1
|
Rezaei Ahvanooei MR, Norouzian MA, Hedayati M, Ghaffari MH. Comprehensive review of resveratrol as a feed additive in dairy cows: exploring its potential diverse effects and implications. Vet Res Commun 2023; 47:1115-1124. [PMID: 37421549 DOI: 10.1007/s11259-023-10157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Heat stress and growing demand for dairy products in tropical regions exert metabolic pressure on dairy cows, leading to metabolic diseases and economic losses. Resveratrol (RSV) is known for its numerous beneficial health effects and can be used as a barrier against metabolic abnormalities and prevent economic losses. Several studies have investigated the effects of RSV in humans and various animal species. In this review, we attempted to investigate the effects of RSV from different aspects so that we could have a practical proposal for its utilization in dairy cows. RSV was found to have potential antioxidant, anti-inflammatory, anti-obesity, and antimicrobial effects, leading to improved reproductive performance. It is interesting that the effect of RSV on the microbial population leads to a significant decrease in methane emissions. However, high doses of RSV have been associated with possible adverse effects, underscoring the dose dependence of its efficacy. In conclusion, RSV polyphenol at optimal doses is a promising agent for the prevention and treatment of metabolic abnormalities in dairy cows, based on our literature review and study results.
Collapse
Affiliation(s)
- M R Rezaei Ahvanooei
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, Tehran, 3391653755, Iran.
| | - M A Norouzian
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, Tehran, 3391653755, Iran
| | - M Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
2
|
The Role of Resveratrol in Eye Diseases—A Review of the Literature. Nutrients 2022; 14:nu14142974. [PMID: 35889930 PMCID: PMC9317487 DOI: 10.3390/nu14142974] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Resveratrol (3,5,4′-trans-trihydroxystilbene) is a polyphenolic phytoalexin belonging to the stilbene family. It is commonly found in grape skins and seeds, as well as other plant-based foods. Oxidative stress and inflammation play a key role in the initiation and progression of age-related eye disorders (glaucoma, cataracts, diabetic retinopathy, and macular degeneration) that lead to a progressive loss of vision and blindness. Even though the way resveratrol affects the human body and the course of many diseases is still the subject of ongoing scientific research, it has been shown that the broad spectrum of anti-inflammatory and neuroprotective properties of resveratrol has a beneficial effect on eye tissues. In our research, we decided to analyze the current scientific literature on resveratrol, its possible mechanisms of action, and its therapeutic application in order to assess its effectiveness in eye diseases.
Collapse
|
3
|
Röhl C, Batke M, Damm G, Freyberger A, Gebel T, Gundert-Remy U, Hengstler JG, Mangerich A, Matthiessen A, Partosch F, Schupp T, Wollin KM, Foth H. New aspects in deriving health-based guidance values for bromate in swimming pool water. Arch Toxicol 2022; 96:1623-1659. [PMID: 35386057 PMCID: PMC9095538 DOI: 10.1007/s00204-022-03255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
Bromate, classified as a EU CLP 1B carcinogen, is a typical by-product of the disinfection of drinking and swimming pool water. The aim of this study was (a) to provide data on the occurrence of bromate in pool water, (b) to re-evaluate the carcinogenic MOA of bromate in the light of existing data, (c) to assess the possible exposure to bromate via swimming pool water and (d) to inform the derivation of cancer risk-related bromate concentrations in swimming pool water. Measurements from monitoring analysis of 229 samples showed bromate concentrations in seawater pools up to 34 mg/L. A comprehensive non-systematic literature search was done and the quality of the studies on genotoxicity and carcinogenicity was assessed by Klimisch criteria (Klimisch et al., Regul Toxicol Pharmacol 25:1-5, 1997) and SciRAP tool (Beronius et al., J Appl Toxicol, 38:1460-1470, 2018) respectively. Benchmark dose (BMD) modeling was performed using the modeling average mode in BMDS 3.1 and PROAST 66.40, 67 and 69 (human cancer BMDL10; EFSA 2017). For exposure assessment, data from a wide range of sources were evaluated for their reliability. Different target groups (infants/toddlers, children and adults) and exposure scenarios (recreational, sport-active swimmers, top athletes) were considered for oral, inhalation and dermal exposure. Exposure was calculated according to the frequency of swimming events and duration in water. For illustration, cancer risk-related bromate concentrations in pool water were calculated for different target groups, taking into account their exposure using the hBMDL10 and a cancer risk of 1 in 100,000. Convincing evidence was obtained from a multitude of studies that bromate induces oxidative DNA damage and acts as a clastogen in vitro and in vivo. Since statistical modeling of the available genotoxicity data is compatible with both linear as well as non-linear dose-response relationships, bromate should be conservatively considered to be a non-threshold carcinogen. BMD modeling with model averaging for renal cancer studies (Kurokawa et al., J Natl. Cancer Inst, 1983 and 1986a; DeAngelo et al., Toxicol Pathol 26:587-594, 1998) resulted in a median hBMDL10 of 0.65 mg bromate/kg body weight (bw) per day. Evaluation of different age and activity groups revealed that top athletes had the highest exposure, followed by sport-active children, sport-active adults, infants and toddlers, children and adults. The predominant route of exposure was oral (73-98%) by swallowing water, followed by the dermal route (2-27%), while the inhalation route was insignificant (< 0.5%). Accepting the same risk level for all population groups resulted in different guidance values due to the large variation in exposure. For example, for an additional risk of 1 in 100,000, the bromate concentrations would range between 0.011 for top athletes, 0.015 for sport-active children and 2.1 mg/L for adults. In conclusion, the present study shows that health risks due to bromate exposure by swimming pool water cannot be excluded and that large differences in risk exist depending on the individual swimming habits and water concentrations.
Collapse
Affiliation(s)
- C Röhl
- Institute of Toxicology and Pharmacology for Natural Scientists, Christiana Albertina University Kiel, Kiel, Germany.
- Department of Environmental Health Protection, State Agency for social Services (LAsD) Schleswig-Holstein, Neumünster, Germany.
| | - M Batke
- University Emden/Leer, Emden, Germany
| | - G Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - A Freyberger
- Research and Development, Pharmaceuticals, RED-PCD-TOX-P&PC Clinical Pathology, Bayer AG, Wuppertal, Germany
| | - T Gebel
- Federal Institute for Occupational Safety and Health (BAuA), Dortmund, Germany
| | - U Gundert-Remy
- Institute for Clinical Pharmacology and Toxicology, Universitätsmedizin Berlin, Charité Berlin, Germany
| | - J G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund University, Dortmund, Germany
| | - A Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - A Matthiessen
- Central Unit for Environmental Hygiene, University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - F Partosch
- Department of Toxicology, Fraunhofer-Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - T Schupp
- Department of Chemical Engineering, University of Applied Science Muenster, Steinfurt, Germany
| | - K M Wollin
- Formerly Public Health Agency of Lower Saxony, Hannover, Germany
| | - H Foth
- Institute of Environmental Toxicology, University of Halle, Halle/Saale, Germany
| |
Collapse
|
4
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
5
|
Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021; 26:molecules26010229. [PMID: 33466247 PMCID: PMC7796143 DOI: 10.3390/molecules26010229] [Citation(s) in RCA: 291] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (3,4',5-trihy- droxystilbene), a natural phytoalexin polyphenol, exhibits anti-oxidant, anti-inflammatory, and anti-carcinogenic properties. This phytoalexin is well-absorbed and rapidly and extensively metabolized in the body. Inflammation is an adaptive response, which could be triggered by various danger signals, such as invasion by microorganisms or tissue injury. In this review, the anti-inflammatory activity and the mechanism of resveratrol modulates the inflammatory response are examined. Multiple experimental studies that illustrate regulatory mechanisms and the immunomodulatory function of resveratrol both in vivo and in vitro. The data acquired from those studies are discussed.
Collapse
Affiliation(s)
- Tiantian Meng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (T.M.); (A.M.); (J.D.)
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (T.M.); (A.M.); (J.D.)
- Correspondence: (D.X.); (J.H.)
| | - Arowolo Muhammed
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (T.M.); (A.M.); (J.D.)
| | - Juying Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (T.M.); (A.M.); (J.D.)
| | - Liang Chen
- Huaihua Institute of Agricultural Sciences, No.140 Yingfeng East Road, Hecheng District, Huaihua 418000, China;
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (T.M.); (A.M.); (J.D.)
- Correspondence: (D.X.); (J.H.)
| |
Collapse
|
6
|
Maleki Dana P, Reiter RJ, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Melatonin as a potential inhibitor of kidney cancer: A survey of the molecular processes. IUBMB Life 2020; 72:2355-2365. [PMID: 32918860 DOI: 10.1002/iub.2384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
Studies have shown that despite the decreasing mortality rates of kidney cancer patients, its incidence is increasing. Therefore, a comprehensive re-evaluation of treatment options is necessary to provide appropriate treatments for the increasing number of patients. Moreover, the side effects caused by surgery, which is the main treatment of this disease, may lead to higher morbidity rates. Consequently, new safer approaches must be examined and considered. Major advancements have been made in the field of targeted agents as well as treatments based on immunotherapy since renal cell carcinoma (RCC) does not respond well to chemotherapy. While the therapeutic options for this cancer are increasing, the resulting complexity of selecting the best strategy for treating the patients is daunting. Moreover, each therapeutic option must be evaluated concerning toxicity, cost, and clinical advantages. Several characteristics, which are beneficial for cancer therapies have been attributed to melatonin. For decades, investigations have explored the application of melatonin in the treatment of cancer; insufficient attention has been paid to this molecule at the clinical level. Melatonin plays a role in cancer therapy due to its anti-tumor effects as well as by enhancing the efficacy of other drugs as an adjuvant. In this review, we discuss different roles of melatonin in the treatment of kidney cancer. The studies concerned with the applications of melatonin as an adjuvant in the immunotherapy of patients with kidney cancer are summarized. Also, we highlight the apoptotic and anti-angiogenic effects of melatonin on renal cancer cells which are mediated by different molecules (e.g., HIF-1 and VEGF, ADAMTS1, and MMP-9) and signaling pathways (e.g., P56, P52, and JNK). Furthermore, we take a look into available data on melatonin's ability to reduce the toxicities caused by kidney carcinogens, including ochratoxin A, potassium bromate, and Fe-NTA.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Sobočan N, Katušić Bojanac A, Sinčić N, Himelreich-Perić M, Krasić J, Majić Ž, Jurić-Lekić G, Šerman L, Vlahović M, Ježek D, Bulić-Jakuš F. A Free Radical Scavenger Ameliorates Teratogenic Activity of a DNA Hypomethylating Hematological Therapeutic. Stem Cells Dev 2019; 28:717-733. [PMID: 30672391 PMCID: PMC6585171 DOI: 10.1089/scd.2018.0194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/21/2019] [Indexed: 01/05/2023] Open
Abstract
The spin-trap free radical scavenger N-tert-butyl-α-phenylnitron (PBN) ameliorated effects of several teratogens involving reactive oxygen species (ROS). We investigated for the first time whether PBN could ameliorate teratogenesis induced by a DNA hypomethylating hematological therapeutic 5-azacytidine (5azaC). At days 12 and 13 of gestation, Fisher rat dams were pretreated by an i.v. injection of PBN (40 mg/kg) and 1 h later by an i.p. injection of 5azaC (5mg/kg). Development was analyzed at gestation day 15 in embryos and day 20 in fetuses. PBN alone did not significantly affect development. PBN pretreatment restored survival of 5azaC-treated dams' embryos to the control level, restored weight of embryos and partially of fetuses, and partially restored crown-rump lengths. PBN pretreatment converted limb adactyly to less severe oligodactyly. PBN pretreatment restored global DNA methylation level in the limb buds to the control level. Cell proliferation in limb buds of all 5azaC-treated dams remained significantly lower than in controls. In the embryonic liver, PBN pretreatment normalized proliferation diminished significantly by 5azaC; whereas in embryonic vertebral cartilage, proliferation of all 5azaC-treated dams was significantly higher than in PBN-treated dams or controls. Apoptotic indices significantly enhanced by 5azaC in liver and cartilage were not influenced by PBN pretreatment. However, PBN significantly diminished ROS or reactive nitrogen species markers nitrotyrosine and 8-hydroxy-2'deoxyguanosine elevated by 5azaC in embryonic tissues, and, therefore, activity of this DNA hypomethylating agent was associated to the activation of free radicals. That pretreatment with PBN enhanced proliferation in the liver and not in immature tissue is interesting for the treatment of 5azaC-induced hepatotoxicity and liver regeneration.
Collapse
Affiliation(s)
- Nikola Sobočan
- Department of Gastroenterology, School of Medicine, University Hospital Merkur, University of Zagreb, Zagreb, Croatia
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
| | - Ana Katušić Bojanac
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nino Sinčić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marta Himelreich-Perić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jure Krasić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Željka Majić
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Gordana Jurić-Lekić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ljiljana Šerman
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Maja Vlahović
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Davor Ježek
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Floriana Bulić-Jakuš
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
Aliphatic nitro compounds chemistry: oximes–nitrones tunable production through directed tandem synthesis. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-018-2326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Jalili C, Roshankhah S, Salahshoor MR. Falcaria vulgaris Extract Attenuates Ethanol-induced Renal Damage by Reducing Oxidative Stress and Lipid Peroxidation in Rats. J Pharm Bioallied Sci 2019; 11:268-275. [PMID: 31555034 PMCID: PMC6662036 DOI: 10.4103/jpbs.jpbs_134_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Alcohol consumption is capable of producing free radicals and inducing disturbance in body antioxidant. Falcaria vulgaris (F. vulgaris) is a vegetable and it has beneficial antioxidant effects. Materials and Methods: Forty-eight Wistar rats were divided randomly into eight groups (n = 6): control normal (saline) and ethanol (5g EtOH/kg body weight/24h) control groups, F. vulgaris groups (50, 100, and 150mg/kg), and F. vulgaris + ethanol treated groups (50, 100, and 150mg/kg). Treatments were administered intraperitoneally and through gavage daily for 12 weeks. Parameters related to the function and the histology of the kidneys were evaluated and statistically analyzed from kidney and blood serum samples with respect to the groups. Results: Ethanol administration increased significantly Bowman’s space, qualitative histopathology indices, kidney malondialdehyde (MDA) level, blood urea nitrogen (BUN), creatinine, and nitrite oxide levels and decreased significantly total antioxidant capacity (TAC) level and diameter and number of renal corpuscles compared to that in the control normal group (P < 0.001). The F. vulgaris and F. vulgaris + ethanol treatments in a dose-dependent manner reduced significantly Bowman’s space, qualitative histopathology indices, kidney MDA level, BUN, creatinine, and nitrite oxide levels and increased significantly TAC level and diameter and number of renal corpuscles compared to that in the ethanol normal group (P < 0.001). Conclusion: It seems that F. vulgaris administration in a dose-dependent manner improved kidney injury induced by ethanol in rats.
Collapse
Affiliation(s)
- Cyrus Jalili
- Department of Anatomical Sciences, Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shiva Roshankhah
- Department of Anatomical Sciences, Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Salahshoor
- Department of Anatomy, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Golomb BA. Diplomats' Mystery Illness and Pulsed Radiofrequency/Microwave Radiation. Neural Comput 2018; 30:2882-2985. [PMID: 30183509 DOI: 10.1162/neco_a_01133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance: A mystery illness striking U.S. and Canadian diplomats to Cuba (and now China) "has confounded the FBI, the State Department and US intelligence agencies" (Lederman, Weissenstein, & Lee, 2017). Sonic explanations for the so-called health attacks have long dominated media reports, propelled by peculiar sounds heard and auditory symptoms experienced. Sonic mediation was justly rejected by experts. We assessed whether pulsed radiofrequency/microwave radiation (RF/MW) exposure can accommodate reported facts in diplomats, including unusual ones. Observations: (1) Noises: Many diplomats heard chirping, ringing or grinding noises at night during episodes reportedly triggering health problems. Some reported that noises were localized with laser-like precision or said the sounds seemed to follow them (within the territory in which they were perceived). Pulsed RF/MW engenders just these apparent "sounds" via the Frey effect. Perceived "sounds" differ by head dimensions and pulse characteristics and can be perceived as located behind in or above the head. Ability to hear the "sounds" depends on high-frequency hearing and low ambient noise. (2) Signs/symptoms: Hearing loss and tinnitus are prominent in affected diplomats and in RF/MW-affected individuals. Each of the protean symptoms that diplomats report also affect persons reporting symptoms from RF/MW: sleep problems, headaches, and cognitive problems dominate in both groups. Sensations of pressure or vibration figure in each. Both encompass vision, balance, and speech problems and nosebleeds. Brain injury and brain swelling are reported in both. (3) Mechanisms: Oxidative stress provides a documented mechanism of RF/MW injury compatible with reported signs and symptoms; sequelae of endothelial dysfunction (yielding blood flow compromise), membrane damage, blood-brain barrier disruption, mitochondrial injury, apoptosis, and autoimmune triggering afford downstream mechanisms, of varying persistence, that merit investigation. (4) Of note, microwaving of the U.S. embassy in Moscow is historically documented. Conclusions and relevance: Reported facts appear consistent with pulsed RF/MW as the source of injury in affected diplomats. Nondiplomats citing symptoms from RF/MW, often with an inciting pulsed-RF/MW exposure, report compatible health conditions. Under the RF/MW hypothesis, lessons learned for diplomats and for RF/MW-affected civilians may each aid the other.
Collapse
|
11
|
Synergistic effects of resveratrol and melatonin on in vitro maturation of porcine oocytes and subsequent embryo development. Theriogenology 2018; 114:191-198. [DOI: 10.1016/j.theriogenology.2018.03.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/20/2018] [Accepted: 03/29/2018] [Indexed: 12/31/2022]
|
12
|
Melatonin: A Versatile Protector against Oxidative DNA Damage. Molecules 2018; 23:molecules23030530. [PMID: 29495460 PMCID: PMC6017920 DOI: 10.3390/molecules23030530] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022] Open
Abstract
Oxidative damage to DNA has important implications for human health and has been identified as a key factor in the onset and development of numerous diseases. Thus, it is evident that preventing DNA from oxidative damage is crucial for humans and for any living organism. Melatonin is an astonishingly versatile molecule in this context. It can offer both direct and indirect protection against a wide variety of damaging agents and through multiple pathways, which may (or may not) take place simultaneously. They include direct antioxidative protection, which is mediated by melatonin's free radical scavenging activity, and also indirect ways of action. The latter include, at least: (i) inhibition of metal-induced DNA damage; (ii) protection against non-radical triggers of oxidative DNA damage; (iii) continuous protection after being metabolized; (iv) activation of antioxidative enzymes; (v) inhibition of pro-oxidative enzymes; and (vi) boosting of the DNA repair machinery. The rather unique capability of melatonin to exhibit multiple neutralizing actions against diverse threatening factors, together with its low toxicity and its ability to cross biological barriers, are all significant to its efficiency for preventing oxidative damage to DNA.
Collapse
|
13
|
Majidinia M, Sadeghpour A, Mehrzadi S, Reiter RJ, Khatami N, Yousefi B. Melatonin: A pleiotropic molecule that modulates DNA damage response and repair pathways. J Pineal Res 2017; 63. [PMID: 28439991 DOI: 10.1111/jpi.12416] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
DNA repair is responsible for maintaining the integrity of the genome. Perturbations in the DNA repair pathways have been identified in several human cancers. Thus, compounds targeting DNA damage response (DDR) hold great promise in cancer therapy. A great deal of effort, in pursuit of new anticancer drugs, has been devoted to understanding the basic mechanisms and functions of the cellular DNA repair machinery. Melatonin, a widely produced indoleamine in all organisms, is associated with a reduced risk of cancer and has multiple regulatory roles on the different aspects of the DDR and DNA repair. Herein, we have mainly discussed how defective components in different DNA repair machineries, including homologous recombination (HR), nonhomologous end-joining (NHEJ), base excision repair (BER), nucleotide excision repair (NER), and finally DNA mismatch repair (MMR), can contribute to the risk of cancer. Melatonin biosynthesis, mode of action, and antioxidant effects are reviewed along with the means by which the indoleamine regulates DDR at the transduction, mediation, and functional levels. Finally, we summarize recent studies that illustrate how melatonin can be combined with DNA-damaging agents to improve their efficacy in cancer therapy.
Collapse
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Sadeghpour
- Department of Orthopedic Surgery, School of Medicine and Shohada Educational Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Mehrzadi
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Nasrin Khatami
- Institute for Stem Cell and Regenerative Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Targeting Therapy Research Group, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Zunino SJ, Storms DH. Resveratrol-3-O-glucuronide and resveratrol-4'-O-glucuronide reduce DNA strand breakage but not apoptosis in Jurkat T cells treated with camptothecin. Oncol Lett 2017; 14:2517-2522. [PMID: 28781690 DOI: 10.3892/ol.2017.6392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/19/2017] [Indexed: 01/02/2023] Open
Abstract
Resveratrol has been reported to inhibit or induce DNA damage, depending upon the type of cell and the experimental conditions. Dietary resveratrol is present in the body predominantly as metabolites and limited data is available concerning the activities of these metabolic products. In the present study, physiologically obtainable levels of the resveratrol metabolites resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide and resveratrol-3-O-sulfate were evaluated for their ability to protect Jurkat T cells against DNA damage induced by the topoisomerase I inhibitors camptothecin and topotecan. The cells were pretreated for 24 h with 10 µM resveratrol aglycone or each resveratrol metabolite prior to the induction of DNA damage with camptothecin or topotecan. In separate experiments, the cells were co-treated with resveratrol or its metabolites, and a topoisomerase I inhibitor. The detection of histone 2AX phosphorylation and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) were used to determine DNA damage, and apoptosis was measured using an antibody against cleaved poly ADP-ribose polymerase. It was identified that pretreatment of the cells with resveratrol-3-O-glucuronide and resveratrol-4'-O-glucuronide reduced the mean fluorescence intensity of staining for DNA strand breaks following treatment with camptothecin, while the percentage of cells undergoing apoptosis was unchanged. However, pretreatment of the cells with resveratrol aglycone increased the DNA damage and apoptosis induced by the drugs. These results suggest that the glucuronide metabolites of resveratrol partially protected the cells from DNA damage, but did not influence the induction of cell death by camptothecin and topotecan. These data suggest that resveratrol aglycone treatment may be beneficial for treating types of cancer that have direct contact with resveratrol prior to its metabolism, including gastrointestinal cancers, which are routinely treated with topoisomerase I inhibitors.
Collapse
Affiliation(s)
- Susan J Zunino
- Immunity and Disease Prevention Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - David H Storms
- Immunity and Disease Prevention Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| |
Collapse
|
15
|
Dueñas-García IE, Heres-Pulido ME, Arellano-Llamas MR, De la Cruz-Núñez J, Cisneros-Carrillo V, Palacios-López CS, Acosta-Anaya L, Santos-Cruz LF, Castañeda-Partida L, Durán-Díaz A. Lycopene, resveratrol, vitamin C and FeSO 4 increase damage produced by pro-oxidant carcinogen 4-nitroquinoline-1-oxide in Drosophila melanogaster: Xenobiotic metabolism implications. Food Chem Toxicol 2017; 103:233-245. [PMID: 28202360 DOI: 10.1016/j.fct.2017.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/27/2017] [Accepted: 02/05/2017] [Indexed: 12/12/2022]
Abstract
4-nitroquinoline-1-oxide (4-NQO) is a pro-oxidant carcinogen bioactivated by xenobiotic metabolism (XM). We investigated if antioxidants lycopene [0.45, 0.9, 1.8 μM], resveratrol [11, 43, 172 μM], and vitamin C [5.6 mM] added or not with FeSO4 [0.06 mM], modulate the genotoxicity of 4-NQO [2 mM] with the Drosophila wing spot test standard (ST) and high bioactivation (HB) crosses, with inducible and high levels of cytochromes P450, respectively. The genotoxicity of 4-NQO was higher when dissolved in an ethanol - acetone mixture. The antioxidants did not protect against 4-NQO in any of both crosses. In the ST cross, resveratrol [11 μM], vitamin C and FeSO4 resulted in genotoxicity; the three antioxidants and FeSO4 increased the damage of 4-NQO. In the HB cross, none of the antioxidants, neither FeSO4, were genotoxic. Only resveratrol [172 μM] + 4-NQO increased the genotoxic activity in both crosses. We concluded that the effects of the antioxidants, FeSO4 and the modulation of 4-NQO were the result of the difference of Cyp450s levels, between the ST and HB crosses. We propose that the basal levels of the XM's enzymes in the ST cross interacted with a putative pro-oxidant activity of the compounds added to the pro-oxidant effects of 4-NQO.
Collapse
Affiliation(s)
- I E Dueñas-García
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - M E Heres-Pulido
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico.
| | - M R Arellano-Llamas
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - J De la Cruz-Núñez
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - V Cisneros-Carrillo
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - C S Palacios-López
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L Acosta-Anaya
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L F Santos-Cruz
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L Castañeda-Partida
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - A Durán-Díaz
- Mathematics, Biology, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
16
|
Piao L, Mukherjee S, Chang Q, Xie X, Li H, Castellanos MR, Banerjee P, Iqbal H, Ivancic R, Wang X, Teknos TN, Pan Q. TriCurin, a novel formulation of curcumin, epicatechin gallate, and resveratrol, inhibits the tumorigenicity of human papillomavirus-positive head and neck squamous cell carcinoma. Oncotarget 2016; 8:60025-60035. [PMID: 28947951 PMCID: PMC5601119 DOI: 10.18632/oncotarget.10620] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/13/2016] [Indexed: 12/03/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer worldwide with about 600,000 new cases diagnosed in the last year. The incidence of human papillomavirus-positive head and neck squamous cell carcinoma (HPV-positive HNSCC) has rapidly increased over the past 30 years prompting the suggestion that an epidemic may be on the horizon. Therefore, there is a clinical need to develop alternate therapeutic strategies to manage the growing number of HPV-positive HNSCC patients. TriCurin is a composition of three food-derived polyphenols in unique stoichiometric proportions consisting of curcumin from the spice turmeric, resveratrol from red grapes, and epicatechin gallate from green tea. Cell viability, clonogenic survival, and tumorsphere formation were inhibited and significant apoptosis was induced by TriCurin in UMSCC47 and UPCI:SCC090 HPV-positive HNSCC cells. Moreover, TriCurin decreased HPV16E6 and HPV16E7 and increased p53 levels. In a pre-clinical animal model of HPV-positive HNSCC, intra-tumoral injection of TriCurin significantly inhibited tumor growth by 85.5% compared to vehicle group (P < 0.05, n = 7). Our results demonstrate that TriCurin is a potent anti-tumor agent for HPV-positive HNSCC. Further development of TriCurin as a novel anti-cancer therapeutic to manage the HPV-positive HNSCC population is warranted.
Collapse
Affiliation(s)
- Longzhu Piao
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.,Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Sumit Mukherjee
- Ph.D. Program in Biochemistry at the Graduate Center of the City University of New York, New York, USA.,Department of Chemistry and Center for Developmental Neuroscience, College of Staten Island, Staten Island, New York, USA
| | - Qing Chang
- Department of Chemistry and Center for Developmental Neuroscience, College of Staten Island, Staten Island, New York, USA.,Department of Pathology and Laboratory Medicine, Staten Island University Hospital, Northwell Health, Staten Island, New York, USA
| | - Xiujie Xie
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.,Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Hong Li
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Mario R Castellanos
- Division of Research, Department of Medicine, Staten Island University Hospital, Northwell Health, Staten Island, New York, USA
| | - Probal Banerjee
- Ph.D. Program in Biochemistry at the Graduate Center of the City University of New York, New York, USA.,Department of Chemistry and Center for Developmental Neuroscience, College of Staten Island, Staten Island, New York, USA
| | - Hassan Iqbal
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.,Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ryan Ivancic
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.,Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Xueqian Wang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.,Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Theodoros N Teknos
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.,Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Quintin Pan
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.,Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
17
|
The effect of the carotenoid bixin and annatto seeds on hematological markers and nephrotoxicity in rats subjected to chronic treatment with cisplatin. REVISTA BRASILEIRA DE FARMACOGNOSIA 2016. [DOI: 10.1016/j.bjp.2016.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Reddy KP, Madhu P, Reddy PS. Protective effects of resveratrol against cisplatin-induced testicular and epididymal toxicity in rats. Food Chem Toxicol 2016; 91:65-72. [DOI: 10.1016/j.fct.2016.02.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/09/2023]
|
19
|
Takahashi A, Watanabe J, Sakaguchi H, Okazaki Y, Suzuki T, Chiji H. Anthocyanin-enriched Extracts from Aronia ( Aronia melanocarpa E.) and Haskap ( Lonicera caerulea L.) Suppressed KBrO 3-induced Renal Damage in Rats. J JPN SOC FOOD SCI 2015. [DOI: 10.3136/nskkk.62.235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Azusa Takahashi
- Division of Agrobiology, Graduate School of Agriculture, Hokkaido University
| | - Jun Watanabe
- Food Function Division, National Food Research Institute, National Agriculture and Food Research Organization
| | | | - Yukako Okazaki
- Department of Human Life Science Faculty of Human Life Science, Fuji Women’s University
| | - Takashi Suzuki
- Division of Agrobiology, Graduate School of Agriculture, Hokkaido University
| | - Hideyuki Chiji
- Department of Food Science and Human Nutrition Faculty of Human Life Science, Fuji Women’s University
| |
Collapse
|
20
|
Effect of resveratrol on chromosomal aberrations induced by doxorubicin in rat bone marrow cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 766:1-4. [DOI: 10.1016/j.mrgentox.2014.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 11/18/2022]
|
21
|
Reis JS, Corrêa MA, Chung MC, Dos Santos JL. Synthesis, antioxidant and photoprotection activities of hybrid derivatives useful to prevent skin cancer. Bioorg Med Chem 2014; 22:2733-8. [PMID: 24690528 DOI: 10.1016/j.bmc.2014.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/28/2014] [Accepted: 03/10/2014] [Indexed: 01/14/2023]
Abstract
Chronic ultraviolet (UV) radiation exposure is a major cause of skin cancer. A novel series of hybrid derivatives (I-VIII) for use in sunscreen formulations were synthesized by molecular hybridization of t-resveratrol, avobenzone, and octyl methoxycinnamate, and were characterized. The antioxidant activity values for VIII were comparable than to those of t-resveratrol. Compounds I-III and VI demonstrated Sun Protector Factor superior to that of t-resveratrol. Compounds I and IV-VIII were identified as new, broad-spectrum UVA filters while II-III were UVB filters. In conclusion, novel hybrid derivatives with antioxidant effects have emerged as novel photoprotective agents for the prevention of skin cancer.
Collapse
Affiliation(s)
- Juliana Santana Reis
- Lapdesf-Laboratório de Pesquisa e Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista-UNESP, Rodovia Araraquara Jaú Km 01, 14801-902 Araraquara, SP, Brazil
| | - Marcos Antonio Corrêa
- Lapdesf-Laboratório de Pesquisa e Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista-UNESP, Rodovia Araraquara Jaú Km 01, 14801-902 Araraquara, SP, Brazil
| | - Man Chin Chung
- Lapdesf-Laboratório de Pesquisa e Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista-UNESP, Rodovia Araraquara Jaú Km 01, 14801-902 Araraquara, SP, Brazil
| | - Jean Leandro Dos Santos
- Lapdesf-Laboratório de Pesquisa e Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista-UNESP, Rodovia Araraquara Jaú Km 01, 14801-902 Araraquara, SP, Brazil.
| |
Collapse
|
22
|
Ahmad MK, Amani S, Mahmood R. Potassium bromate causes cell lysis and induces oxidative stress in human erythrocytes. ENVIRONMENTAL TOXICOLOGY 2014; 29:138-145. [PMID: 22012894 DOI: 10.1002/tox.20780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 09/07/2011] [Accepted: 09/10/2011] [Indexed: 05/31/2023]
Abstract
In the present study, we have studied the effect of KBrO3 on human erythrocytes under in vitro conditions. Erythrocytes were isolated from the blood of healthy nonsmoking volunteers and incubated with different concentrations of KBrO3 at 37°C for 60 min. This resulted in marked hemolysis in a KBrO3 -concentration dependent manner. Lysates were prepared from KBrO3 -treated and control erythrocytes and assayed for various parameters. KBrO3 treatment caused significant increase in protein oxidation, lipid peroxidation, hydrogen peroxide levels, and decrease in total sulfhydryl content, which indicates induction of oxidative stress in human erythrocytes. Methemoglobin levels and methemoglobin reductase activity were significantly increased while the total antioxidant power of lysates was greatly reduced upon KBrO3 treatment. Intracellular production of reactive oxygen species increased in a dose dependent manner. Exposure of erythrocytes to KBrO3 also caused decrease in the activities of catalase, glutathione peroxidase, thioredoxin reductase, glucose 6-phosphate dehydrogenase and glutathione reductase whereas the activities of Cu-Zn superoxide dismutase and glutathione-S-transferase were increased. These results show that KBrO3 induces oxidative stress in human erythrocytes through the generation of reactive oxygen species and alters the cellular antioxidant defense system.
Collapse
Affiliation(s)
- Mir Kaisar Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | | | | |
Collapse
|
23
|
Vasantha Rupasinghe H, Nair SV, Robinson RA. Chemopreventive Properties of Fruit Phenolic Compounds and Their Possible Mode of Actions. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63281-4.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
24
|
Radford R, Frain H, Ryan MP, Slattery C, McMorrow T. Mechanisms of chemical carcinogenesis in the kidneys. Int J Mol Sci 2013; 14:19416-33. [PMID: 24071941 PMCID: PMC3821564 DOI: 10.3390/ijms141019416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
Chemical carcinogens are substances which induce malignant tumours, increase their incidence or decrease the time taken for tumour formation. Often, exposure to chemical carcinogens results in tissue specific patterns of tumorigenicity. The very same anatomical, biochemical and physiological specialisations which permit the kidney to perform its vital roles in maintaining tissue homeostasis may in fact increase the risk of carcinogen exposure and contribute to the organ specific carcinogenicity observed with numerous kidney carcinogens. This review will address the numerous mechanisms which play a role in the concentration, bioactivation, and uptake of substances from both the urine and blood which significantly increase the risk of cancer in the kidney.
Collapse
Affiliation(s)
- Robert Radford
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Helena Frain
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Michael P. Ryan
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Craig Slattery
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Tara McMorrow
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
25
|
A review on the role of nutraceuticals as simple as se(2+) to complex organic molecules such as glycyrrhizin that prevent as well as cure diseases. Indian J Clin Biochem 2013; 29:119-32. [PMID: 24757291 DOI: 10.1007/s12291-013-0362-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/30/2013] [Indexed: 10/26/2022]
Abstract
Nutraceuticals are nutritional medicines which are present in edible food items. Most of them are antioxidants with various other biological properties viz, anti inflammatory, anti atherogenic, anticancer, anti viral, anti aging properties etc. They are as simple as minerals like Se(2+) to complex organic molecules such as glycyrrhizin (Ca(2+), K(+) salts of glycyrrhizic acid). They can prevent as well as cure various diseases. Most of the medical people are not aware of the importance of the nutraceuticals as such matters are not part of their text books. Many still think that vitamins are the major nutritional medicines. Actually other dietary principles like terpenes, carotenes, phytosterols, polyphenols, flavanoids, di and poly sulphides, their sulfoxides and their precursor amino acids are necessary to scavenge free radicals in the body which are reactive oxygen species to protect and maintain the vitamin levels in the body. They down regulate the activities of those enzymes which are increased in diseases and they increase those that remove oxidants and detoxify carcinogens. They are immune boosters too. Recently glucosinolates, non toxic alkaloids, certain proteins and even fiber are included in the list of nutraceuticals.
Collapse
|
26
|
Resveratrol protects against arsenic trioxide-induced nephrotoxicity by facilitating arsenic metabolism and decreasing oxidative stress. Arch Toxicol 2013; 87:1025-35. [DOI: 10.1007/s00204-013-1026-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/25/2013] [Indexed: 12/11/2022]
|
27
|
Bellik Y, Boukraâ L, Alzahrani HA, Bakhotmah BA, Abdellah F, Hammoudi SM, Iguer-Ouada M. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules 2012; 18:322-53. [PMID: 23271469 PMCID: PMC6269762 DOI: 10.3390/molecules18010322] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/06/2012] [Accepted: 12/14/2012] [Indexed: 12/18/2022] Open
Abstract
The resort worldwide to edible medicinal plants for medical care has increased significantly during the last few years. Currently, there is a renewed interest in the search for new phytochemicals that could be developed as useful anti-inflammatory and anti-allergic agents to reduce the risk of many diseases. The activation of nuclear transcription factor-kappa B (NF-κB) has now been linked to a variety of inflammatory diseases, while data from numerous studies underline the importance of phytochemicals in inhibiting the pathway that activates this transcription factor. Moreover, the incidence of type I allergic disorders has been increasing worldwide, particularly, the hypersensitivity to food. Thus, a good number of plant products with anti-inflammatory and anti-allergic activity have been documented, but very few of these compounds have reached clinical use and there is scant scientific evidence that could explain their mode of action. Therefore, this paper intends to review the most salient recent reports on the anti-inflammatory and anti-allergic properties of phytochemicals and the molecular mechanisms underlying these properties.
Collapse
Affiliation(s)
- Yuva Bellik
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
- Faculty of Nature and Life Sciences, Abderrahmane Mira University, Béjaia 06000, Algeria; E-Mail:
| | - Laïd Boukraâ
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
- Mohammad Hussein Al Amoudi Chair for Diabetic Foot Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mails: (H.A.A.); (B.A.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +213-795-306-930
| | - Hasan A. Alzahrani
- Mohammad Hussein Al Amoudi Chair for Diabetic Foot Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mails: (H.A.A.); (B.A.B.)
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Balkees A. Bakhotmah
- Mohammad Hussein Al Amoudi Chair for Diabetic Foot Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mails: (H.A.A.); (B.A.B.)
- Department of Nutrition Food Sciences, Arts and Design College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatiha Abdellah
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
| | - Si M. Hammoudi
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
| | - Mokrane Iguer-Ouada
- Faculty of Nature and Life Sciences, Abderrahmane Mira University, Béjaia 06000, Algeria; E-Mail:
| |
Collapse
|
28
|
Khan RA, Khan MR, Sahreen S. Protective effects of Sonchus asper against KBrO3 induced lipid peroxidation in rats. Lipids Health Dis 2012; 11:164. [PMID: 23186106 PMCID: PMC3544701 DOI: 10.1186/1476-511x-11-164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sonchus asper is traditionally used in Pakistan for the treatment of reproductive dysfunction and oxidative stress. The present investigation was aimed to evaluate chloroform extract of Sonchus asper (SACE) against potassium bromate-induced reproductive stress in male rats. METHODS 20 mg/kg body weight (b.w.) potassium bromate (KBrO3) was induced in 36 rats for four weeks and checked the protective efficacy of SACE at various hormonal imbalances, alteration of antioxidant enzymes, and DNA fragmentation levels. High performance chromatography (HPLC) was used for determination of bioactive constituents responsible. RESULTS The level of hormonal secretion was significantly altered by potassium bromate. DNA fragmentation%, activity of antioxidant enzymes; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and phase II metabolizing enzymes viz; glutathione reductase (GSR), glutathione peroxidase (GSHpx), glutathione-S-tansase (GST) and reduced glutathione (GSH) was decreased while hydrogen per oxide contents and thiobarbituric acid reactive substances (TBARS) were increased with KBrO3 treatment. Treatment with SACE effectively ameliorated the alterations in the biochemical markers; hormonal and molecular levels while HPLC characterization revealed the presence of catechin, kaempferol, rutin and quercetin. CONCLUSION Protective effects of Sonchus asper vs. KBrO3 induced lipid peroxidation might be due to bioactive compound present in SACE.
Collapse
Affiliation(s)
- Rahmat Ali Khan
- Department of Biotechnology, Faculty of Sciences, University of Science and Technology Bannu, Bannu, Pakistan.
| | | | | |
Collapse
|
29
|
Aydin S, Bacanli M, Taner G, Şahin T, Başaran AA, Başaran N. Protective effects of resveratrol on sepsis-induced DNA damage in the lymphocytes of rats. Hum Exp Toxicol 2012; 32:1048-57. [PMID: 23155200 DOI: 10.1177/0960327112467047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sepsis, often initiated by an infection, is a state of disrupted inflammatory homeostasis. There is increasing evidence that oxidative stress has an important role in the development of sepsis-induced multiorgan failure. Resveratrol (RV) is a polyphenolic compound found in the skin of red fruits, such as mulberries and red grapes, and in peanuts. RV has been reported to have an antioxidant, antiproliferative, and anti-inflammatory properties in various models. It has also been found to inhibit the proliferation of a variety of human cancer cell lines, including breast, prostate, colon, pancreatic, and thyroid. This study has been undertaken to assess the role of RV on the sepsis-induced oxidative DNA damage in the lymphocytes of Wistar albino rats by the standard and formamidopyrimidine DNA glycosylase (Fpg)-modified comet assays. The parameters of tail length, tail intensity, and tail moment were evaluated for the determination of DNA damage. According to the study, the DNA damage was found to be significantly higher in the sepsis-induced rats when compared with the control rats (p < 0.05). The parameters were significantly decreased in the RV-treated sepsis-induced group when compared with the sepsis-induced group. The parameters in the sepsis-induced rats were found to be significantly higher in the Fpg-modified comet assay when compared with the standard comet assay (p < 0.05), and RV treatment decreases the DNA damage in the sepsis-induced rats, suggesting that the oxidative stress is likely to be responsible for DNA damage and RV might have a role in the prevention of sepsis-induced oxidative DNA damage.
Collapse
Affiliation(s)
- S Aydin
- 1Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
30
|
Khan RA, Khan MR, Sahreen S. Protective effects of rutin against potassium bromate induced nephrotoxicity in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:204. [PMID: 23116356 PMCID: PMC3552874 DOI: 10.1186/1472-6882-12-204] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/17/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Rutin, a polyphenolic flavonoid, was investigated for its protective effects against the KBrO(3) induced renal injuries in rat. METHODS Group I was control (untreated), group II was given saline 0.5 ml/kg bw (0.9% NaCl), group III was administered KBrO(3) (20 mg/kg bw) intragastric twice a week for four weeks. Rutin was administered to group VI (50 mg/kg bw) and Group V (70 mg/kg bw) along with KBrO(3) (20 mg/kg bw) while group VI was given rutin (70 mg/kg bw) alone twice a week for four weeks. Protective effects of rutin on KBrO(3)-induced nephrotoxicity in rats were determined for biochemical parameter of urine, and serum, various antioxidant enzymes, DNA and histopathological damages in kidneys. RESULTS The level of urinary red blood cells, leucocytes count, specific gravity, urea, creatinine and urobilinogen was increased (P<0.01) whereas creatinine clearance was reduced. Serum level of protein, albumin, globulin, nitrite, creatinine and blood urea nitrogen (BUN) was significantly increased (P<0.01) by KBrO(3). Marked histopathological lesions, elevated DNA fragmentation and AgNORs count in renal tissues was determined. Activity of antioxidant enzymes; catalase, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, and reduced glutathione contents were decreased (P<0.01) while thiobarbituric acid reactive substances were increased (P<0.01) with KBrO(3) treatment in kidneys. DNA ladder assay was intimately related with the DNA fragmentation assay. Telomerase activity was found positive in the KBrO(3) treated kidneys. Treatment with rutin effectively ameliorated the alterations in the studied parameters of rat. Rutin administration alone to rats did not exhibit any significant change in any of the parameters studied. CONCLUSION These results suggest that rutin works as an antioxidant in vivo by scavenging reactive oxygen species and this serves to prevent oxidative renal damage in rat treated with KBrO(3).
Collapse
Affiliation(s)
- Rahmat Ali Khan
- Department of Biotechnology, Faculty of Biological Sciences, University of Science and Technology Bannu, Khyber Pakutunkhwa, Pakistan
| | - Muhamad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sumaira Sahreen
- Botanical Sciences Division, Pakistan Museum of Natural History, Garden Avenue, Shakarparian, Islamabad, Pakistan
| |
Collapse
|
31
|
Mercolini L, Mandrioli R, Raggi MA. Content of melatonin and other antioxidants in grape-related foodstuffs: measurement using a MEPS-HPLC-F method. J Pineal Res 2012; 53:21-8. [PMID: 22017461 DOI: 10.1111/j.1600-079x.2011.00967.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The strong antioxidant activity of melatonin is well known and it is important to investigate its presence and levels in different foodstuffs, for the purpose of evaluating their nutraceutical properties. As a contribution towards this goal, an original analytical method has been developed for the simultaneous determination of melatonin and other indolic and phenolic antioxidants (including trans- and cis-resveratrol, ferulic acid, tryptophan, serotonin and 5-hydroxyindoleacetic acid) in grape-related foodstuffs and beverages: namely grape, grape juice, must, wine and grappa (Italian pomace brandy). These foodstuffs represent an important part of the diet, both traditionally and in recent times, especially in Mediterranean countries and could be (at least in part) responsible for the beneficial effects involved in the 'French paradox'. The analytical method is based on high-performance liquid chromatography coupled to fluorescence detection, exploiting the native fluorescence of the analytes. A C8 column was used as the stationary phase, while the mobile phase was composed of acidic phosphate buffer and acetonitrile; fluorescence intensity was monitored at λ=386nm while exciting at λ=298nm. The sample pretreatment was carried out by a fast and reliable microextraction by packed sorbent (MEPS) procedure. After validation, the method was applied to the analysis of melatonin and other antioxidants in food and beverages derived from grape, with very good results being obtained. Thus, this methodology may represent a promising tool for the evaluation of the antioxidant properties of nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Laura Mercolini
- Laboratory of Pharmaco-Toxicological Analysis, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
32
|
Andersen FA. Annual Review of Cosmetic Ingredient Safety Assessments: 2007-2010. Int J Toxicol 2011; 30:73S-127S. [DOI: 10.1177/1091581811412618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Türkez H, Sisman T. The genoprotective activity of resveratrol on aflatoxin B₁-induced DNA damage in human lymphocytes in vitro. Toxicol Ind Health 2011; 28:474-80. [PMID: 21911429 DOI: 10.1177/0748233711414614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aflatoxin B₁ (AFB₁) has been consistently shown to be a potent mutagen and carcinogen in humans and animals. On the other hand, resveratrol (RSV), a polyphenol, has several positive biological actions such as protection of cells against DNA damage. In the present study, the antigenotoxic effect of RSV was studied against a genotoxic dose of AFB₁ using the damage parameters of chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs) in cultured human lymphocytes. Whole blood samples from three healthy male donors were used for this experiment and the effects of various concentrations of RSV (0, 10, 15, 25, 40, 75 and 100 µM) and AFB₁ (10 µM) were tested. The results revealed that the frequencies of SCEs and CAs in lymphocytes were significantly (p < 0.05) increased by AFB₁ as compared to controls. The results also showed that RSV was not genotoxic. Moreover, the number of SCEs and micronuclei induced by AFB₁ could be significantly minimized by the presence of RSV. Our results suggest for the first time that RSV can antagonize the ability of AFB₁ to cause DNA damage that leads to the formation of SCEs and CAs.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Biology, Atatürk University, Erzurum, Turkey.
| | | |
Collapse
|
34
|
Hu Y, Liu J, Wang J, Liu Q. The controversial links among calorie restriction, SIRT1, and resveratrol. Free Radic Biol Med 2011; 51:250-6. [PMID: 21569839 DOI: 10.1016/j.freeradbiomed.2011.04.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/14/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022]
Abstract
It has been widely known that slow metabolism induced by calorie restriction (CR) can extend the life span of model organisms though the underlying mechanism remains poorly understood. Accumulated evidence suggests that SIRT1 may be actively involved in CR-induced signaling pathways. As a putative activator of SIRT1, resveratrol, known for the French paradox, can partially mimic the physiological effects of CR. While the deacetylase activity of SIRT1 is important for the beneficial effects of resveratrol, resveratrol-induced SIRT1 activation has recently been challenged by the observations that resveratrol could not induce SIRT1-mediated deacetylation of native substrates in vitro. To resolve the discrepancy of resveratrol-induced activation of SIRT1 deacetylase activity between the in vitro and in vivo assays, a model of indirect SIRT1 activation by resveratrol is proposed. In this review, we will discuss the emerging roles of SIRT1 and resveratrol in CR and focus on debate over the links between SIRT1 and resveratrol.
Collapse
Affiliation(s)
- Yi Hu
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
35
|
|
36
|
Mekkawy IAA, Mahmoud UM, Wassif ET, Naguib M. Effects of cadmium on some haematological and biochemical characteristics of Oreochromis niloticus (Linnaeus, 1758) dietary supplemented with tomato paste and vitamin E. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:71-84. [PMID: 20625929 DOI: 10.1007/s10695-010-9418-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 06/30/2010] [Indexed: 05/29/2023]
Abstract
The present study investigates the potential protective effects of tomato paste (9 mg/kg-lycopene) in comparison with vitamin E (50 mg/kg) against the impacts of cadmium (Cd) toxicity (4.64 mg/l: ¼ of 96 h LC50) on fishes Cd exposed for 15 and 30 days. Cd impacts were evaluated in terms of biological, haematological and biochemical characteristics. Cd significantly induced free radicals in serum and liver. The activities of aspartate aminotransferase and alanine aminotransferase in serum were significantly increased due to Cd. Treatment with Cd caused a significant increase in Lipid peroxidation and DNA fragmentation in liver tissue and serum glucose and total lipid. On the other hand, Cd significantly led to decline in serum total protein, blood haemoglobin, red blood cell count, haematocrit value, mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration. Dietary supplementation with vitamin E and/or tomato paste to Cd-exposed fish declined significantly the increased lipid peroxidation and DNA fragmentation in liver tissue and the increased aspartate aminotransferase, alanine aminotransferase, glucose and total lipid in serum to the normal condition. This supplementation also significantly increased the declined serum total protein, blood haemoglobin, red blood cell count, haematocrit value, mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration to the normal state. Cd impacts and tomato paste/or vitamin E supplementations did not reflected on the condition factor of the fish. These findings demonstrated the beneficial diet supplementation of tomato paste phytonutrients and vitamin E in counteracting the harmful effects of Cd on the characters investigated.
Collapse
Affiliation(s)
- Imam A A Mekkawy
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt.
| | | | | | | |
Collapse
|
37
|
Kovacic P, Somanathan R. Multifaceted approach to resveratrol bioactivity: Focus on antioxidant action, cell signaling and safety. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:86-100. [PMID: 20716933 DOI: 10.4161/oxim.3.2.11147] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resveratrol (RVT) is a naturally occurring trihydroxy stilbene that displays a wide spectrum of physiological activity. Its ability to behave therapeutically as a component of red wine has attracted wide attention. The phenol acts as a protective agent involving various body constituents. Most attention has been given to beneficial effects in insults involving cancer, aging, cardiovascular system, inflammation and the central nervous system. One of the principal modes of action appears to be as antioxidant. Other mechanistic pathways entail cell signaling, apoptosis and gene expression. There is an intriguing dichotomy in relation to pro-oxidant property. Also discussed are metabolism, receptor binding, rationale for safety and suggestions for future work. This is the first comprehensive review of RVT based on a broad, unifying mechanism.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA, USA.
| | | |
Collapse
|
38
|
Li J, Qu X, Ricardo SD, Bertram JF, Nikolic-Paterson DJ. Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1065-71. [PMID: 20651248 DOI: 10.2353/ajpath.2010.090923] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) promotes tissue fibrosis through the Smad3 signaling pathway. While phosphorylation is known to regulate Smad3 function, recent in vitro studies have suggested that acetylation may also regulate Smad3 function. This study investigated Smad3 acetylation in renal fibrosis. TGF-beta1 stimulation of renal fibroblasts and tubular epithelial cells induced Smad3 acetylation and phosphorylation. Resveratrol, an activator of the Nicotinamide adenine dinucleotide (NAD) dependent protein deacetylase SIRT1, reversed acetylation but not phosphorylation of Smad3 and inhibited TGF-beta1-induced up-regulation of collagen IV and fibronectin mRNA levels. Knockdown of SIRT1 expression abolished the inhibitory effect of resveratrol, and co-immunoprecipitation studies provide direct evidence of an interaction between acetylated Smad3 and SIRT1. The role of Smad3 acetylation in renal fibrosis was then examined in the unilateral ureteric obstruction (UUO) model. Immunoprecipitation studies showed acetylation and phosphorylation of Smad3 by day 2 UUO, which was sustained to day 7 in association with development of interstitial fibrosis. Resveratrol inhibited acetylation but not phosphorylation of Smad3 at day 2 UUO, and resveratrol treatment inhibited interstitial fibrosis at day 7 UUO. In conclusion, these studies support a pathological role for Smad3 acetylation in renal fibrosis and suggest that deacetylation of Smad3 may be a novel therapeutic target for fibrotic disease.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | |
Collapse
|
39
|
Abstract
This review describes the dose-dependent health benefits of resveratrol, a polyphenolic antioxidant that is found in a variety of foods, especially grape skin and red wine. Resveratrol provides diverse health benefits including cardioprotection, inhibition of low-density lipoprotein, activation of nitric oxide (NO) production, hindering of platelet aggregation [32] A.A.E. Bertelli, D.E. Giovannini, R.L. Caterina, W. Bernini, M. Migliori and M. Fregoni et al., Antiplatelet activity of cis-resveratrol, Drugs Exp Clin Res 22 (1996), pp. 61-63. View Record in Scopus | Cited By in Scopus (111) and promotion of anti-inflammatory effects. Studies have shown that at a lower dose, resveratrol acts as an anti-apoptotic agent, providing cardioprotection as evidenced by increased expression in cell survival proteins, improved postischemic ventricular recovery and reduction of myocardial infarct size and cardiomyocyte apoptosis and maintains a stable redox environment compared to control. At higher dose, resveratrol acts as a pro-apoptotic compound, inducing apoptosis in cancer cells by exerting a death signal. At higher doses, resveratrol depresses cardiac function, elevates levels of apoptotic protein expressions, results in an unstable redox environment, increases myocardial infarct size and number of apoptotic cells. At high dose, resveratrol not only hinders tumor growth but also inhibits the synthesis of RNA, DNA and protein, causes structural chromosome aberrations, chromatin breaks, chromatin exchanges, weak aneuploidy, higher S-phase arrest, blocks cell proliferation, decreases wound healing, endothelial cell growth by fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor, and angiogenesis in healthy tissue cells leading to cell death. Thus, at lower dose, resveratrol can be very useful in maintaining the human health whereas at higher dose, resveratrol has pro-apoptotic actions on healthy cells, but can kill tumor cells.
Collapse
Affiliation(s)
- Subhendu Mukherjee
- Cardiovascular Research Center, University of Connecticut Health Center, School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-1110, USA
| | | | | |
Collapse
|
40
|
|
41
|
Zhang H, Shih A, Rinna A, Forman HJ. Exacerbation of tobacco smoke mediated apoptosis by resveratrol: an unexpected consequence of its antioxidant action. Int J Biochem Cell Biol 2010; 43:1059-64. [PMID: 20060927 DOI: 10.1016/j.biocel.2009.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 11/05/2009] [Accepted: 12/28/2009] [Indexed: 01/23/2023]
Abstract
Resveratrol, a polyphenolic compound rich in grapes and red wine, has been reported to protect cells against oxidative damage and cell death by increasing cellular antioxidant/detoxification capacity. Cigarette smoking is a major risk factor for respiratory diseases and oxidative damage is implicated in its pathogenesis. Here we investigated the enhancement of antioxidant capacity by resveratrol and its potential protection against cell death caused by cigarette smoke in human bronchial epithelial cells (HBE1). At concentrations that did not affect cell growth, resveratrol activated Nrf2 signaling and increased the expression of NAD(P)H:quinone reductase-1, heme oxygenase-1, and the catalytic subunit of glutamate cysteine ligase. Surprisingly, instead of protecting against cell death, resveratrol significantly enhanced cigarette smoke extract-induced apoptosis. To define the underlying mechanism, the effect of resveratrol on caspase activity was examined and it was found that resveratrol significantly enhanced cigarette smoke-stimulated caspase activity. In conclusion, results from this study suggest that although resveratrol increased antioxidant and detoxification capacity, it increased rather than protected against cigarette smoke-induced apoptosis.
Collapse
Affiliation(s)
- Hongqiao Zhang
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, United States.
| | | | | | | |
Collapse
|
42
|
Bisht K, Wagner KH, Bulmer AC. Curcumin, resveratrol and flavonoids as anti-inflammatory, cyto- and DNA-protective dietary compounds. Toxicology 2009; 278:88-100. [PMID: 19903510 DOI: 10.1016/j.tox.2009.11.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 12/09/2022]
Abstract
Numerous dietary compounds, ubiquitous in fruits, vegetables and spices have been isolated and evaluated during recent years for their therapeutic potential. These compounds include flavonoid and non-flavonoid polyphenols, which describe beneficial effects against a variety of ailments. The notion that these plant products have health promoting effects emerged because their intake was related to a reduced incidence of cancer, cardiovascular, neurological, respiratory, and age-related diseases. Exposure of the body to a stressful environment challenges cell survival and increases the risk of chronic disease developing. The polyphenols afford protection against various stress-induced toxicities through modulating intercellular cascades which inhibit inflammatory molecule synthesis, the formation of free radicals, nuclear damage and induce antioxidant enzyme expression. These responses have the potential to increase life expectancy. The present review article focuses on curcumin, resveratrol, and flavonoids and seeks to summarize their anti-inflammatory, cytoprotective and DNA-protective properties.
Collapse
Affiliation(s)
- Kavita Bisht
- Heart Foundation Research Centre, Faculty of Health, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | | | | |
Collapse
|
43
|
Kraft TE, Parisotto D, Schempp C, Efferth T. Fighting Cancer with Red Wine? Molecular Mechanisms of Resveratrol. Crit Rev Food Sci Nutr 2009; 49:782-99. [DOI: 10.1080/10408390802248627] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 2009; 44:175-200. [PMID: 19635037 DOI: 10.1080/10409230903044914] [Citation(s) in RCA: 365] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of melatonin and its derivatives as antioxidants has stimulated a very large number of studies which have, virtually uniformly, documented the ability of these molecules to detoxify harmful reactants and reduce molecular damage. These observations have clear clinical implications given that numerous age-related diseases in humans have an important free radical component. Moreover, a major theory to explain the processes of aging invokes radicals and their derivatives as causative agents. These conditions, coupled with the loss of melatonin as organisms age, suggest that some diseases and some aspects of aging may be aggravated by the diminished melatonin levels in advanced age. Another corollary of this is that the administration of melatonin, which has an uncommonly low toxicity profile, could theoretically defer the progression of some diseases and possibly forestall signs of aging. Certainly, research in the next decade will help to define the role of melatonin in age-related diseases and in determining successful aging. While increasing life span will not necessarily be a goal of these investigative efforts, improving health and the quality of life in the aged should be an aim of this research.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | |
Collapse
|
45
|
Nassiri-Asl M, Hosseinzadeh H. Review of the pharmacological effects ofVitis vinifera(Grape) and its bioactive compounds. Phytother Res 2009; 23:1197-204. [DOI: 10.1002/ptr.2761] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
46
|
Reiter RJ, Tan DX, Manchester LC, Paredes SD, Mayo JC, Sainz RM. Melatonin and reproduction revisited. Biol Reprod 2009; 81:445-56. [PMID: 19439728 DOI: 10.1095/biolreprod.108.075655] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This brief review summarizes new findings related to the reported beneficial effects of melatonin on reproductive physiology beyond its now well-known role in determining the sexual status in both long-day and short-day seasonally breeding mammals. Of particular note are those reproductive processes that have been shown to benefit from the ability of melatonin to function in the reduction of oxidative stress. In the few species that have been tested, brightly colored secondary sexual characteristics that serve as a sexual attractant reportedly are enhanced by melatonin administration. This is of potential importance inasmuch as the brightness of ornamental pigmentation is also associated with animals that are of the highest genetic quality. Free radical damage is commonplace during pregnancy and has negative effects on the mother, placenta, and fetus. Because of its ability to readily pass through the placenta, melatonin easily protects the fetus from oxidative damage, as well as the maternal tissues and placenta. Examples of conditions in which oxidative and nitrosative stress can be extensive during pregnancy include preeclampsia and damage resulting from anoxia or hypoxia that is followed by reflow of oxygenated blood into the tissue. Given the uncommonly low toxicity of melatonin, clinical trials are warranted to document the protection by melatonin against pathophysiological states of the reproductive system in which free radical damage is known to occur. Finally, the beneficial effects of melatonin in improving the outcomes of in vitro fertilization and embryo transfer should be further tested and exploited. The information in this article has applicability to human and veterinary medicine.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Possible participation of oxidative stress in causation of cell proliferation and in vivo mutagenicity in kidneys of gpt delta rats treated with potassium bromate. Toxicology 2009; 257:46-52. [DOI: 10.1016/j.tox.2008.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 11/22/2022]
|
48
|
Sebai H, Ben-Attia M, Sani M, Aouani E, Ghanem-Boughanmi N. Protective effect of resveratrol on acute endotoxemia-induced nephrotoxicity in rat through nitric oxide independent mechanism. Free Radic Res 2009; 42:913-20. [PMID: 19031312 DOI: 10.1080/10715760802555577] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lipopolysaccharide (LPS) is a glycolipid component of the cell wall of gram negative bacteria inducing deleterious effects on the kidney. Endotoxemia-induced nephrotoxicity is characterized by disturbed intracellular redox balance and reactive oxygen species (ROS) accumulation leading to DNA, proteins and membrane lipid damages. Resveratrol (trans-3,5,4'-trihydroxystilbene) is a polyphenol displaying antioxidant and anti-inflammatory properties. This study investigated its effects on LPS-induced nephrotoxicity in rats. Resveratrol counteracted all LPS-induced changes in renal haemodynamic parameters. In the kidney resveratrol abrogated LPS-induced lipoperoxidation and antioxidant enzyme activities depletion as superoxide dismutase (SOD) and catalase (CAT) but not peroxidase (POD) activity. LPS increased plasma and urine nitric oxide (NO) level and resveratrol reversed them. More importantly, LPS-induced iron mobilization from plasma to kidney, which was also abolished by resveratrol treatment. All these results suggest that resveratrol exerted strong antioxidant properties against LPS-induced nephrotoxicity and that its mode of action seemed to involve iron shuttling proteins.
Collapse
Affiliation(s)
- Hichem Sebai
- UR Ethnobotanie & Stress Oxydant, Departement des Sciences de la Vie, Faculte des Sciences de Bizerte, Zarzouna, Tunisie
| | | | | | | | | |
Collapse
|
49
|
Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2:2. [PMID: 19133145 PMCID: PMC2672098 DOI: 10.1186/1755-8794-2-2] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/08/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. REVIEW We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation).The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible.This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles.Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. CONCLUSION Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|
50
|
Caddeo C, Teskač K, Sinico C, Kristl J. Effect of resveratrol incorporated in liposomes on proliferation and UV-B protection of cells. Int J Pharm 2008; 363:183-91. [DOI: 10.1016/j.ijpharm.2008.07.024] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 07/14/2008] [Accepted: 07/19/2008] [Indexed: 11/17/2022]
|