), the present study was aimed to determine the effect of POG or RSG on oxidants and antioxidants indexes in the heart and aorta tissues of Propylthiouracil (PTU)-induced hypothyroid rats. MATERIALS AND METHODS The animals were divided into six groups: (1) Control; (2) propylthiouracil (PTU), (3) PTU-POG 10, (4) PTU-POG 20, (5) PTU-RSG 2, and (6) PTU-RSG 4. Hypothyroidism was induced in rats by giving 0.05% propylthiouracil (PTU) in drinking water for 42 days. The rats of PTU-POG 10 and PTU-POG 20 groups received 10 and 20 mg/kg POG, respectively, besides PTU, and the rats of PTU-RSG 2 and PTU-RSG 4 groups received 2 and 4 mg/kg RSG, respectively, besides PTU. The animals were sacrificed, and the serum of the rats was collected to measure thyroxine level. The heart and aorta tissues were also removed for the measurement of biochemical oxidative stress markers. RESULTS Hypothyroidism was induced by PTU administration, which was indicated by lower serum thyroxine levels. Hypothyroidism also was accompanied by a decrease of catalase (CAT), superoxide dismutase (SOD) activities, and thiol concentration in the heart and aorta tissues while increased level of malondialdehyde (MDA). Interestingly, administration of POG or RSG dramatically reduced oxidative damage in the heart and aorta, as reflected by a decrease in MDA and increased activities of SOD, CAT, and thiol content. CONCLUSION The results of this study showed that administration of POG or RSG decreased oxidative damage in the heart and aorta tissues induced by hypothyroidism in rats.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mahdiyeh Hedayati-Moghadam
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran.,Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
5
|
Sultana DR, Shahin AD, Md Jawadul H. Measurement of oxidative stress and total antioxidant capacity in hyperthyroid patients following treatment with carbimazole and antioxidant. Heliyon 2022; 8:e08651. [PMID: 35028444 PMCID: PMC8741446 DOI: 10.1016/j.heliyon.2021.e08651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
Hyperthyroidism is a common endocrine disorder in which the thyroid produces too many hormones, resulting in the metabolism speed up. The present study was designed to measure oxidative stress and total antioxidant capacity in hyperthyroid patients following treatment with carbimazole and antioxidants supplements. This randomized clinical trial study was conducted to compare Malondialdehyde (MDA) and total antioxidant capacity (TAC) among 25 newly diagnosed hyperthyroid patients (Group A), 25 hyperthyroid patients treated with carbimazole (Group B) and 25 hyperthyroid patients treated with carbimazole and antioxidants supplement (Group C) of both sexes. In this study, the mean serum malondialdehyde (MDA) of the three groups were 4.60 ± 1.08 μmol/L (Group A), 2.79 ± 0.58 μmol/L (Group B), and 1.57 ± 0.29 μmol/L (Group C). We found the mean MDA level was significantly higher in Group A than Group B and Group C. This study found the MDA level was significantly higher in hyperthyroid patients treated with carbimazole alone (Group B, 2.79 ± 0.58 umol/L) than hyperthyroid patients treated with carbimazole and antioxidant combined (Group C, 1.57 ± 0.29 umol/L) among the study groups (p < 0.001). The results showed that the mean serum TAC was significantly lower in newly diagnosed hyperthyroid (Group A, 527.8 ± 78.44 umol/L] patients compared to carbimazole treated alone (Group B, 951.80 ± 99.67 umol/L) and combination with the antithyroid drug (carbimazole) and antioxidant treated (Group C, 1113.56 ± 121.69 umol/L). There was more improvement found in the treatment combined with the antithyroid drug (carbimazole) and antioxidant (Group C). Conventional treatment of hyperthyroid patients significantly reduced oxidative stress and elevated serum TAC but not up to normal level. Therefore, the supplementation of antioxidants could be utilized to improve thyroid function in hyperthyroid patients by boosting antioxidants and restoring oxidant-antioxidant balance. However, further studies are required to determine the optimal dosage, route of administration, and timing of antioxidant therapy needed before this supplementation could be officially recommended as adjuvant therapy. Antioxidant boosting with conventional treatment enhanced of thyroid function in hyperthyroidism. Treating antioxidants and carbimazole enhanced thyroid function more than carbimazole alone. MDA level was normalized along with improved TAC by treating antioxidants with the antithyroid drug. Serum T4 significantly reduces and TSH significantly improves boosting antioxidant with carbimazole. Antioxidant adding helps to improve thyroid hormone and oxidative damage of hyperthyroidism.
Collapse
Affiliation(s)
- Dr Razia Sultana
- Department of Pharmacology and Therapeutics, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Ara Dr Shahin
- Department of Pharmacology and Therapeutics, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Haque Md Jawadul
- Department of Community Medicine, Rajshahi Medical College, Rajshahi, Bangladesh
| |
Collapse
|
6
|
Ryad NM, Ramadan ES, Salem NY, Saleh IAES. Oxidative biomarkers and lipid alterations in euthyroid and hypothyroid dogs. COMPARATIVE CLINICAL PATHOLOGY 2021; 30:571-576. [DOI: 10.1007/s00580-021-03219-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/01/2021] [Indexed: 09/02/2023]
|
7
|
Abstract
Background The relationship of uric acid (UA) with the thyroid function among healthy individuals remains unclear. We aimed to examine the relationship between UA contents and thyroid hormone levels in healthy Chinese individuals. Methods This was a cross-sectional study of 1186 Chinese adults (736 men and 450 women) who underwent a health check-up at the Huadong Hospital Affiliated to Fudan University (Shanghai, China) between January 1, 2010 and July 31, 2018. Clinical and thyroid hormone levels were compared in different UA groups (in male and menopause women groups, MG1: UA < 5 mg/dL; MG2: 5 mg/dL ≤ UA< 7 mg/dL; and MG3: UA ≥ 7 mg/dL; in female groups, FG1 to FG3 represent the UA levels of <4 mg/dL, 4 mg/dL ≤ UA< 6 mg/dL, and ≥6 mg/dL, respectively). In addition, natural cubic spline regression, together with Pearson correlation analysis, was performed in investigating the correlation of UA with thyroid hormones. Results After adjusting for confounding factors, low levels of UA (for males, UA < 5.30 mg/dL; for females, UA < 4.05 mg/dL) were negatively correlated with free triiodothyronine (FT3) both in men and women. UA levels between 4.83 and 6.06 mg/dL may act to protect FT3 in women, while UA levels between 6.39 and 7.09 mg/dL may protect FT3 in men. FT3 levels of low-range UA group reduced compared with mid-range UA and the high-range UA groups in both men and women. Conclusions Our results provide epidemiologic evidence to support the negative correlation between low UA contents and FT3 in the Chinese Han population, suggesting that the reduced UA contents may serve as the risk factor to predict poor thyroid function in Chinese individuals.
Collapse
|
8
|
Pietzner M, Kacprowski T, Friedrich N. Empowering thyroid hormone research in human subjects using OMICs technologies. J Endocrinol 2018; 238:R13-R29. [PMID: 29724864 DOI: 10.1530/joe-18-0117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
Abstract
OMICs subsume different physiological layers including the genome, transcriptome, proteome and metabolome. Recent advances in analytical techniques allow for the exhaustive determination of biomolecules in all OMICs levels from less invasive human specimens such as blood and urine. Investigating OMICs in deeply characterized population-based or experimental studies has led to seminal improvement of our understanding of genetic determinants of thyroid function, identified putative thyroid hormone target genes and thyroid hormone-induced shifts in the plasma protein and metabolite content. Consequently, plasma biomolecules have been suggested as surrogates of tissue-specific action of thyroid hormones. This review provides a brief introduction to OMICs in thyroid research with a particular focus on metabolomics studies in humans elucidating the important role of thyroid hormones for whole body metabolism in adults.
Collapse
Affiliation(s)
- Maik Pietzner
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research)Partner Site Greifswald, Greifswald, Germany
| | - Tim Kacprowski
- Chair of Experimental BioinformaticsTUM School of Life Sciences Weihenstephan Technical University of Munich, Freising-Weihenstephan, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research)Partner Site Greifswald, Greifswald, Germany
| |
Collapse
|
9
|
Thyroid hormones in extreme longevity. Mech Ageing Dev 2017; 165:98-106. [PMID: 28286215 DOI: 10.1016/j.mad.2017.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/27/2017] [Accepted: 03/08/2017] [Indexed: 11/20/2022]
Abstract
The aim of the present review was to summarize knowledge about thyroid hormones (THs) and longevity. Longevity is a complex multifactorial phenomenon on which specific biological pathways, including hormonal networks involved in the regulation of homeostasis and survival, exert a strong impact. THs are the key responsible for growth, metabolism rate and energy expenditure, and help in maintaining cognition, bone and cardiovascular health. THs production and metabolism are fine tuned, and may help the organism to cope with a variety of environmental challenges. Experimental evidence suggests that hypothyroid state may favor longevity by reducing metabolism rate, oxidative stress and cell senescence. Data from human studies involving healthy subjects and centenarians seem to confirm this view, but THs changes observed in older patients affected by chronic diseases cannot be always interpreted as a protective adaptive mechanism aimed at reducing catabolism and prolonging survival. Medications, selected chronic diseases and multi-morbidity can interfere with thyroid function, and their impact is still to be elucidated.
Collapse
|
10
|
Pietzner M, Engelmann B, Kacprowski T, Golchert J, Dirk AL, Hammer E, Iwen KA, Nauck M, Wallaschofski H, Führer D, Münte TF, Friedrich N, Völker U, Homuth G, Brabant G. Plasma proteome and metabolome characterization of an experimental human thyrotoxicosis model. BMC Med 2017; 15:6. [PMID: 28065164 PMCID: PMC5220622 DOI: 10.1186/s12916-016-0770-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Determinations of thyrotropin (TSH) and free thyroxine (FT4) represent the gold standard in evaluation of thyroid function. To screen for novel peripheral biomarkers of thyroid function and to characterize FT4-associated physiological signatures in human plasma we used an untargeted OMICS approach in a thyrotoxicosis model. METHODS A sample of 16 healthy young men were treated with levothyroxine for 8 weeks and plasma was sampled before the intake was started as well as at two points during treatment and after its completion, respectively. Mass spectrometry-derived metabolite and protein levels were related to FT4 serum concentrations using mixed-effect linear regression models in a robust setting. To compile a molecular signature discriminating between thyrotoxicosis and euthyroidism, a random forest was trained and validated in a two-stage cross-validation procedure. RESULTS Despite the absence of obvious clinical symptoms, mass spectrometry analyses detected 65 metabolites and 63 proteins exhibiting significant associations with serum FT4. A subset of 15 molecules allowed a robust and good prediction of thyroid hormone function (AUC = 0.86) without prior information on TSH or FT4. Main FT4-associated signatures indicated increased resting energy expenditure, augmented defense against systemic oxidative stress, decreased lipoprotein particle levels, and increased levels of complement system proteins and coagulation factors. Further association findings question the reliability of kidney function assessment under hyperthyroid conditions and suggest a link between hyperthyroidism and cardiovascular diseases via increased dimethylarginine levels. CONCLUSION Our results emphasize the power of untargeted OMICs approaches to detect novel pathways of thyroid hormone action. Furthermore, beyond TSH and FT4, we demonstrated the potential of such analyses to identify new molecular signatures for diagnosis and treatment of thyroid disorders. This study was registered at the German Clinical Trials Register (DRKS) [DRKS00011275] on the 16th of November 2016.
Collapse
Affiliation(s)
- Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Beatrice Engelmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
| | - Tim Kacprowski
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
| | - Janine Golchert
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
| | - Anna-Luise Dirk
- Medical Clinic I, University of Lübeck, Experimental and Clinical Endocrinology, Ratzeburger Allee 160, Zentralklinikum (Haus 40), 23538 Lübeck, Germany
| | - Elke Hammer
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
| | - K. Alexander Iwen
- Medical Clinic I, University of Lübeck, Experimental and Clinical Endocrinology, Ratzeburger Allee 160, Zentralklinikum (Haus 40), 23538 Lübeck, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Henri Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- Private Practice Endocrinology, Krämpferstraße 6, 99094 Erfurt, Germany
| | - Dagmar Führer
- Department of Endocrinology and Metabolism, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Thomas F. Münte
- Department of Neurology, University of Lübeck, Ratzeburger Allee 169, 23538 Lübeck, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Research Centre for Prevention and Health, Glostrup University Hospital, Nordre Ringvej 57, 2600 Glostrup, Denmark
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
- ZIK-FunGene (Zentrum für Innovationskompetenz - Funktionelle Genomforschung), Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
- ZIK-FunGene (Zentrum für Innovationskompetenz - Funktionelle Genomforschung), Greifswald, Germany
| | - Georg Brabant
- Medical Clinic I, University of Lübeck, Experimental and Clinical Endocrinology, Ratzeburger Allee 160, Zentralklinikum (Haus 40), 23538 Lübeck, Germany
| |
Collapse
|
11
|
Sajadian M, Hashemi M, Salimi S, Nakhaee A. The Effect of Experimental Thyroid Dysfunction on Markers of Oxidative Stress in Rat Pancreas. Drug Dev Res 2016; 77:199-205. [PMID: 27241437 DOI: 10.1002/ddr.21312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/08/2016] [Indexed: 11/07/2022]
Abstract
Preclinical Research The aim of the present study was to evaluate the effects of thyroid dysfunction on markers of oxidative stress in rat pancreas. Hypothyroidism and hyperthyroidism were, respectively, induced in rats via administration of propylthiouracil (PTU) and L-thyroxine sodium salt in drinking water for 45 days. The activities of superoxide dismutase (SOD), catalase (CAT), glutathioen peroxidase (GPx), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PD), xanthine oxidase (XO), and nonenzymatic markers of oxidative stress including malondialdehyde (MDA), protein carbonyl (PC), reduced glutathione (GSH), and total thiols (T-SH) were determined in the rat pancreas. In hyperthyroid rats, pancreatic CAT, SOD, GPx, GR, XO, G6PD activities were increased compared with those in hypothyroid and control groups. There were no differences in activities of antioxidant enzymes between hypothyroid and control rats. Pancreatic MDA and PC in hyperthyroid rats increased compared with hypothyroid and the control animals. Whereas, hyperthyroid rats had decreased levels of tissue GSH and T-SH compared with hypothyroid and the control groups. The findings showed that only GSH level has decreased significantly in the hypothyroid group compared with control groups. In conclusion, our results showed that experimental hyperthyroidism induces oxidative stress in pancreas of rats, but hypothyroidism has no major impact on oxidative stress markers. Drug Dev Res 77 : 199-205, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mojtaba Sajadian
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Alireza Nakhaee
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
12
|
Abstract
Down syndrome (DS) is one of the most common chromosomal disorders, occurring in one out of 700-1000 live births, and the most common cause of mental retardation. Thyroid dysfunction is the most typical endocrine abnormality in patients with DS. It is well known that thyroid dysfunction is highly prevalent in children and adults with DS and that both hypothyroidism and hyperthyroidism are more common in patients with DS than in the general population. Increasing evidence has shown that DS individuals are under unusual increased oxidative stress, which may be involved in the higher prevalence and severity of a number of pathologies associated with the syndrome, as well as the accelerated ageing observed in these individuals. The gene for Cu/Zn superoxide dismutase (SOD1) is coded on chromosome 21 and it is overexpressed (~50%) resulting in an increase of reactive oxygen species (ROS) due to overproduction of hydrogen peroxide (H2O2). ROS leads to oxidative damage of DNA, proteins and lipids, therefore, oxidative stress may play an important role in the pathogenesis of DS.
Collapse
Affiliation(s)
| | - Ángela Casado
- Department of Cellular & Molecular Medicine, Centre for Biological Research - Spanish National Research Council (CIB-CSIC), Madrid, Spain
| |
Collapse
|
13
|
Effect of l-Thyroxine on Micronuclei Frequency in Peripheral Blood Lymphocytes in Clinical and Experimental Conditions. Indian J Clin Biochem 2016; 31:99-103. [PMID: 26855495 DOI: 10.1007/s12291-015-0501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 04/12/2015] [Indexed: 10/23/2022]
Abstract
The aim was to study the genotoxic effect of high concentration of thyroxine (T4) in vivo in peripheral blood lymphocytes (PBL) of the patients suffering from thyroid disorders. The effect was compared by performing in vitro experiments with addition of increasing concentration of T4 (0.125-1 µM) in whole blood samples from healthy donors. Cytokinesis-blocked micronuclei (CBMN) assay method was used to assess the DNA damage in the PBL. The study included 104 patients which were grouped as control (n = 49), hyperthyroid (n = 31) and hypothyroid (n = 24). A significant increase in micronuclei (MN) frequency was observed in hyperthyroid patients when compared with the hypothyroid and euthyroid group thereby suggesting increased genotoxicity in hyperthyroidism (p < 0.001). A significant increase in MN frequency was observed at T4 concentration of 0.5 µM and above when compared to lower T4 concentrations (0.125 and 0.25 µM) and basal in in vitro experiments (p = 0.000). The results indicate that the T4 in normal concentration does not exhibit the genotoxic effect, as observed in both the in vivo and in vitro experiments. The toxicity of T4 increases at and above 0.5 μM concentration in vitro. Therefore acute T4 overdose should be handled promptly and effectively so as to avoid the possible genotoxic effect of high concentration of T4 in vivo.
Collapse
|
14
|
Effect of persistent and transient hypothyroidism on histoarchitecture and antioxidant defence system in rat brain. Neurol Sci 2015; 36:953-9. [DOI: 10.1007/s10072-015-2199-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/30/2015] [Indexed: 12/18/2022]
|
15
|
Yildirim S, Yildirim A, Dane S, Aliyev E, Yigitoglu R. Dose-dependent protective effect of L-carnitine on oxidative stress in the livers of hyperthyroid rats. Eurasian J Med 2015; 45:1-6. [PMID: 25610241 DOI: 10.5152/eajm.2013.01] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/16/2012] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE The present study was designed to investigate the dose-dependent protective effect of L-carnitine (LC) on thyroid hormone-induced oxidative stress in rat liver tissue. MATERIALS AND METHODS Twenty-one male Sprague Dawley rats were divided into four groups: control, hyperthyroidism, hyperthyroidism plus L-carnitine 100, and hyperthyroidism plus L-carnitine 500. Hyperthyroidism was induced in rats by injecting 250 μg of L-thyroxine/kg body weight/day for twenty consecutive days. The activities of catalase (CAT), glutathione peroxidase (GPX) and myeloperoxidase (MPO) and the level of malondialdehyde (MDA) were measured in liver homogenates. RESULTS The liver CAT, GPX and MPO activities were significantly lower in the hyperthyroid rats than in the control group. Treating hyperthyroid rats with both low-dose (100 mg/kg) and high-dose (500 mg/kg) L-carnitine for 10 days resulted in a marked increase in the activities of the antioxidant enzymes in the liver tissue. CONCLUSION The present study indicates that the low-dose L-carnitine application was sufficient to prevent L-thyroxine-induced oxidative stress in rat livers.
Collapse
Affiliation(s)
- Serap Yildirim
- Department of Physiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Abdulkadir Yildirim
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Senol Dane
- Department of Physiology, Faculty of Medicine, Fatih University, Ankara, Turkey
| | - Elvin Aliyev
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ramazan Yigitoglu
- Department of Biochemistry, Faculty of Medicine, Fatih University, Ankara, Turkey
| |
Collapse
|
16
|
Panda S, Kar A. Antithyroid effects of naringin, hesperidin and rutin in l-T4 induced hyperthyroid rats: Possible mediation through 5′DI activity. Pharmacol Rep 2014; 66:1092-9. [DOI: 10.1016/j.pharep.2014.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/21/2014] [Accepted: 07/02/2014] [Indexed: 12/17/2022]
|
17
|
Celikler S, Tas S, Ziyanok-Ayvalik S, Vatan O, Yildiz G, Ozel M. Protective and antigenotoxic effect of Ulva rigida C. Agardh in experimental hypothyroid. ACTA BIOLOGICA HUNGARICA 2014; 65:13-26. [PMID: 24561891 DOI: 10.1556/abiol.65.2014.1.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The presence of chromosomal damage in bone marrow cells affected by several diseases such as thyroid, cancer etc., was detected by the micronucleus (MN) assay. The present study was designed to evaluate: i) volatile components of Ulva rigida, ii) effects of hypothyroidism on bone marrow MN frequency, iii) effects of oral administration of Ulva rigida ethanolic extract (URE) on MN frequency produced by hypothyroidism, and iv) thyroid hormone levels in normal and 6-n-Propylthiouracil (PTU)-induced hypothyroid rats. The volatile components of Ulva rigida was studied using a direct thermal desorption (DTD) technique with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC-TOF/MS). URE administration was of no significant impact on thyroid hormone levels in control group, while PTU administration decreased thyroid hormone levels compared to control group (p < 0.001). Moreover, URE supplementation resulted in a significant decrease in MN frequency in each thyroid group (p < 0.0001). This is the first in vivo study that shows the strong antigenotoxic and protective effect of URE against the genotoxicity produced by hypothyroidism.
Collapse
Affiliation(s)
- Serap Celikler
- Uludag University Department of Biology, Faculty of Science and Arts 16059 Bursa Turkey
| | - Sibel Tas
- Uludag University Department of Biology, Faculty of Science and Arts 16059 Bursa Turkey
| | - Sedef Ziyanok-Ayvalik
- Uludag University Department of Biology, Faculty of Science and Arts 16059 Bursa Turkey
| | - O Vatan
- Uludag University Department of Biology, Faculty of Science and Arts 16059 Bursa Turkey
| | - Gamze Yildiz
- Uludag University Department of Biology, Faculty of Science and Arts 16059 Bursa Turkey
| | - M Ozel
- The University of York Department of Chemistry Heslington York UK YO10 5DD
| |
Collapse
|
18
|
Mechanistic analysis of metabolomics patterns in rat plasma during administration of direct thyroid hormone synthesis inhibitors or compounds increasing thyroid hormone clearance. Toxicol Lett 2014; 225:240-51. [DOI: 10.1016/j.toxlet.2013.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 12/11/2022]
|
19
|
Villanueva I, Alva-Sánchez C, Pacheco-Rosado J. The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:218145. [PMID: 24386502 PMCID: PMC3872098 DOI: 10.1155/2013/218145] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/08/2013] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species (ROS) are oxidizing agents amply implicated in tissue damage. ROS production is inevitably linked to ATP synthesis in most cells, and the rate of production is related to the rate of cell respiration. Multiple antioxidant mechanisms limit ROS dispersion and interaction with cell components, but, when the balance between ROS production and scavenging is lost, oxidative damage develops. Many traits of aging are related to oxidative damage by ROS, including neurodegenerative diseases. Thyroid hormones (THs) are a major factor controlling metabolic and respiratory rates in virtually all cell types in mammals. The general metabolic effect of THs is a relative acceleration of the basal metabolism that includes an increase of the rate of both catabolic and anabolic reactions. THs are related to oxidative stress not only by their stimulation of metabolism but also by their effects on antioxidant mechanisms. Thyroid dysfunction increases with age, so changes in THs levels in the elderly could be a factor affecting the development of neurodegenerative diseases. However, the relationship is not always clear. In this review, we analyze the participation of thyroid hormones on ROS production and oxidative stress, and the way the changes in thyroid status in aging are involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- I. Villanueva
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, IPN. Prol. Carpio y Plan de Ayala, s/n, 11340 México City, DF, Mexico
| | - C. Alva-Sánchez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, IPN. Prol. Carpio y Plan de Ayala, s/n, 11340 México City, DF, Mexico
| | - J. Pacheco-Rosado
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, IPN. Prol. Carpio y Plan de Ayala, s/n, 11340 México City, DF, Mexico
| |
Collapse
|
20
|
Chen Y, Hagopian K, Bibus D, Villalba JM, López-Lluch G, Navas P, Kim K, Ramsey JJ. The influence of dietary lipid composition on skeletal muscle mitochondria from mice following eight months of calorie restriction. Physiol Res 2013; 63:57-71. [PMID: 24182343 DOI: 10.33549/physiolres.932529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Calorie restriction (CR) has been shown to decrease reactive oxygen species (ROS) production and retard aging in a variety of species. It has been proposed that alterations in membrane saturation are central to these actions of CR. As a step towards testing this theory, mice were assigned to 4 dietary groups (control and 3 CR groups) and fed AIN-93G diets at 95 % (control) or 60 % (CR) of ad libitum for 8 months. To manipulate membrane composition, the primary dietary fats for the CR groups were soybean oil (also used in the control diet), fish oil or lard. Skeletal muscle mitochondrial lipid composition, proton leak, and H(2)O(2) production were measured. Phospholipid fatty acid composition in CR mice was altered in a manner that reflected the n-3 and n-6 fatty acid profiles of their respective dietary lipid sources. Dietary lipid composition did not alter proton leak kinetics between the CR groups. However, the capacity of mitochondrial complex III to produce ROS was decreased in the CR lard compared to the other CR groups. The results of this study indicate that dietary lipid composition can influence ROS production in muscle mitochondria of CR mice. It remains to be determined if lard or other dietary oils can maximize the CR-induced decreases in ROS production.
Collapse
Affiliation(s)
- Y Chen
- VM Molecular Biosciences, University of California, Davis, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hagopian K, Soo Hoo R, López-Domínguez JA, Ramsey JJ. Calorie restriction influences key metabolic enzyme activities and markers of oxidative damage in distinct mouse liver mitochondrial sub-populations. Life Sci 2013; 93:941-8. [PMID: 24140885 DOI: 10.1016/j.lfs.2013.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/12/2013] [Accepted: 10/07/2013] [Indexed: 11/16/2022]
Abstract
AIMS The purpose of the study was to establish if enzyme activities from key metabolic pathways and levels of markers of oxidative damage to proteins and lipids differed between distinct liver mitochondrial sub-populations, and which specific sub-populations contributed to these differences. MAIN METHODS Male C57BL/6J mice were fed non-purified diet for one month then separated into two groups, control and calorie-restricted (CR). The two groups were fed semi-purified diet (AIN93G), with the CR group receiving 40% less calories than controls. After two months, enzyme activities and markers of oxidative damage in mitochondria were determined. KEY FINDINGS In all mitochondrial sub-populations, enzyme activities and markers of oxidative damage, from control and CR groups, showed a pattern of M1>M3>M10. Higher acyl-CoA dehydrogenase (β-oxidation) and β-hydroxybutyrate dehydrogenase (ketogenesis) activities and lower carbonyl and TBARS levels were observed in M1 and M3 fractions from CR mice. ETC enzyme activities did not show a consistent pattern. In the Krebs cycle, citrate synthase and aconitase activities decreased while succinate dehydrogenase and malate dehydrogenase activities increased in the M1 mitochondria from the CR versus control mice. SIGNIFICANCE CR does not produce uniform changes in enzyme activities or markers of oxidative damage in mitochondrial sub-populations, with changes occurring primarily in the heavy mitochondrial populations. Centrifugation at 10,000 g to isolate mitochondria likely dilutes the mitochondrial populations which show the greatest response to CR. Use of lower centrifugal force (3000 g or lower) may be beneficial for some studies.
Collapse
Affiliation(s)
- Kevork Hagopian
- VM Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
22
|
Venditti P, Di Stefano L, Di Meo S. Vitamin E management of oxidative damage-linked dysfunctions of hyperthyroid tissues. Cell Mol Life Sci 2013; 70:3125-44. [PMID: 23255045 PMCID: PMC11114018 DOI: 10.1007/s00018-012-1217-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Thyroid hormones affect growth, development, and metabolism of vertebrates, and are considered the major regulators of their homeostasis. On the other hand, elevated circulating levels of thyroid hormones are associated with modifications in the whole organism (weight loss and increased metabolism and temperature) and in several body regions. Indeed, tachycardia, atrial arrhythmias, heart failure, muscle weakness and wasting, bone mass loss, and hepatobiliary complications are commonly found in hyperthyroid animals and humans. RESULTS Most thyroid hormone actions result from influences on transcription of T3-responsive genes, which are mediated through nuclear receptors. However, there is significant evidence that tissue oxidative stress underlies some dysfunctions produced by hyperthyroidism. DISCUSSION During the last decades, increasing interest has been turned to the use of antioxidants as therapeutic agents in various diseases and pathophysiological disorders believed to be mediated by oxidative stress. In particular, because elevated circulating levels of thyroid hormones are associated with tissue oxidative injury, more attention has been paid to explore the application of antioxidants as therapeutic agents in thyroid related disorders. CONCLUSIONS At present, vitamin E is among the most commonly consumed dietary supplements due to the belief that it, as an antioxidant, may attenuate morbidity and mortality. This is due to the results of numerous scientific studies, which demonstrate that vitamin E has a primary function to destroy peroxyl radicals, thus protecting polyunsaturated fatty acids biological membranes from oxidative damage. However, results are also available indicating that protective vitamin E effects against oxidative damage can be obtained even through different mechanisms.
Collapse
Affiliation(s)
- Paola Venditti
- Dipartimento delle Scienze Biologiche, Sezione di Fisiologia, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Naples, Italy.
| | | | | |
Collapse
|
23
|
The influence of dietary lipid composition on liver mitochondria from mice following 1 month of calorie restriction. Biosci Rep 2012; 33:83-95. [PMID: 23098316 PMCID: PMC3522480 DOI: 10.1042/bsr20120060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To investigate the role mitochondrial membrane lipids play in the actions of CR (calorie restriction), C57BL/6 mice were assigned to four groups (control and three 40% CR groups) and the CR groups were fed diets containing soya bean oil (also in the control diet), fish oil or lard. The fatty acid composition of the major mitochondrial phospholipid classes, proton leak and H2O2 production were measured in liver mitochondria following 1 month of CR. The results indicate that mitochondrial phospholipid fatty acids reflect the PUFA (polyunsaturated fatty acid) profile of the dietary lipid sources. CR significantly decreased the capacity of ROS (reactive oxygen species) production by Complex III but did not markedly alter proton leak and ETC (electron transport chain) enzyme activities. Within the CR regimens, the CR-fish group had decreased ROS production by both Complexes I and III, and increased proton leak when compared with the other CR groups. The CR-lard group showed the lowest proton leak compared with the other CR groups. The ETC enzyme activity measurements in the CR regimens showed that Complex I activity was decreased in both the CR-fish and CR-lard groups. Moreover, the CR-fish group also had lower Complex II activity compared with the other CR groups. These results indicate that dietary lipid composition does influence liver mitochondrial phospholipid composition, ROS production, proton leak and ETC enzyme activities in CR animals.
Collapse
|
24
|
Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: II—The developmental pattern of neurons in relation to oxidative stress and antioxidant defense system. Int J Dev Neurosci 2012; 30:517-37. [PMID: 22664656 DOI: 10.1016/j.ijdevneu.2012.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/30/2012] [Accepted: 04/30/2012] [Indexed: 11/17/2022] Open
|
25
|
Shen X, Liu L, Yin F, Ma H, Zou S. Effect of dehydroepiandrosterone on cell growth and mitochondrial function in TM-3 cells. Gen Comp Endocrinol 2012; 177:177-86. [PMID: 22465782 DOI: 10.1016/j.ygcen.2012.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
Abstract
Dehydroepiandrosterone (DHEA), a major steroid hormone, decreases with age, and this reduction has been shown to be associated with physical health. In the present study, the effect of DHEA on cell growth and mitochondrial function was investigated using TM-3 cells, a Leydig cell line. The growth of TM-3 cells exposed to 100 μM DHEA for 24h was inhibited due to cell cycle arrest, primarily in the S and G2/M phases, and this effect was caused by decreased activity of glucose-6-phosphate dehydrogenase (G6PD) and reduced expression of cyclinA and cyclinB mRNA. A novel finding was that DHEA improved TM-3 cell viability in a markedly time-dependent manner. Although no differences were observed in the configuration or number of TM-3 cell mitochondria following DHEA treatment, mitochondrial membrane permeability and the activity of succinate dehydrogenase (SDH) increased subsequent to 24h treatment of cells with 100 μM DHEA. Overall, the data demonstrate that DHEA inhibited TM-3 cell growth by decreasing G6PD activity and the expression of cyclin mRNAs, whereas it improved TM-3 cell viability by increasing mitochondrial membrane permeability and the activity of SDH. This could be one of mechanisms of DHEA exerts its biological function.
Collapse
Affiliation(s)
- Xuehuai Shen
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
26
|
Chen Y, Hagopian K, McDonald RB, Bibus D, López-Lluch G, Villalba JM, Navas P, Ramsey JJ. The influence of dietary lipid composition on skeletal muscle mitochondria from mice following 1 month of calorie restriction. J Gerontol A Biol Sci Med Sci 2012; 67:1121-31. [PMID: 22503990 DOI: 10.1093/gerona/gls113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To investigate the role mitochondrial membrane lipids play in the actions of calorie restriction (CR), C57BL/6 mice were assigned to four groups (control and three 40% CR groups) and fed diets containing soybean oil (also in the control diet), fish oil, or lard. The fatty acid composition of the major mitochondrial phospholipid classes, proton leak, and H(2)O(2) production were measured in muscle mitochondria following 1 month of CR. The results indicate that phospholipid fatty acids reflected the polyunsaturated fatty acid profile of the dietary lipid sources. Capacity for Complex I- and III-linked H(2)O(2) production was decreased with CR, although there was no difference between CR groups. The CR lard group had lower proton leak than all other groups. The results indicate that a decreased degree of unsaturation in muscle mitochondrial membranes is not required for reduced H(2)O(2) production with CR. However, dietary lipids do have some influence on proton leak with CR.
Collapse
Affiliation(s)
- Yana Chen
- VM Molecular Biosciences, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Jena S, Dandapat J, Chainy GBN. Curcumin differentially regulates the expression of superoxide dismutase in cerebral cortex and cerebellum of l-thyroxine (T4)-induced hyperthyroid rat brain. Neurol Sci 2012; 34:505-10. [DOI: 10.1007/s10072-012-1084-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
|
28
|
Giray B, Hincal F. Fenvalerate induced hepatic oxidative stress in selenium- and/or iodine-deficient rats. Hum Exp Toxicol 2011; 30:1575-83. [DOI: 10.1177/0960327110393762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Considering the potential adverse effects of selenium and iodine deficiencies, and frequency of intensive but improper use of insecticides, this study was designed to evaluate the effects of a pyrethroid insecticide, fenvalerate, on the oxidant/antioxidant status of liver using a rat model of iodine and/or selenium deficiency. The study was conducted on eight groups of 3-week old Wistar rats. Iodine and/or selenium deficiency was introduced by feeding the animals with a diet containing <0.005 mg selenium/kg and/or supplying with 1% sodium perchlorate containing drinking water for a period of 7 weeks. Fenvalerate exposure (100 mg/kg/d, i.p., for the last 7 days) in normal rats increased hepatic glutathione peroxidase activity and lipid peroxidation, decreased glutathione content, but did not change the activities of catalase or any of the superoxide dismutase forms; in iodine-deficient animals caused only the elevation of lipid peroxidation; in selenium-deficient animals and in combined iodine/selenium deficiency decreased glutathione peroxidase, increased catalase activities and lipid peroxidation, and decreased all the forms of superoxide dismutase activity only in combined deficiency. These results suggested that fenvalerate is an oxidant stress inducer in rat liver, and its potential effects on pro-oxidant/antioxidant balance may also be important for human populations, particularly with iodine and/or selenium deficiencies.
Collapse
Affiliation(s)
- Belma Giray
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Filiz Hincal
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
29
|
Messarah M, Saoudi M, Boumendjel A, Boulakoud MS, Feki AE. Oxidative stress induced by thyroid dysfunction in rat erythrocytes and heart. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:33-41. [PMID: 21787667 DOI: 10.1016/j.etap.2010.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 08/04/2010] [Accepted: 09/01/2010] [Indexed: 05/31/2023]
Abstract
The aim of this study was to determine whether the effects of thyroid dysfunction induce oxidative stress in the blood and heart of male Wistar rats. Rats were randomly divided into three groups: group I served as control rats. Group II was treated daily with 0.05% benzythiouracile (BTU) administered in drinking water. Rats of group III have received l-thyroxine sodium salt (0.0012%), in drinking water. The results showed that thyroid dysfunction rats had poor growth performance. On the other hand, in hyperthyroid rats, a marked decrease compared with control occurred of some hematological parameters such red blood cell number (RBC), haemoglobin (Hb) concentration and haematocrit (Ht). There was also a significant increase in erythrocyte numbers and heart TBARS concentrations in hypothyroid rats compared with control. These results were associated with a fall in the total antioxidant status (TAS) in the serum of the hyperthyroid rats. Alteration of the antioxidant system in the hypo-/hyperthyroidism-induced rats was confirmed by the significant increase of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities and a decline in glutathione (GSH) content in both tissues were detected in hyperthyroid group compared to controls. On the other hand, serum transaminase activities (aspartate transaminase (AST); alanine transaminase (ALT)) were elevated indicating hepatic cellular damage after treatment with exogenous L-thyroxine. Moreover, serum lactate dehydrogenase (LDH), gamma-glutamyl transferase (GGT) and creatine phosphokinase (CPK) activities were increased in the hyperthyroidism rats. These results indicated that excessive thyroxin (long term) ingestion had an adverse effect on animal health and performance. We conclude that thyroid dysfunction induces oxidative stress and modifies some biochemical parameters of erythrocytes, heart and liver disease; our results show the occurrence of a state of oxidizing stress in relation to hyperthyroidism.
Collapse
Affiliation(s)
- Mahfoud Messarah
- Animal Ecophysiology Laboratory, Faculty of Sciences, Badji Mokhtar University, BP 12 Sidi Amar, Annaba, Algeria.
| | | | | | | | | |
Collapse
|
30
|
Venditti P, Di Stefano L, Di Meo S. Oxidative stress in cold-induced hyperthyroid state. ACTA ACUST UNITED AC 2010; 213:2899-911. [PMID: 20709918 DOI: 10.1242/jeb.043307] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exposure of homeothermic animals to low environmental temperature is associated with oxidative stress in several body tissues. Because cold exposure induces a condition of functional hyperthyroidism, the observation that tissue oxidative stress also happens in experimental hyperthyroidism, induced by 3,5,3'-triiodothyronine (T(3)) treatment, suggests that this hormone is responsible for the oxidative damage found in tissues from cold-exposed animals. Examination of T(3)-responsive tissues, such as brown adipose tissue (BAT) and liver, shows that changes in factors favoring oxidative modifications are similar in experimental and functional hyperthyroidism. However, differences are also apparent, likely due to the action of physiological regulators, such as noradrenaline and thyroxine, whose levels are different in cold-exposed and T(3)-treated animals. To date, there is evidence that biochemical changes underlying the thermogenic response to cold as well as those leading to oxidative stress require a synergism between T(3)- and noradrenaline-generated signals. Conversely, available results suggest that thyroxine (T(4)) supplies a direct contribution to cold-induced BAT oxidative damage, but contributes to the liver response only as a T(3) precursor.
Collapse
Affiliation(s)
- P Venditti
- Department of the Biological Sciences, Section of Physiology, University Federico II of Naples, 80134, Naples, Italy.
| | | | | |
Collapse
|
31
|
Chattopadhyay S, Choudhury S, Roy A, Chainy GBN, Samanta L. T3 fails to restore mitochondrial thiol redox status altered by experimental hypothyroidism in rat testis. Gen Comp Endocrinol 2010; 169:39-47. [PMID: 20678500 DOI: 10.1016/j.ygcen.2010.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/07/2010] [Accepted: 07/21/2010] [Indexed: 12/30/2022]
Abstract
Oxidative stress impaired sperm function might lead to infertility. The objective of this study was to evaluate the effects of altered thyroid hormone levels on regulation of mitochondrial glutathione redox status and its dependent antioxidant defense system in adult rat testis and their correlation with testicular function. Adult male Wistar rats were rendered hypothyroid by administration of 6-n-propyl-2-thiouracil in drinking water for six weeks. At the end of the treatment period, a subset of the hypothyroid rats was treated with T(3) (20 μg/100g body weight/day for 3 days). Mitochondria were isolated from euthyroid, hypothyroid and hypothyroid+T(3)-treated rat testes, and sub-fractionated into sub-mitochondrial particles and matrix fractions. Mitochondrial respiration, oxidative stress indices and antioxidant defenses were assayed. The results were correlated with daily testicular sperm production and epididymal sperm viability. Increased pro-oxidant level and reduced antioxidant capacity rendered the hypothyroid mitochondria susceptible to oxidative injury. The extent of damage was more evident in the membrane fraction. This was reflected in higher degree of oxidative damages inflicted upon membrane lipids and proteins. While membrane proteins were more susceptible to carbonylation, thiol residue damage was evident in matrix fraction. Reduced levels of glutathione and ascorbate further weakened the antioxidant defenses and impaired testicular function. Hypothyroid condition disturbed intra-mitochondrial thiol redox status leading to testicular dysfunction. Hypothyroidism-induced oxidative stress condition could not be reversed with T(3) treatment.
Collapse
|
32
|
Ahmed O, Abd El‐Tawab S, Ahmed R. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: I. The development of the thyroid hormones–neurotransmitters and adenosinergic system interactions. Int J Dev Neurosci 2010; 28:437-54. [PMID: 20599606 DOI: 10.1016/j.ijdevneu.2010.06.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 01/05/2023] Open
Affiliation(s)
- O.M. Ahmed
- Zoology DepartmentDivision of Physiology, Faculty of ScienceBeni Suef UniversityBeni SuefEgypt
| | - S.M. Abd El‐Tawab
- Zoology DepartmentDivision of Physiology, Faculty of ScienceBeni Suef UniversityBeni SuefEgypt
| | - R.G. Ahmed
- Zoology DepartmentDivision of Comparative Anatomy and Embryology, Faculty of ScienceBeni Suef UniversityEgypt
| |
Collapse
|
33
|
El‐bakry A, El‐Gareib A, Ahmed R. Comparative study of the effects of experimentally induced hypothyroidism and hyperthyroidism in some brain regions in albino rats. Int J Dev Neurosci 2010; 28:371-89. [DOI: 10.1016/j.ijdevneu.2010.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 04/07/2010] [Accepted: 04/09/2010] [Indexed: 11/17/2022] Open
Affiliation(s)
- A.M. El‐bakry
- Zoology Department, Faculty of ScienceBeni Suef UniversityEgypt
| | - A.W. El‐Gareib
- Zoology Department, Faculty of ScienceCairo UniversityEgypt
| | - R.G. Ahmed
- Zoology Department, Faculty of ScienceBeni Suef UniversityEgypt
| |
Collapse
|
34
|
Chattopadhyay S, Sahoo DK, Roy A, Samanta L, Chainy GB. Thiol redox status critically influences mitochondrial response to thyroid hormone-induced hepatic oxidative injury: A temporal analysis. Cell Biochem Funct 2010; 28:126-34. [DOI: 10.1002/cbf.1631] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Erdamar H, Cimen B, Gülcemal H, Saraymen R, Yerer B, Demirci H. Increased lipid peroxidation and impaired enzymatic antioxidant defense mechanism in thyroid tissue with multinodular goiter and papillary carcinoma. Clin Biochem 2010; 43:650-4. [PMID: 20171198 DOI: 10.1016/j.clinbiochem.2010.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 11/15/2022]
Abstract
OBJECTIVES We aimed to evaluate the oxidant/antioxidant status of thyroid tissue in patients with multinodular goiter, papillary carcinoma and to compare with their nonpathologic tissues. METHODS We studied 41 patients with multinodular goiter who underwent surgical treatment. The patients were divided into three groups according to clinical diagnosis. Malondialdehyde, selenium, total superoxide dismutase and glutathione peroxidase of thyroid tissue samples were determined in 14 toxic multinodular goiters, 18 non-toxic multinodular goiters, and 9 papillary carcinomas. RESULT Superoxide dismutase and glutathione peroxidase and selenium were found lower but malondialdehyde was higher in both nodule and cancerous tissues compared with those of control ones. The level of malondialdehyde in non-toxic multinodular goiters group was higher than toxic multinodular goiters group in nodule tissues. CONCLUSIONS It can be stated that the lipid peroxidation is increased and enzymatic free radical defense system was significantly impaired in patients with both multinodular goiters and papillary carcinomas.
Collapse
Affiliation(s)
- Hüsamettin Erdamar
- Department of Medical Biochemistry, Tunceli Government Hospital, Turkey.
| | | | | | | | | | | |
Collapse
|
36
|
Influence of thyroid dysfunction on liver lipid peroxidation and antioxidant status in experimental rats. ACTA ACUST UNITED AC 2009; 62:301-10. [PMID: 19540741 DOI: 10.1016/j.etp.2009.04.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/18/2009] [Accepted: 04/26/2009] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to evaluate the effects of dysthyroidism on lipid peroxidation, antioxidants status, liver, and serum dysfunction parameters in the hypo-/hyperthyroidism-induced rats. Hypothyroidism and hyperthyroidism conditions were induced for 5 weeks by administration of 0.05% benzythiouracile (BTU) and l-thyroxine sodium salt (0.0012%), in drinking water, respectively. The enzymatic activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) and the lipid peroxidation product; thiobarbituric acid reacting substances (TBARS) were measured in liver as indicators of oxidative damage. However, liver dysfunction parameters represented by the activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and gamma glutamyl transferase (GGT), were measured in serum. In hyperthyroidism rats, the TBARS contents of liver have significantly increased compared to those in hypothyroid rats and the controls (p<0.001), associated with a fall of the total antioxidant status (TAS) in the serum of the hyperthyroid rats. The SOD, CAT, and GPx activities in liver of hyperthyroid rats have significantly increased compared to hypothyroid rats and the controls (p<0.001). The AST, ALT, LDH, GGT, and ALP activities increased in the hyperthyroidism rats (p<0.05). We conclude that thyroid dysfunction induces oxidative stress and modifies some biochemical parameters of liver. Our results show the occurrence of a state of oxidizing stress in relation to hyperthyroidism.
Collapse
|
37
|
Sahoo DK, Roy A, Chainy GBN. Protective effects of vitamin E and curcumin on L-thyroxine-induced rat testicular oxidative stress. Chem Biol Interact 2008; 176:121-8. [PMID: 18723006 DOI: 10.1016/j.cbi.2008.07.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 01/03/2023]
Abstract
Present study examines effects of curcumin and vitamin E on oxidative stress parameters, antioxidant defence enzymes and oxidized (GSSG) and reduced glutathione (GSH) levels in testis of L-thyroxine (T4)-induced hyperthyroid rats. The oxidative stress in T4-treated rat testis was evident from elevation in oxidative stress parameters such as lipid peroxide and protein carbonyl contents, decrease in superoxide dismutase (SOD) and catalase (CAT) activities and increase in glutathione peroxidase (GPx) activity. This is accompanied with decrease in number and mortality of epididymal sperms. When the T4-treated rats were fed with vitamin E and/or curcumin, the lipid peroxide and protein carbonyl contents in crude homogenates of testes decreased to normal level. Treatment of curcumin and/or vitamin E to T4-treated rats resulted in elevation of SOD level in postmitochondrial fraction (PMF) and mitochondrial fraction (MF) and CAT in PMF, with decreased GPx activity in MF. However, curcumin or vitamin E was unable to change GPx activity alone but in together they elevated the GPx in PMF of T4-treated rat testis. Both the antioxidants are incapable of producing significant changes in GSH:GSSG ratio of PMF of T4-treated rats. In MF, GSH:GSSG ratio elevated and decreased respectively by curcumin and vitamin E treatments to T4-treated rats, however, in together these antioxidants caused an elevated GSH:GSSG ratio with a value less than when vitamin E given alone to T4-treated rats. Vitamin E not the curcumin elevates total sperm count and percentage of live sperm impaired by hyperthyroid state. In summary, both vitamin E and curcumin are efficient in protecting testis from oxidative stress generated by T4 mainly in restoring antioxidant enzymes to the level of euthyroid animals up to some extent but vitamin E is more efficient than curcumin.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Biotechnology and Zoology, Utkal University, Bhubaneswar 751004, Orissa, India
| | | | | |
Collapse
|
38
|
Chávez E, Zazueta C, García N, Martínez-Abundis E, Pavón N, Hernández-Esquivel L. Titration of cardiolipin by either 10-N-nonyl acridine orange or acridine orange sensitizes the adenine nucleotide carrier to permeability transition. J Bioenerg Biomembr 2008; 40:77-84. [DOI: 10.1007/s10863-008-9136-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
|
39
|
The effect of hypothyroidism, hyperthyroidism, and their treatment on parameters of oxidative stress and antioxidant status. Clin Chem Lab Med 2008; 46:1004-10. [DOI: 10.1515/cclm.2008.183] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Brzek P, Bielawska K, Ksiazek A, Konarzewski M. Anatomic and Molecular Correlates of Divergent Selection for Basal Metabolic Rate in Laboratory Mice. Physiol Biochem Zool 2007; 80:491-9. [PMID: 17717812 DOI: 10.1086/520617] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2007] [Indexed: 11/03/2022]
Abstract
Proximal mechanisms describing the evolution of high levels of basal metabolic rate (BMR) in endotherms are one of the most intriguing problems of evolutionary physiology. Because BMR mostly reflects metabolic activity of internal organs, evolutionary increase in BMR could have been realized by an increase in relative organ size and/or mass-specific cellular metabolic rate. According to the "membrane pacemaker" theory of metabolism, the latter is mediated by an increase in the average number of double bonds (unsaturation index) in cell membrane fatty acids. To test this, we investigated the effect of divergent artificial selection for body-mass-corrected BMR on the mass of internal organs and the fatty acid composition of cell membranes in laboratory mice (Mus musculus). Mice from the high-BMR line had considerably larger liver, kidneys, heart, and intestines. In contrast, the unsaturation index of liver cell membranes was significantly higher in low-BMR mice, mainly because of the significantly higher content of highly polyunsaturated 22 : 6 docosahexanoic fatty acid. Thus, divergent selection for BMR did not affect fatty acyl composition of liver and kidney phospholipids in the direction predicted by the membrane pacemaker theory. We conclude that an intraspecific increase in BMR may rapidly evolve mainly as a result of the changes in size of internal organs, without simultaneous increase of the unsaturation index in cell membrane lipids.
Collapse
Affiliation(s)
- Pawel Brzek
- Institute of Biology, University of Białstok, Swierkowa 20B,15-950 Białystok,Poland.
| | | | | | | |
Collapse
|
41
|
Messarah M, Boulakoud MS, Boumendjel A, Abdennour C, El Feki A. The impact of thyroid activity variations on some oxidizing-stress parameters in rats. C R Biol 2007; 330:107-12. [PMID: 17303537 DOI: 10.1016/j.crvi.2006.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/14/2006] [Accepted: 11/21/2006] [Indexed: 11/22/2022]
Abstract
The effect of the thyroid activity on the formation of lipid peroxidation and on liver and heart antioxidant enzyme activities was investigated in Wistar rats. Hypothyroidism and hyperthyroidism conditions were induced for five weeks by the administration of 0.05% benzythiouracile (BTU) and L-thyroxine sodium salt (0.0012%), in drinking water, respectively. No significant effect was observed on the rates of both lipid peroxidation and the vitamin E in hepatic and cardiac tissues of hypothyroidism rats compared to the controls, contrary to the hyperthyroidism rats, which expressed a pronounced increase. The increased glutathione peroxidase activity in rats suffering from hyperthyroidism was associated with a fall of the reduced glutathione in the homogenate and a marked increase in the glutathione reductase activity. An increase in superoxide dismutase and catalase activities was also recorded in hyperthyroidism. Our results explain the thyroid activity variation in relation to the lipid peroxidation and the tissular contents of the enzymatic and the non-enzymatic antioxidants. To conclude, our results show the occurrence of a state of oxidizing stress in relation to hyperthyroidism.
Collapse
Affiliation(s)
- Mahfoud Messarah
- Animal Ecophysiology Laboratory, Science Faculty, Badji Mokhtar University, Annaba, Algeria
| | | | | | | | | |
Collapse
|
42
|
Sener G, Sehirli O, Velioğlu-Oğünç A, Ercan F, Erkanli G, Gedik N, Yeğen BC. Propylthiouracil (PTU)-induced hypothyroidism alleviates burn-induced multiple organ injury. Burns 2006; 32:728-36. [PMID: 16926069 DOI: 10.1016/j.burns.2006.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 01/03/2006] [Indexed: 11/24/2022]
Abstract
Oxidative stress has an important role in the development of multiorgan failure after major burn. This study was designed to determine the possible protective effect of experimental hypothyroidism in hepatic and gastrointestinal injury induced by thermal trauma. Sprague Dawley rats were administered saline or PTU (10 mgkg(-1) i.p.) for 15 days, and hypothyroidism was confirmed by depressed serum T(3) and T(4) concentrations. Under brief ether anesthesia, shaved dorsum of rats was exposed to 90 degrees C (burn group) or 25 degrees C (control group) water bath for 10s. PTU or saline treatment was repeated at the 12th hour of the burn. Rats were decapitated 24h after injury and tissue samples from liver, stomach and ileum were taken for the determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen contents. Formation of reactive oxygen species in tissue samples was monitored by using chemiluminescence (CL) technique with luminol and lucigenin probes. Tissues were also examined microscopically. Tumor necrosis factor (TNF)-alpha and lactate dehydrogenase (LDH) were assayed in serum samples. Severe skin scald injury (30% of total body surface area) caused a significant decrease in GSH level, which was accompanied with significant increases in MDA level, MPO activity, CL levels and collagen content of the studied tissues (p<0.05-0.001). Similarly, serum TNF-alpha and LDH were elevated in the burn group as compared to control group. On the other hand, PTU treatment reversed all these biochemical indices, as well as histopathological alterations induced by thermal trauma. Our results suggest that PTU-induced hypothyroidism reduces oxidative damage in the hepatic, gastric and ileal tissues probably due to hypometabolism, which is associated with decreased production of reactive oxygen metabolites and enhancement of antioxidant mechanisms.
Collapse
Affiliation(s)
- Göksel Sener
- Marmara University, School of Pharmacy, Department of Pharmacology, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
43
|
Venditti P, Pamplona R, Ayala V, De Rosa R, Caldarone G, Di Meo S. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage. ACTA ACUST UNITED AC 2006; 209:817-25. [PMID: 16481571 DOI: 10.1242/jeb.02045] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T3)- or thyroxine (T4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most extensive damage to lipids and proteins was found in T3-treated and cold-exposed rats, respectively. Increase in oxygen reactive species released by mitochondria and microsomes was found to contribute to tissue oxidative damage, whereas the determination of single antioxidants did not provide information about the possible contribution of a reduced effectiveness of the antioxidant defence system. Indeed, liver oxidative damage in hyperthyroid rats was scarcely related to levels of the liposoluble antioxidants and activities of antioxidant enzymes. Conversely, other biochemical changes, such as the degree of fatty acid unsaturation and hemoprotein content, appeared to predispose hepatic tissue to oxidative damage associated with oxidative challenge elicited by hyperthyroid state. As a whole, our results confirm the idea that T3 plays a key role in metabolic changes and oxidative damage found in cold liver. However, only data concerning changes in glutathione peroxidase activity and mitochondrial protein content favour the idea that dissimilarities in effects of cold exposure and T3 treatment could depend on differences in serum levels of T4.
Collapse
Affiliation(s)
- P Venditti
- Dipartimento delle Scienze Biologiche, Sezione di Fisiologia, Università di Napoli, I-80134 Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Araujo ASR, Ribeiro MFM, Enzveiler A, Schenkel P, Fernandes TRG, Partata WA, Irigoyen MC, Llesuy S, Belló-Klein A. Myocardial antioxidant enzyme activities and concentration and glutathione metabolism in experimental hyperthyroidism. Mol Cell Endocrinol 2006; 249:133-9. [PMID: 16574313 DOI: 10.1016/j.mce.2006.02.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 02/09/2006] [Accepted: 02/10/2006] [Indexed: 11/17/2022]
Abstract
Hyperthyroidism was induced in rats by l-thyroxine administration (12 mg/L in drinking water, 4 weeks). Animals were assessed hemodynamically, and heart, lung, and liver morphometry were performed. Lipid peroxidation (LPO) and protein oxidation (carbonyls) were measured in heart homogenates. It was quantified glutathione (GSH) metabolism, and antioxidant enzyme activities its and protein expression (by Western blot). At the end of treatment, it was observed cardiac hypertrophy, elevation of left ventricular systolic and end diastolic pressures, lung and liver congestion. LPO and carbonyls were increased in the hyperthyroid group, and GSH was decreased by 46% in the fourth week. Myocardial oxidative stress time course analysis revealed that it was increased in the second week of treatment. Antioxidant enzyme activities elevation was accompanied by protein expression induction in the hyperthyroid group in the fourth week. These results imply that hyperthyroidism generates myocardial dysfunction associated with oxidative stress inducing antioxidant enzyme activities and protein expression.
Collapse
Affiliation(s)
- A S R Araujo
- Departamento Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Taş S, Dirican M, Sarandöl E, Serdar Z. The effect of taurine supplementation on oxidative stress in experimental hypothyroidism. Cell Biochem Funct 2006; 24:153-8. [PMID: 15617030 DOI: 10.1002/cbf.1198] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The purpose of this study was to investigate the oxidative status in experimental hypothyroidism and the antioxidant effect of taurine supplementation. Forty male Sprague Dawley rats were randomly divided into four groups (group 1, control; group 2, control + taurine; group 3, propylthiouracil (PTU); group 4, PTU + taurine). Hypothyroidism was induced by giving 0.05% PTU in drinking water for 8 weeks. Taurine was supplemented in drinking water at a concentration of 1% for 5 weeks. Plasma (p < 0.05), red blood cell (p < 0.01), liver (p < 0.001) and kidney tissue (p > 0.05) malondialdehyde levels were increased in the PTU group compared with those of the control rats and were decreased in the PTU + taurine group compared with the PTU alone group. No significant changes were observed in glutathione levels of kidney and liver in the PTU group, but taurine supplementation significantly increased the glutathione levels of these tissues. Paraoxonase and arylesterase activities were decreased in the PTU group while taurine supplementation caused no significant changes in paraoxonase and arylesterase activities. These findings suggest that taurine supplementation may play a protective role against the increased oxidative stress resulting from hypothyroidism.
Collapse
Affiliation(s)
- Sibel Taş
- Department of Biology, Uludag University Science and Literature Faculty, Bursa, Turkey.
| | | | | | | |
Collapse
|
46
|
Sarandöl E, Taş S, Dirican M, Serdar Z. Oxidative stress and serum paraoxonase activity in experimental hypothyroidism: effect of vitamin E supplementation. Cell Biochem Funct 2005; 23:1-8. [PMID: 15386442 DOI: 10.1002/cbf.1119] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thyroid hormones are associated with the oxidative and antioxidative status of the organism. Since data on the oxidative status of hypothyroidism are limited and controversial, we investigated the oxidant and antioxidant status and serum paraoxonase/arylesterase activities in propylthiouracil-induced hypothyroidism and examined the effect of vitamin E supplementation on this experimental model. Forty male Sprague Dawley rats were randomly divided into four groups (group 1, control; group 2, control + vitamin E; group 3, propylthiouracil; group 4, propylthiouracil + vitamin E). Plasma, red blood cell, liver, heart and skeletal muscle malondialdehyde levels were increased in the propylthiouracil-treated group compared with the control rats and were decreased in propylthiouracil + vitamin E group compared with the propylthiouracil-treated group. Vitamin E supplementation also significantly increased liver and kidney reduced glutathione levels in propylthiouracil treated animals. Serum paraoxonase and arylesterase activities were decreased in propylthiouracil treated group and vitamin E supplementation caused significant increase in serum paraoxonase activity compared with the propylthiouracil-treated rats. These findings suggest that hypothyroidism is accompanied with increased oxidative stress and vitamin E supplementation exerts beneficial effects on this situation.
Collapse
Affiliation(s)
- Emre Sarandöl
- Department of Biochemistry, Uludag University Medical Faculty, Bursa, Turkey.
| | | | | | | |
Collapse
|
47
|
Carageorgiou H, Pantos C, Zarros A, Mourouzis I, Varonos D, Cokkinos D, Tsakiris S. Changes in antioxidant status, protein concentration, acetylcholinesterase, (Na+,K+)-, and Mg2+ -ATPase activities in the brain of hyper- and hypothyroid adult rats. Metab Brain Dis 2005; 20:129-39. [PMID: 15938131 DOI: 10.1007/s11011-005-4150-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is a common knowledge that metabolic reactions increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how the metabolic reactions could affect the total antioxidant status (TAS), protein concentration (PC) and the activities of acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+ -ATPase in the brain of hyper- and hypothyroid adult male rats. Hyperthyroidism was induced in rats by subcutaneous administration of thyroxine (25 microg/l00 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. TAS, PC, and enzyme activities were evaluated spectrophotometrically in the homogenated brain of each animal. TAS, PC, and Mg2+ -ATPase activity were found unaffected in hyperthyroidism, while AChE and Na+,K+ -ATPase activities were reduced by 25% (p < 0.01). In contrast, TAS, (Na+,K+)-ATPase and Mg2+-ATPase activities were found to be increased (approx. 23-30%, p < 0.001) in the hypothyroid brain, while AChE activity and PC were shown to be inhibited (approx. 23-30%, p < 0.001). These changes on brain enzyme activities may reflect the different metabolic effects of hyper- and hypothyroidism. Such changes of the enzyme activities may differentially modulate the brain intracellular Mg2+, neural excitability, as well as the uptake and release of biogenic amines.
Collapse
Affiliation(s)
- Haris Carageorgiou
- Department of Experimental Pharmacology, Medical School, University of Athens, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
48
|
Hagopian K, Harper ME, Ram JJ, Humble SJ, Weindruch R, Ramsey JJ. Long-term calorie restriction reduces proton leak and hydrogen peroxide production in liver mitochondria. Am J Physiol Endocrinol Metab 2005; 288:E674-84. [PMID: 15562252 DOI: 10.1152/ajpendo.00382.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calorie restriction (CR) without malnutrition increases maximal life span in diverse species. It has been proposed that reduction in energy expenditure and reactive oxygen species (ROS) production could be a mechanism for life span extension with CR. As a step toward testing this theory, mitochondrial proton leak, H2O2 production, and markers of oxidative stress were measured in liver from FBNF1 rats fed control or 40% CR diets for 12 or 18 mo. CR was initiated at 6 mo of age. Proton leak kinetics curves, generated from simultaneous measures of oxygen consumption and membrane potential, indicated a decrease in proton leak after 18 mo of CR, while only a trend toward a proton leak decrease was observed after 12 mo. Significant shifts in phosphorylation and substrate oxidation curves also occurred with CR; however, these changes occurred in concert with the proton leak changes. Metabolic control analysis indicated no difference in the overall pattern of control of the oxidative phosphorylation system between control and CR animals. At 12 mo, no significant differences were observed between groups for H2O2 production or markers of oxidative stress. However, at 18 mo, protein carbonyl content was lower in CR animals, as was H2O2 production when mitochondria were respiring on either succinate alone or pyruvate plus malate in the presence of rotenone. These results indicate that long-term CR lowers mitochondrial proton leak and H2O2 production, and this is consistent with the idea that CR may act by decreasing energy expenditure and ROS production.
Collapse
Affiliation(s)
- Kevork Hagopian
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The objective of the current study was to find out whether thyroid hormone influences antioxidant defense parameters of rat brain. Several oxidative stress and antioxidant defense parameters of mitochondrial (MF) and post-mitochondrial (PMF) fractions of cerebral cortex (CC) of adult rats were compared among euthyroid (control), hypothyroid [6-n-propylthiouracil (PTU)-challenged], and hyperthyroid (T3-treatment to PTU-challenged rats) states. Oxidative stress parameters, such as thiobarbituric acid-reactive substances (TBA-RS) and protein carbonyl content (PC), in MF declined following PTU challenge in comparison to euthyroid rats. On the other hand, when PTU-challenged rats were treated with T3, a significant increase in the level of oxidative stress parameters in MF was recorded. Hydrogen peroxide content of MF as well as PMF of CC was elevated by PTU-challenge and brought to normal level by subsequent treatment of T3. Although mitochondrial glutathione (reduced or oxidized) status did not change following PTU challenge, a significant reduction in oxidized glutathione (GSSG) level was noticed in PMF following the treatment. T3 administration to PTU-challenged rats had no effect on mitochondrial glutathione status. Total and CN-resistant superoxide dismutase (SOD) activities in MF of CC augmented following PTU challenge. CN-resistant SOD activity did not change when PTU-challenged rats were treated with T3. Although CN-sensitive SOD activity of PMF remained unaltered in response to PTU challenge, its activity increased when PTU-challenged rats were treated with T3. Catalase activity in PMF of CC of PTU-challenged rats increased, whereas the activity was decreased when hypothyroid rats were treated with T3. Similarly, total and Se-dependent glutathione peroxidase (GPx) activities of MF increased following PTU challenge and reduced following administration of T3. Se-independent GPx activity of MF and PMF and glutathione reductase activity of PMF decreased following PTU challenge and did not change further when rats were treated with T3. On the other hand, glutathione S-transferase activity of MF and PMF of CC did not change following PTU challenge but decreased below detectable level following T3 treatment. Results of the current investigation suggest that antioxidant defense parameters of adult rat brain are considerably influenced by thyroid states of the body.
Collapse
Affiliation(s)
- Kajari Das
- Department of Zoology & Biotechnology, Utkal University, Bhubaneswar, India
| | | |
Collapse
|
50
|
Abstract
Oxidized low-density lipoproteins (LDL) are highly suspected of initiating the atherosclerosis process. Hypothyroidism is frequently associated with hypercholesterolemia and carries increased risk for atherosclerosis. In contrast to hypothyroidism, hyperthyroidism is not associated with increased LDL cholesterol, but is associated with increased oxidized LDL. This study was designed to evaluate the changes in LDL oxidation in subjects with hypothyroidism or hyperthyroidism, and to reveal the effects of treatment in hypothyroidism and hyperthyroidism on LDL oxidation and lipid profiles. Thirty-two patients with hypothyroidism and 16 patients with hyperthyroidism were studied before the therapy and thereafter, when they were euthyroid with appropriate treatment. Plasma lipids and lipoproteins, and the oxidizability of LDL by determining the levels of malonaldehyde bis (dimethyacetyl) (MDA) and diene conjugation, were determined at baseline and after the patients were rendered euthyroid. The actual content of dienes in LDL particles was increased in hypothyroidism, with a decrease after T4 supplementation (p < .001). Dienes in LDL particles were increased in hyperthyroidism, with a decrease after treatment (p < .05). In hypothyroid patients, the lag phase was shorter in the pretreatment period than in the euthyroid period (p > .05). The lag phase of hyperthyroid patients was shorter in the pretreatment period than in the euthyroid period and hypothyroid state (p < .001). The Cu2+-catalyzed dienes of LDL and MDA oxidation in the hypothyroid state and the subsequent euthyroid states were decreased (p < .001). The Cu2+-catalyzed dienes of LDL (p < .01) and MDA oxidation (p < .001) in hyperthyroid patients after treatment were decreased. The enhanced LDL oxidation may play a role in the cardiac disease process in both hypothyroidism and hyperthyroidism.
Collapse
Affiliation(s)
- Aysin Oge
- Department of Internal Medicine, School of Medicine, Adnan Menderes University, Aydin, Turkey.
| | | | | |
Collapse
|