1
|
Grison S, Braga-Tanaka II, Baatout S, Klokov D. In utero exposure to ionizing radiation and metabolic regulation: perspectives for future multi- and trans-generation effects studies. Int J Radiat Biol 2024; 100:1283-1296. [PMID: 38180060 DOI: 10.1080/09553002.2023.2295293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE The radiation protection community has been particularly attentive to the risks of delayed effects on offspring from low dose or low dose-rate exposures to ionizing radiation. Despite this, the current epidemiologic studies and scientific data are still insufficient to provide the necessary evidence for improving risk assessment guidelines. This literature review aims to inform future studies on multigenerational and transgenerational effects. It primarily focuses on animal studies involving in utero exposure and discusses crucial elements for interpreting the results. These elements include in utero exposure scenarios relative to the developmental stages of the embryo/fetus, and the primary biological mechanisms responsible for transmitting heritable or hereditary effects to future generations. The review addresses several issues within the contexts of both multigenerational and transgenerational effects, with a focus on hereditary perspectives. CONCLUSIONS Knowledge consolidation in the field of Developmental Origins of Health and Disease (DOHaD) has led us to propose a new study strategy. This strategy aims to address the transgenerational effects of in utero exposure to low dose and low dose-rate radiation. Within this concept, there is a possibility that disruption of epigenetic programming in embryonic and fetal cells may occur. This disruption could lead to metabolic dysfunction, which in turn may cause abnormal responses to future environmental challenges, consequently increasing disease risk. Lastly, we discuss methodological limitations in our studies. These limitations are related to cohort size, follow-up time, model radiosensitivity, and analytical techniques. We propose scientific and analytical strategies for future research in this field.
Collapse
Affiliation(s)
- Stéphane Grison
- PSE-SANTE, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Ignacia Iii Braga-Tanaka
- Department of Radiobiology, Institute for Environmental Sciences (IES), Rokkasho Kamikita, Aomori, Japan
| | - Sarah Baatout
- Belgian Nuclear Research Centre, SCK CEN, Institute of Nuclear Medical Applications, Mol, Belgium
- Department of Molecular Biotechnology (BW25) and Department of Human Structure and Repair (GE38), Ghent University, Ghent, Belgium
| | - Dmitry Klokov
- PSE-SANTE, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
- Department of Microbiology, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Lalonde C, Sreetharan S, Murray A, Stoa L, Cybulski ME, Kennedy A, Landry N, Stillar A, Khurana S, Tharmalingam S, Wilson J, Khaper N, Lees SJ, Boreham D, Tai TC. Absence of Depressive and Anxious Behavior with Genetic Dysregulation in Adult C57Bl/6J Mice after Prenatal Exposure to Ionizing Radiation. Int J Mol Sci 2023; 24:ijms24108466. [PMID: 37239811 DOI: 10.3390/ijms24108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
The exposure of ionizing radiation during early gestation often leads to deleterious and even lethal effects; however, few extensive studies have been conducted on late gestational exposures. This research examined the behavior al effects of C57Bl/6J mouse offspring exposed to low dose ionizing gamma irradiation during the equivalent third trimester. Pregnant dams were randomly assigned to sham or exposed groups to either low dose or sublethal dose radiation (50, 300, or 1000 mGy) at gestational day 15. Adult offspring underwent a behavioral and genetic analysis after being raised under normal murine housing conditions. Our results indicate very little change in the behavioral tasks measuring general anxiety, social anxiety, and stress-management in animals exposed prenatally across the low dose radiation conditions. Quantitative real-time polymerase chain reactions were conducted on the cerebral cortex, hippocampus, and cerebellum of each animal; results indicate some dysregulation in markers of DNA damage, synaptic activity, reactive oxygen species (ROS) regulation, and methylation pathways in the offspring. Together, our results provide evidence in the C57Bl/6J strain, that exposure to sublethal dose radiation (<1000 mGy) during the last period of gestation leads to no observable changes in behaviour when assessed as adults, although some changes in gene expression were observed for specific brain regions. These results indicate that the level of oxidative stress occurring during late gestation for this mouse strain is not sufficient for a change in the assessed behavioral phenotype, but results in some modest dysregulation of the genetic profile of the brain.
Collapse
Affiliation(s)
- Christine Lalonde
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Shayenthiran Sreetharan
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
- Department of Biology, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Alyssa Murray
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Lisa Stoa
- Department of Biology, McMaster University, Hamilton, ON L8S4L8, Canada
| | | | - Allison Kennedy
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Nicholas Landry
- Department of Psychology, Nipissing University, North Bay, ON P1B8L7, Canada
| | - Amy Stillar
- Department of Psychology, Nipissing University, North Bay, ON P1B8L7, Canada
| | - Sandhya Khurana
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Sujeenthar Tharmalingam
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Joanna Wilson
- Department of Biology, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Neelam Khaper
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Simon J Lees
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Douglas Boreham
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - T C Tai
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| |
Collapse
|
3
|
Loganovsky KM, Fedirko PA, Marazziti D, Kuts KV, Antypchuk KY, Perchuk IV, Babenko TF, Loganovska TK, Kolosynska OO, Kreinis GY, Masiuk SV, Zdorenko LL, Zdanevich NA, Garkava NA, Dorichevska RY, Vasilenko ZL, Kravchenko VI, Drosdova NV, Yefimova YV, Malinyak AV. BRAIN AND EYE AS POTENTIAL TARGETS FOR IONIZING RADIATION IMPACT: PART II - RADIATION CEREBRO/OPHTALMIC EFFECTS IN CHILDREN, PERSONS EXPOSED IN UTERO, ASTRONAUTS AND INTERVENTIONAL RADIOLOGISTS. PROBLEMY RADIATSIINOI MEDYTSYNY TA RADIOBIOLOHII 2021; 26:57-97. [PMID: 34965543 DOI: 10.33145/2304-8336-2021-26-57-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ionizing radiation (IR) can affect the brain and the visual organ even at low doses, while provoking cognitive, emotional, behavioral, and visual disorders. We proposed to consider the brain and the visual organ as potential targets for the influence of IR with the definition of cerebro-ophthalmic relationships as the «eye-brain axis». OBJECTIVE The present work is a narrative review of current experimental, epidemiological and clinical data on radiation cerebro-ophthalmic effects in children, individuals exposed in utero, astronauts and interventional radiologists. MATERIALS AND METHODS The review was performed according to PRISMA guidelines by searching the abstract and scientometric databases PubMed/MEDLINE, Scopus, Web of Science, Embase, PsycINFO, Google Scholar, published from 1998 to 2021, as well as the results of manual search of peer-reviewed publications. RESULTS Epidemiological data on the effects of low doses of IR on neurodevelopment are quite contradictory, while data on clinical, neuropsychological and neurophysiological on cognitive and cerebral disorders, especially in the left, dominant hemisphere of the brain, are nore consistent. Cataracts (congenital - after in utero irradiation) and retinal angiopathy are more common in prenatally-exposed people and children. Astronauts, who carry out longterm space missions outside the protection of the Earth's magnetosphere, will be exposed to galactic cosmic radiation (heavy ions, protons), which leads to cerebro-ophthalmic disorders, primarily cognitive and behavioral disorders and cataracts. Interventional radiologists are a special risk group for cerebro-ophthalmic pathology - cognitivedeficits, mainly due to dysfunction of the dominant and more radiosensitive left hemisphere of the brain, andcataracts, as well as early atherosclerosis and accelerated aging. CONCLUSIONS Results of current studies indicate the high radiosensitivity of the brain and eye in different contingents of irradiated persons. Further research is needed to clarify the nature of cerebro-ophthalmic disorders in different exposure scenarios, to determine the molecular biological mechanisms of these disorders, reliable dosimetric support and taking into account the influence of non-radiation risk factors.
Collapse
Affiliation(s)
- K M Loganovsky
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - P A Fedirko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - D Marazziti
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100, Pisa, Italy
| | - K V Kuts
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - K Yu Antypchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - I V Perchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - T F Babenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - T K Loganovska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - O O Kolosynska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - G Yu Kreinis
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - S V Masiuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - L L Zdorenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - N A Zdanevich
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - N A Garkava
- State Institution «Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine», 9 Vernadsky Str., Dnipro, 49044, Ukraine
| | - R Yu Dorichevska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - Z L Vasilenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - V I Kravchenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - N V Drosdova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - Yu V Yefimova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - A V Malinyak
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| |
Collapse
|
4
|
Collett G, Craenen K, Young W, Gilhooly M, Anderson RM. The psychological consequences of (perceived) ionizing radiation exposure: a review on its role in radiation-induced cognitive dysfunction. Int J Radiat Biol 2020; 96:1104-1118. [PMID: 32716221 DOI: 10.1080/09553002.2020.1793017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Exposure to ionizing radiation following environmental contamination (e.g., the Chernobyl and Fukushima nuclear accidents), radiotherapy and diagnostics, occupational roles and space travel has been identified as a possible risk-factor for cognitive dysfunction. The deleterious effects of high doses (≥1.0 Gy) on cognitive functioning are fairly well-understood, while the consequences of low (≤0.1 Gy) and moderate doses (0.1-1.0 Gy) have been receiving more research interest over the past decade. In addition to any impact of actual exposure on cognitive functioning, the persistent psychological stress arising from perceived exposure, particularly following nuclear accidents, may itself impact cognitive functioning. In this review we offer a novel interdisciplinary stance on the cognitive impact of radiation exposure, considering psychological and epidemiological observations of different exposure scenarios such as atomic bombings, nuclear accidents, occupational and medical exposures while accounting for differences in dose, rate of exposure and exposure type. The purpose is to address the question that perceived radiation exposure - even where the actual absorbed dose is 0.0 Gy above background dose - can result in psychological stress, which could in turn lead to cognitive dysfunction. In addition, we highlight the interplay between the mechanisms of perceived exposure (i.e., stress) and actual exposure (i.e., radiation-induced cellular damage), in the generation of radiation-induced cognitive dysfunction. In all, we offer a comprehensive and objective review addressing the potential for cognitive defects in the context of low- and moderate-dose IR exposures. CONCLUSIONS Overall the evidence shows prenatal exposure to low and moderate doses to be detrimental to brain development and subsequent cognitive functioning, however the evidence for adolescent and adult low- and moderate-dose exposure remains uncertain. The persistent psychological stress following accidental exposure to low-doses in adulthood may pose a greater threat to our cognitive functioning. Indeed, the psychological implications for instructed cohorts (e.g., astronauts and radiotherapy patients) is less clear and warrants further investigation. Nonetheless, the psychosocial consequences of low- and moderate-dose exposure must be carefully considered when evaluating radiation effects on cognitive functioning, and to avoid unnecessary harm when planning public health response strategies.
Collapse
Affiliation(s)
- George Collett
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Kai Craenen
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - William Young
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Mary Gilhooly
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Rhona M Anderson
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
5
|
Sreetharan S, Thome C, Tharmalingam S, Jones DE, Kulesza AV, Khaper N, Lees SJ, Wilson JY, Boreham DR, Tai TC. Ionizing Radiation Exposure During Pregnancy: Effects on Postnatal Development and Life. Radiat Res 2017; 187:647-658. [DOI: 10.1667/rr14657.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Christopher Thome
- Division of Medical Sciences, Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada
| | - Sujeenthar Tharmalingam
- Division of Medical Sciences, Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada
| | - Devon E. Jones
- Department of Biology, McMaster University, Hamilton, Canada
| | | | - Neelam Khaper
- Division of Medical Sciences, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Canada
| | - Simon J. Lees
- Division of Medical Sciences, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Canada
| | | | - Douglas R. Boreham
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada
- Division of Medical Sciences, Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada
| | - T. C. Tai
- Division of Medical Sciences, Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada
| |
Collapse
|
6
|
Yang B, Ren BX, Tang FR. Prenatal irradiation-induced brain neuropathology and cognitive impairment. Brain Dev 2017; 39:10-22. [PMID: 27527732 DOI: 10.1016/j.braindev.2016.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
Abstract
Embryo/fetus is much more radiosensitive than neonatal and adult human being. The main potential effects of pre-natal radiation exposure on the human brain include growth retardation, small head/brain size, mental retardation, neocortical ectopias, callosal agenesis and brain tumor which may result in a lifetime poor quality of life. The patterns of prenatal radiation-induced effects are dependent not only on the stages of fetal development, the sensitivity of tissues and organs, but also on radiation sources, doses, dose rates. With the increased use of low dose radiation for diagnostic or radiotherapeutic purposes in recent years, combined with postnatal negative health effect after prenatal radiation exposure to fallout of Chernobyl nuclear power plant accident, the great anxiety and unnecessary termination of pregnancies after the nuclear disaster, there is a growing concern about the health effect of radiological examinations or therapies in pregnant women. In this paper, we reviewed current research progresses on pre-natal ionizing irradiation-induced abnormal brain structure changes. Subsequent postnatal neuropsychological and neurological diseases were provided. Relationship between irradiation and brain aging was briefly mentioned. The relevant molecular mechanisms were also discussed. Future research directions were proposed at the end of this paper. With limited human data available, we hoped that systematical review of animal data could relight research interests on prenatal low dose/dose rate irradiation-induced brain microanatomical changes and subsequent neurological and neuropsychological disorders.
Collapse
Affiliation(s)
- Bo Yang
- Medical School of Yangtze University, People's Republic of China
| | - Bo Xu Ren
- Medical School of Yangtze University, People's Republic of China.
| | - Feng Ru Tang
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative (SNRSI), National University of Singapore, Singapore.
| |
Collapse
|
7
|
Swiderski DL, Zelditch ML. The complex ontogenetic trajectory of mandibular shape in a laboratory mouse. J Anat 2013; 223:568-80. [PMID: 24111948 DOI: 10.1111/joa.12118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 11/27/2022] Open
Abstract
The mouse mandible is a popular model system that continues to be the focus of studies in evo-devo and other fields. Yet, little attention has been given to the role of postnatal growth in producing the adult form. Using cleared and stained specimens, we describe the timing of tooth and jaw development and changes in jaw size and shape from postnatal day 1 (p1) through weaning to adulthood. We found that tooth development is relatively advanced at birth, and that the functional adult dentition is in place by p15 (just before the start of weaning). Shape analysis showed that the trajectory of mandible shape changes direction at least twice between birth and adulthood, at p7 and p15. At each stage there are changes in shape to all tooth- and muscle-bearing regions and, at each change of direction, all of these regions change their pattern of growth. The timing of the changes in direction in Mus suggests there are signals that redirect growth patterns independently of changes in function and loading associated with weaning and jaw muscle growth. A better understanding of these signals and how they produce a functionally integrated mandible may help explain the mechanisms guiding evolutionary trends and patterns of plasticity and may also provide valuable clues to therapeutic manipulation of growth to alleviate the consequences of trauma or disease.
Collapse
Affiliation(s)
- Donald L Swiderski
- Kresge Hearing Research Institute and Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
8
|
Kelsey-Wall A, Seaman JC, Jagoe CH, Dallas CE. Biological half-life and oxidative stress effects in mice with low-level, oral exposure to tritium. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:201-13. [PMID: 16263691 DOI: 10.1080/15287390500227365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tritium ((3)H) may enter the environment from human activities, particularly at production, processing, or waste storage sites such as the Department of Energy's Savannah River Site, a former nuclear production facility in South Carolina. Understanding the dynamics and potential adverse effects of tritium in exposed organisms is critical to evaluating risks of tritium releases at such sites. Previous studies estimated the biological half-life of tritium in mice to be approximately 1.13 d; however, these laboratory studies were not conducted under environmentally realistic conditions. In this study, designed to be more representative of environmental exposure, mice were allowed to drink water containing tritium (activity about 300 Bq/ml) for a period of 2 wk. The induction of oxidative stress from tritium exposure was evaluated by comparing the activities of antioxidant enzymes (catalase, glutathione peroxidase, and superoxide dismutase) in exposed and control mice. From this experiment, the biological half-life of tritium was determined to be 2.26 +/- 0.04 d, almost double previous estimates. While positive controls (x-ray irradiated mice) showed responses in antioxidant enzyme activity, there was no indication of oxidative stress induction in mice exposed to tritium at this concentration.
Collapse
Affiliation(s)
- Angel Kelsey-Wall
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina 29802, USA
| | | | | | | |
Collapse
|
9
|
Nwagwu MO, Baines H, Kerr JB, Ebling FJP. Neonatal androgenization of hypogonadal (hpg) male mice does not abolish estradiol-induced FSH production and spermatogenesis. Reprod Biol Endocrinol 2005; 3:48. [PMID: 16176578 PMCID: PMC1249589 DOI: 10.1186/1477-7827-3-48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 09/21/2005] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Testicular development is arrested in the hypogonadal (hpg) mouse due to a congenital deficiency in hypothalamic gonadotropin-releasing hormone (GnRH) synthesis. Chronic treatment of male hpg mice with estradiol induces FSH synthesis and secretion, and causes testicular maturation and qualitatively normal spermatogenesis. As estradiol negative feedback normally inhibits FSH production in the male, this study tested whether this paradoxical response to estradiol in the male hpg mouse might be due to inadequate masculinisation or incomplete defeminization in the neonatal period. Previous studies have demonstrated that treatment of hpg mice with testosterone propionate in the immediate neonatal period is necessary to allow full reproductive behaviors to be expressed following suitable endocrine stimulation at adult ages. METHODS Hpg mice were treated with 100 mug testosterone propionate or vehicle on postnatal day 2. At 35 days of age, subgroups of these mice were treated with silastic implants containing estradiol or cholesterol. Reproductive behavior was scored in tests with steroid-primed female mice, then testicular development was assessed histologically, and measures of pituitary FSH content made at 85 days of age. RESULTS The neonatal testosterone propionate treatment successfully defeminized female litter mates, as revealed by impaired vaginal opening and deficiencies in lordosis behavior, and it allowed appropriate male reproductive behavior to be expressed in a proportion of the hpg males when tested at an adult age. However, neonatal androgen supplementation did not block or even reduce the subsequent actions of estradiol in increasing pituitary FSH content, nor did it affect the ability of estradiol to induce qualitatively normal spermatogenesis. CONCLUSION The ability of the hpg male to show a "female" neuroendocrine response to estradiol is not a result of inadequate androgenization during neonatal development, and thus the actions of estradiol revealed in this rodent model are not an artefact of incomplete sexual differentiation, but reflect a physiological role of estradiol occurring during a specific early temporal window of male reproductive development.
Collapse
Affiliation(s)
- Margaret O Nwagwu
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Helen Baines
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Jeffrey B Kerr
- Department of Anatomy and Cell Biology, Monash University, Victoria 3800, Australia
| | - Francis JP Ebling
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
10
|
Kelsey-Wall A, Seaman JC, Jagoe CH, Dallas CE, Gaines KF. Rodents as receptor species at a tritium disposal site. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2005; 82:95-104. [PMID: 15829339 DOI: 10.1016/j.jenvrad.2005.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 12/29/2004] [Accepted: 01/04/2005] [Indexed: 05/24/2023]
Abstract
New methods are being employed on the Department of Energy's Savannah River Site to deal with the disposal of tritium, including the irrigation of a hardwood/pine forest with tritiated water from an intercepted contaminant plume to reduce concentrations of tritium outcropping into Fourmile Branch, a tributary of the Savannah River. The use of this system has proven to be an effective means of tritium disposal. To evaluate the impact of this activity on terrestrial biota, rodent species were captured on the tritium disposal site and a control site during two trapping seasons in order to assess tritium exposure resulting from the forest irrigation. Control site mice had background levels of tritium, 0.02 Bq/mL, with disposal site mice having significantly higher tritium concentrations, mean=34.86 Bq/mL. Whole body tritium concentrations of the mice captured at the disposal site were positively correlated with tritium application and negatively correlated with precipitation at the site.
Collapse
Affiliation(s)
- Angel Kelsey-Wall
- The University of Georgia, Savannah River Ecology Laboratory, Drawer E, Aiken, SC 29802, USA.
| | | | | | | | | |
Collapse
|