1
|
Dursun I, Korkmaz ND, Firtina S, Erkoyuncu MS, Akbas F, Elibol B. Exploring epigenetic modification of the stress-related FKBP5 gene in mice exposed to alcohol during early postnatal development. Alcohol 2024:S0741-8329(24)00125-3. [PMID: 39245355 DOI: 10.1016/j.alcohol.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Early developmental exposure to alcohol has been implicated in adverse effects on the brain, often associated with the onset of neurodevelopmental disorders. Moreover, maternal alcohol consumption during pregnancy has been linked to the manifestation of mental health disorders, such as depression and anxiety, in subsequent generations. These mood disturbances may be attributed to alterations in protein expressions related to depression and anxiety within the hippocampus. While the precise mechanisms remain elusive, it is likely that pre- and postnatal exposure to alcohol induces changes in hippocampus, potentially through epigenetic modifications. The FKBP5 gene, known to modulate the stress response, is particularly relevant in this context. We postulate that alcohol-induced methylation of the FKBP5 gene disrupts HPA axis function, thereby prompting individuals to anxiety-like and depressive-like behaviors. To investigate this hypothesis, female C57BL/6 pups were subjected to early alcohol exposure via intubation with ethanol mixed in artificial milk from Postnatal Day 3 to Day 20. The intubation control pups were subjected to the same procedures without ethanol or milk, and a non-intubated control group included. Anxiety-like and depressive-like behaviors were assessed using the open field test, plus maze test, forced swim test, and tail suspension test when the pups reached 3 months of age. For epigenetic analysis of the FKBP5 gene, genomic DNA was isolated from hippocampal tissues and subjected to bisulfite conversion to distinguish methylated and unmethylated cytosines. Then, methylation-specific PCR was performed to assess methylation levels. Pups exposed to early postnatal alcohol exhibited increased levels of depression-like behavior and susceptibility to anxiety-like behavior during adolescence, as verified by behavioral assessments. Methylation profiling revealed higher rates of methylation within the stress-associated gene FKBP5 in both the early postnatal alcohol-exposed cohort (13.82%) and the intubation control group (3.93%), in contrast to the control cohort devoid of stress or alcohol exposure. These findings suggest a potential epigenetic mechanism underlying the observed behavioral alterations, implicating FKBP5 methylation as a candidate mediator of the increased vulnerability to mood disorders following early postnatal alcohol exposure.
Collapse
Affiliation(s)
- Ilknur Dursun
- Department of Physiology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Nur Damla Korkmaz
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Sinem Firtina
- Department of Medical Genetics, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Muhammed Salih Erkoyuncu
- Department of Neuroscience, Graduate School of Health Sciences, Bezmialem Vakif University, Istanbul, Turkey
| | - Fahri Akbas
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey.
| |
Collapse
|
2
|
Titterness AK, Gräfe EL, Acosta C, Rodriguez C, Thomas JD, Christie BR. Developmental ethanol exposure produces deficits in long-term potentiation in vivo that persist following postnatal choline supplementation. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1483-1491. [PMID: 38850072 DOI: 10.1111/acer.15384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Fetal alcohol spectrum disorder (FASD) is one of the leading causes of neurodevelopmental disorder for which there is a pressing need for an effective treatment. Recent studies have investigated the essential nutrient choline as a postnatal treatment option. Supplementation with choline has produced improvements in behavioral tasks related to learning and memory and reverted changes in methylation signature following third-trimester equivalent ethanol exposure. We examined whether there are related improvements in hippocampal synaptic plasticity in vivo. METHODS Sprague-Dawley offspring were administered binge-levels of ethanol from postnatal day (PND) 4 to 9, then treated with choline chloride (100 mg/kg/day) from PND 10 to 30. In vivo electrophysiology was performed on male and female offspring from PND 55 to 70. Long-term potentiation (LTP) was induced in the medial perforant pathway of the dentate gyrus using a theta-burst stimulation (TBS) protocol, and field-evoked postsynaptic potentials (EPSPs) were evoked for 60 min following the conditioning stimulus. RESULTS Developmental ethanol exposure caused long-lasting deficits in LTP of the slope of the evoked responses and in the amplitude of the population spike potentiation. Neither deficit was rescued by postnatal choline supplementation. CONCLUSIONS In contrast to our prior findings that choline can improve hippocampal plasticity (Nutrients, 2022, 14, 2004), here we found that deficits in hippocampal synaptic plasticity due to developmental ethanol exposure persisted into adulthood despite adolescent choline supplementation. Future research should examine more subtle changes in synaptic plasticity to identify synaptic changes that mirror behavioral improvements.
Collapse
Affiliation(s)
- A K Titterness
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - E L Gräfe
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - C Acosta
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - C Rodriguez
- Department of Psychology, San Diego State University, San Diego, California, USA
| | - J D Thomas
- Department of Psychology, San Diego State University, San Diego, California, USA
| | - B R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Department of Psychology, San Diego State University, San Diego, California, USA
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
- Institute for Aging and Life-Long Health, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
3
|
Rosenblum HL, Kim S, Stout JJ, Klintsova A, Griffin AL. Deliberative Behaviors and Prefrontal-Hippocampal Coupling are Disrupted in a Rat Model of Fetal Alcohol Spectrum Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605480. [PMID: 39131304 PMCID: PMC11312474 DOI: 10.1101/2024.07.28.605480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Fetal alcohol spectrum disorders (FASDs) are characterized by a range of physical, cognitive, and behavioral impairments. Determining how temporally specific alcohol exposure (AE) affects neural circuits is crucial to understanding the FASD phenotype. Third trimester AE can be modeled in rats by administering alcohol during the first two postnatal weeks, which damages the medial prefrontal cortex (mPFC), thalamic nucleus reuniens, and hippocampus (HPC), structures whose functional interactions are required for working memory and executive function. Therefore, we hypothesized that AE during this period would impair working memory, disrupt choice behaviors, and alter mPFC-HPC oscillatory synchrony. To test this hypothesis, we recorded local field potentials from the mPFC and dorsal HPC as AE and sham intubated (SI) rats performed a spatial working memory task in adulthood and implemented algorithms to detect vicarious trial and errors (VTEs), behaviors associated with deliberative decision-making. We found that, compared to the SI group, the AE group performed fewer VTEs and demonstrated a disturbed relationship between VTEs and choice outcomes, while spatial working memory was unimpaired. This behavioral disruption was accompanied by alterations to mPFC and HPC oscillatory activity in the theta and beta bands, respectively, and a reduced prevalence of mPFC-HPC synchronous events. When trained on multiple behavioral variables, a machine learning algorithm could accurately predict whether rats were in the AE or SI group, thus characterizing a potential phenotype following third trimester AE. Together, these findings indicate that third trimester AE disrupts mPFC-HPC oscillatory interactions and choice behaviors.
Collapse
Affiliation(s)
- Hailey L Rosenblum
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - SuHyeong Kim
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - John J Stout
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Anna Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
4
|
Villalba NM, Madarnas C, Bressano J, Sanchez V, Brusco A. Perinatal ethanol exposure affects cell populations in adult dorsal hippocampal neurogenic niche. Neurosci Res 2024; 198:8-20. [PMID: 37419388 DOI: 10.1016/j.neures.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Neurodevelopment is highly affected by perinatal ethanol exposure (PEE). In the adult brain, neurogenesis takes place in the dentate gyrus (DG) of the hippocampus and in the subventricular zone. This work aimed to analyze the effect of PEE on the cellular types involved in adult dorsal hippocampal neurogenesis phases using a murine model. For this purpose, primiparous female CD1 mice consumed only ethanol 6% v/v from 20 days prior to mating and along pregnancy and lactation to ensure that the pups were exposed to ethanol throughout pre- and early postnatal development. After weaning, pups had no further contact with ethanol. Cell types of the adult male dorsal DG were studied by immunofluorescence. A lower percentage of type 1 cells and immature neurons and a higher percentage of type 2 cells were observed in PEE animals. This decrease in type 1 cells suggests that PEE reduces the population of remnant progenitors of the dorsal DG present in adulthood. The increase in type 2 cells and the decrease in immature neurons indicate that, during neurodevelopment, ethanol alters the capacity of neuroblasts to become neurons in the adult neurogenic niche. These results suggest that pathways implicated in cell determination are affected by PEE and remain affected in adulthood.
Collapse
Affiliation(s)
- Nerina M Villalba
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina
| | - Catalina Madarnas
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina
| | - Julieta Bressano
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina
| | - Viviana Sanchez
- Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina
| | - Alicia Brusco
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina.
| |
Collapse
|
5
|
May PA, Marais AS, Kalberg WO, de Vries MM, Buckley D, Hasken JM, Snell CL, Barnard Röhrs R, Hedrick DM, Bezuidenhout H, Anthonissen L, Bröcker E, Robinson LK, Manning MA, Hoyme HE, Seedat S, Parry CDH. Multifaceted case management during pregnancy is associated with better child outcomes and less fetal alcohol syndrome. Ann Med 2023; 55:926-945. [PMID: 36919586 PMCID: PMC10026770 DOI: 10.1080/07853890.2023.2185808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Pregnant women participated in multifaceted case management (MCM) to prevent Fetal Alcohol Spectrum Disorders (FASD). METHODS Women recruited from antenatal clinics for a longitudinal child development study were screened for alcohol use. Forty-four pregnant women were defined as high-risk drinkers on the Alcohol Use Disorder Identification Test (AUDIT) by an AUDIT score ≥8 and participated in 18 months of MCM to facilitate reduction or cessation of alcohol consumption. Forty-one women completed MCM. Fifty-five equally high-risk women who received standard antenatal care comprised the comparison/control group. Development in offspring was evaluated by a blinded interdisciplinary team of examiners through 5 years of age. RESULTS At five years of age, more children (34%) of MCM participating women did not meet the criteria for FASD vs. non-MCM offspring (22%). Furthermore, a statistically significant (p = .01) lower proportion of MCM offspring (24%) was diagnosed with fetal alcohol syndrome (FAS) compared to controls (49%). Children of MCM participants had significantly (p < .05) better physical outcomes: lower total dysmorphology scores, larger head circumferences, longer palpebral fissures, and higher midfacial measurements. Neurodevelopment results showed mixed outcomes. While Bayley developmental scores indicated that MCM offspring were performing significantly worse on most domains through 18 months, group scores equalized and were not significantly different on Kaufman Assessment Battery neurobehavioral measures by five years. Regression analyses indicated that offspring of women who received standard antenatal care were associated with significantly more negative outcomes than MCM offspring: a diagnosis of FAS (OR = 3.2; 95% CI: 1.093-9.081), microcephaly (OR = 5.3; 95% CI: 2.1-13.5), head circumference ≤10th centile (OR = 4.3; 95%CI: 1.8-10.4), and short palpebral fissures (OR = 2.5; 95% CI: 1.0-5.8). CONCLUSION At age five, proportionally fewer children of MCM participants qualified for a diagnosis of FAS, and proportionally more had physical outcomes indicating better prenatal brain development. Neurobehavioral indicators were not significantly different from controls by age five.KEY MESSAGESMultifaceted Case Management (MCM) was designed and employed for 18 months during the prenatal and immediate postpartum period to successfully meet multiple needs of women who had proven to be very high risk for birthing children with fetal alcohol spectrum disorders (FASD).Offspring of the women who participated in MCM were followed up through age five years and were found to have significantly better physical outcomes on multiple variables associated with fetal alcohol syndrome (FAS) and FASD, such as larger head circumferences and fewer minor anomalies, than those children born to equally at-risk women not receiving MCM.Fewer children of women receiving MCM were diagnosed with FASD than the offspring of equally-at-risk controls, and significantly (p = .01) fewer MCM offspring had FAS, the most severe FASD diagnosis.
Collapse
Affiliation(s)
- Philip A May
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, NC, USA
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Center on Alcohol, Substance Abuse and Addictions, The University of New Mexico, Albuquerque, NM, USA
| | - Anna-Susan Marais
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wendy O Kalberg
- Center on Alcohol, Substance Abuse and Addictions, The University of New Mexico, Albuquerque, NM, USA
| | - Marlene M de Vries
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - David Buckley
- Center on Alcohol, Substance Abuse and Addictions, The University of New Mexico, Albuquerque, NM, USA
| | - Julie M Hasken
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Cudore L Snell
- School of Social Work, Howard University, Washington, DC, USA
| | - Ronel Barnard Röhrs
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Dixie M Hedrick
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Heidre Bezuidenhout
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lise Anthonissen
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Erine Bröcker
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Luther K Robinson
- Department of Pediatrics, State University of New York, Buffalo, NY, USA
| | - Melanie A Manning
- Department of Pathology and Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - H Eugene Hoyme
- Sanford Children's Genomic Medicine Consortium, Sanford Health, Sioux Falls, SD, USA
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Charles D H Parry
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Alcohol, Tobacco and Other Drug Research Unit, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
6
|
Ruelas M, Medina-Ceja L, Fuentes-Aguilar RQ. A scoping review of the relationship between alcohol, memory consolidation and ripple activity: An overview of common methodologies to analyse ripples. Eur J Neurosci 2023; 58:4137-4154. [PMID: 37827165 DOI: 10.1111/ejn.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/27/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Alcohol abuse is not only responsible for 5.3% of the total deaths in the world but also has a substantial impact on neurological and memory disabilities throughout the population. One extensively studied brain area involved in cognitive functions is the hippocampus. Evidence in several rodent models has shown that ethanol produces cognitive impairment in hippocampal-dependent tasks and that the damage is varied according to the stage of development at which the rodent was exposed to ethanol and the dose. To the authors' knowledge, there is a biomarker for cognitive processes in the hippocampus that remains relatively understudied in association with memory impairment by alcohol administration. This biomarker is called sharp wave-ripples (SWRs) which are synchronous neuronal population events that are well known to be involved in memory consolidation. Methodologies for facilitated or automatic identification of ripples and their analysis have been reported for a wider bandwidth than SWRs. This review is focused on communicating the state of the art about the relationship between alcohol, memory consolidation and ripple activity, as well as the use of the common methodologies to identify SWRs automatically.
Collapse
Affiliation(s)
- Marina Ruelas
- School of Engineering and Sciences, Tecnológico de Monterrey, Zapopan, Jalisco, Mexico
| | - Laura Medina-Ceja
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jalisco, Mexico
| | - Rita Q Fuentes-Aguilar
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Zapopan, Jalisco, Mexico
| |
Collapse
|
7
|
Mendes PFS, Baia-da-Silva DC, Melo WWP, Bittencourt LO, Souza-Rodrigues RD, Fernandes LMP, Maia CDSF, Lima RR. Neurotoxicology of alcohol: a bibliometric and science mapping analysis. Front Pharmacol 2023; 14:1209616. [PMID: 37593178 PMCID: PMC10427875 DOI: 10.3389/fphar.2023.1209616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
Alcohol consumption is common in many societies and has increased considerably, resulting in many socioeconomic and public health problems. In this sense, studies have been carried out in order to understand the mechanisms involved in alcohol consumption and related harmful effects. This study aimed to identify and map the knowledge and to perform bibliometric analysis of the neurotoxicology of alcohol based on the 100 most cited articles. A search was carried out in the Web of Science Core Collection database and information was extracted regarding the journal, authors, keywords, year of publication, number of citations, country and continent of the corresponding author. For each selected manuscript, the study design, alcohol exposure model, dose, period of exposure, and effect on the central nervous system and research hotspots were mapped. The journal with the highest number of publications was Alcoholism: Clinical and Experimental Research (n = 11 papers), the author who contributed the most was Crews FT (n = 8 papers), the studies had a total of 288 keywords and 75% of the publications were from the United States of America. The experimental studies evaluated the effects of prenatal and postnatal exposure and were conducted in rats and mice using doses ranging from 2.5 to 14 g/kg/day, with administration by subcutaneous, intraperitoneal, intragastric, or inhalation route or with free access through drinking bottles. Among the studies mapped, the oldest one (1989) aimed to understand the systemic damage and mechanisms of action involved, while the most recent focused on understanding the receptors and mechanisms involved in addiction, as well as genetic factors. Our results show the panorama of the most widespread scientific production in the scientific community on the neurotoxicology of ethanol, a high prevalence was observed in studies that addressed fetal alcohol syndrome and/or the effects of ethanol on neurodevelopment.
Collapse
Affiliation(s)
- Paulo Fernando Santos Mendes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Wallacy Watson Pereira Melo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Renata Duarte Souza-Rodrigues
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Luanna Melo Pereira Fernandes
- Department of Morphology and Physiological Sciences, Center of Sciences Biological and Health, State University of Pará, Belém, Brazil
| | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
8
|
Gillis RF, Palmour RM. miRNA Expression Analysis of the Hippocampus in a Vervet Monkey Model of Fetal Alcohol Spectrum Disorder Reveals a Potential Role in Global mRNA Downregulation. Brain Sci 2023; 13:934. [PMID: 37371413 DOI: 10.3390/brainsci13060934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
MicroRNAs (miRNAs) are short-length non-protein-coding RNA sequences that post-transcriptionally regulate gene expression in a broad range of cellular processes including neuro- development and have previously been implicated in fetal alcohol spectrum disorders (FASD). In this study, we use our vervet monkey model of FASD to follow up on a prior multivariate (developmental age × ethanol exposure) mRNA analysis (GSE173516) to explore the possibility that the global mRNA downregulation we observed in that study could be related to miRNA expression and function. We report here a predominance of upregulated and differentially expressed miRNAs. Further, the 24 most upregulated miRNAs were significantly correlated with their predicted targets (Target Scan 7.2). We then explored the relationship between these 24 miRNAs and the fold changes observed in their paired mRNA targets using two prediction platforms (Target Scan 7.2 and miRwalk 3.0). Compared to a list of non-differentially expressed miRNAs from our dataset, the 24 upregulated and differentially expressed miRNAs had a greater impact on the fold changes of their corresponding mRNA targets across both platforms. Taken together, this evidence raises the possibility that ethanol-induced upregulation of specific miRNAs might contribute functionally to the general downregulation of mRNAs observed by multiple investigators in response to prenatal alcohol exposure.
Collapse
Affiliation(s)
- Rob F Gillis
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Roberta M Palmour
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Behavioural Science Foundation, Mansion KN 0101, Saint Kitts and Nevis
| |
Collapse
|
9
|
Sexual Dimorphism in the Expression of Cardiac and Hippocampal Renin-Angiotensin and Kallikrein–Kinin Systems in Offspring from Mice Exposed to Alcohol during Gestation. Antioxidants (Basel) 2023; 12:antiox12030541. [PMID: 36978790 PMCID: PMC10045732 DOI: 10.3390/antiox12030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Prenatal alcohol exposure (PAE) impairs fetal development. Alcohol consumption was shown to modulate the renin–angiotensin system (RAS). This study aimed to analyze the effects of PAE on the expression of the renin–angiotensin system (RAS) and kallikrein–kinin system (KKS) peptide systems in the hippocampus and heart of mice of both sexes. C57Bl/6 mice were exposed to alcohol during pregnancy at a concentration of 10% (v/v). On postnatal day 45 (PN45), mouse hippocampi and left ventricles (LV) were collected and processed for messenger RNA (mRNA) expression of components of the RAS and KKS. In PAE animals, more pronounced expression of AT1 and ACE mRNAs in males and a restored AT2 mRNA expression in females were observed in both tissues. In LV, increased AT2, ACE2, and B2 mRNA expressions were also observed in PAE females. Furthermore, high levels of H2O2 were observed in males from the PAE group in both tissues. Taken together, our results suggest that modulation of the expression of these peptidergic systems in PAE females may make them less susceptible to the effects of alcohol.
Collapse
|
10
|
Meombe Mbolle A, Thapa S, Bukiya AN, Jiang H. High-resolution imaging in studies of alcohol effect on prenatal development. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:10790. [PMID: 37593366 PMCID: PMC10433240 DOI: 10.3389/adar.2023.10790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Fetal alcohol syndrome represents the leading known preventable cause of mental retardation. FAS is on the most severe side of fetal alcohol spectrum disorders that stem from the deleterious effects of prenatal alcohol exposure. Affecting as many as 1 to 5 out of 100 children, FASD most often results in brain abnormalities that extend to structure, function, and cerebral hemodynamics. The present review provides an analysis of high-resolution imaging techniques that are used in animals and human subjects to characterize PAE-driven changes in the developing brain. Variants of magnetic resonance imaging such as magnetic resonance microscopy, magnetic resonance spectroscopy, diffusion tensor imaging, along with positron emission tomography, single-photon emission computed tomography, and photoacoustic imaging, are modalities that are used to study the influence of PAE on brain structure and function. This review briefly describes the aforementioned imaging modalities, the main findings that were obtained using each modality, and touches upon the advantages/disadvantages of each imaging approach.
Collapse
Affiliation(s)
- Augustine Meombe Mbolle
- Department Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Shiwani Thapa
- Department Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Anna N. Bukiya
- Department Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Huabei Jiang
- Department Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
11
|
Smiley JF, Bleiwas C, Marino BM, Vaddi P, Canals-Baker S, Wilson DA, Saito M. Estimates of total neuron number show that neonatal ethanol causes immediate and lasting neuron loss in cortical and subcortical areas. Front Neurosci 2023; 17:1186529. [PMID: 37205048 PMCID: PMC10185770 DOI: 10.3389/fnins.2023.1186529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
In neonatal brain development there is a period of normal apoptotic cell death that regulates adult neuron number. At approximately the same period, ethanol exposure can cause a dramatic spike in apoptotic cell death. While ethanol-induced apoptosis has been shown to reduce adult neuron number, questions remain about the regional selectivity of the ethanol effect, and whether the brain might have some capacity to overcome the initial neuron loss. The present study used stereological cell counting to compare cumulative neuron loss 8 h after postnatal day 7 (P7) ethanol treatment to that of animals left to mature to adulthood (P70). Across several brain regions we found that the reduction of total neuron number after 8 h was as large as that of adult animals. Comparison between regions revealed that some areas are more vulnerable, with neuron loss in the anterior thalamic nuclei > the medial septum/vertical diagonal band, dorsal subiculum, and dorsal lateral geniculate nucleus > the mammillary bodies and cingulate cortex > whole neocortex. In contrast to estimates of total neuron number, estimates of apoptotic cell number in Nissl-stained sections at 8 h after ethanol treatment provided a less reliable predictor of adult neuron loss. The findings show that ethanol-induced neonatal apoptosis often causes immediate neuron deficits that persist in adulthood, and furthermore suggests that the brain may have limited capacity to compensate for ethanol-induced neuron loss.
Collapse
Affiliation(s)
- John F. Smiley
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, School of Medicine, New York University, New York, NY, United States
- *Correspondence: John F. Smiley,
| | - Cynthia Bleiwas
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Brandon M. Marino
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Prerana Vaddi
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | | | - Donald A. Wilson
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, School of Medicine, New York University, New York, NY, United States
- Department of Neuroscience and Physiology, School of Medicine, New York University, New York, NY, United States
| | - Mariko Saito
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
12
|
May PA, de Vries MM, Marais AS, Kalberg WO, Buckley D, Hasken JM, Abdul-Rahman O, Robinson LK, Manning MA, Seedat S, Parry CD, Hoyme HE. The prevalence of fetal alcohol spectrum disorders in rural communities in South Africa: A third regional sample of child characteristics and maternal risk factors. Alcohol Clin Exp Res 2022; 46:1819-1836. [PMID: 35971629 PMCID: PMC9588757 DOI: 10.1111/acer.14922] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND This study is the ninth cross-sectional community study of fetal alcohol spectrum disorders (FASD) conducted by the multidisciplinary Fetal Alcohol Syndrome Epidemiology Research team in the Western Cape Province of South Africa. It is the third comprehensive study of FASD in a rural, agricultural region of South Africa. METHODS Population-based, active case ascertainment methods were employed among a school-based cohort to assess child physical and neurobehavioral traits, and maternal risk factor interviews were conducted to identify all children with FASD to determine its prevalence. RESULTS Consent was obtained for 76.7% of 1158 children attending first grade in the region's public schools. Case-control results are presented for 95 with fetal alcohol syndrome (FAS), 64 with partial fetal alcohol syndrome (PFAS), 77 with alcohol-related neurodevelopmental disorder (ARND), 2 with alcohol-related birth defects (ARBD), and 213 randomly-selected controls. Four techniques estimating FASD prevalence from in-person examinations and testing yielded a range of total FASD prevalence of 206-366 per 1000. The final weighted, estimated prevalence of FAS was 104.5 per 1000, PFAS was 77.7 per 1000, ARND was 125.2 per 1000, and total FASD prevalence was 310 per 1000 (95% CI = 283.4-336.7). Expressed as a percentage, 31% had FASD. Although the rate of total FASD remained steady over 9 years, the proportion of children within the FASD group has changed significantly: FAS trended down and ARND trended up. A detailed evaluation is presented of the specific child physical and neurobehavioral traits integral to assessing the full continuum of FASD. The diagnosis of a child with FASD was significantly associated with maternal proximal risk factors such as: co-morbid prenatal use of alcohol and tobacco (OR = 19.1); maternal drinking of two (OR = 5.9), three (OR = 5.9), four (OR = 38.3), or more alcoholic drinks per drinking day; and drinking in the first trimester (OR = 8.4), first and second trimesters (OR = 17.7), or throughout pregnancy (OR = 18.6). Distal maternal risk factors included the following: slight or small physical status (height, weight, and head circumference), lower BMI, less formal education, late recognition of pregnancy, and higher gravidity, parity, and older age during the index pregnancy. CONCLUSION The prevalence of FASD remained a significant problem in this region, but the severity of physical traits and anomalies within the continuum of FASD is trending downwards.
Collapse
Affiliation(s)
- Philip A. May
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, United States
- Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa
- Center on Alcoholism, Substance Abuse and Addictions, The University of New Mexico, 2650 Yale SE, Albuquerque, NM 87106, United States
| | - Marlene M. de Vries
- Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa
| | - Anna-Susan Marais
- Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa
| | - Wendy O. Kalberg
- Center on Alcoholism, Substance Abuse and Addictions, The University of New Mexico, 2650 Yale SE, Albuquerque, NM 87106, United States
| | - David Buckley
- Center on Alcoholism, Substance Abuse and Addictions, The University of New Mexico, 2650 Yale SE, Albuquerque, NM 87106, United States
| | - Julie M. Hasken
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, United States
| | - Omar Abdul-Rahman
- Department of Genetic Medicine, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Luther K. Robinson
- Department of Pediatrics, State University of New York, 1001 Main Street, Buffalo, NY 14203, United States
| | - Melanie A. Manning
- Department of Pathology and Pediatrics, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, United States
| | - Soraya Seedat
- Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa
| | - Charles D.H. Parry
- Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa
- Alcohol, Tobacco and Other Drug Research Unit, South African Medical Research Council, Francie van Zijl Drive, Parowvallei, Cape Town, 7505, South Africa
| | - H. Eugene Hoyme
- Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa
- Sanford Children’s Genomic Medicine Consortium, Sanford Health, 1600 W. 22 St. Sioux Falls, SD, 57117, United States
| |
Collapse
|
13
|
Fuglestad AJ, Miller NC, Fink BA, Boys CJ, Eckerle JK, Georgieff MK, Wozniak JR. Neurophysiological correlates of memory change in children with fetal alcohol spectrum disorders treated with choline. Front Psychol 2022; 13:936019. [PMID: 36225707 PMCID: PMC9548619 DOI: 10.3389/fpsyg.2022.936019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Background Prenatal and early postnatal choline supplementation reduces cognitive and behavioral deficits in animal models of Fetal Alcohol Spectrum Disorder (FASD). In a previously published 9-month clinical trial of choline supplementation in children with FASD, we reported that postnatal choline was associated with improved performance on a hippocampal-dependent recognition memory task. The current paper describes the neurophysiological correlates of that memory performance for trial completers. Methods Children with FASD (N = 24) who were enrolled in a clinical trial of choline supplementation were followed for 9 months. Delayed recall on a 9-step elicited imitation task (EI) served as the behavioral measure of recognition memory. Neurophysiological correlates of memory were assessed via event-related potentials (ERP). Results Delayed recall on EI was correlated with two ERP components commonly associated with recognition memory in young children: middle latency negative component (Nc amplitude; range: r = -0.41 to r = -0.44) and positive slow wave (PSW area under the curve; range: r = -0.45 to r = -0.63). No significant ERP differences were observed between the choline and placebo groups at the conclusion of the trial. Conclusion Although the small sample size limits the ability to draw clear conclusions about the treatment effect of choline on ERP, the results suggest a relationship between memory performance and underlying neurophysiological status in FASD. This trial was registered.
Collapse
Affiliation(s)
- Anita J. Fuglestad
- Department of Psychology, University of North Florida, Jacksonville, FL, United States
| | - Neely C. Miller
- Masonic Institute for the Developing Brain, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Birgit A. Fink
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Christopher J. Boys
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Judith K. Eckerle
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Michael K. Georgieff
- Masonic Institute for the Developing Brain, University of Minnesota Twin Cities, Minneapolis, MN, United States,Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Jeffrey R. Wozniak
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Twin Cities, Minneapolis, MN, United States,*Correspondence: Jeffrey R. Wozniak,
| |
Collapse
|
14
|
Burke MW, Slimani H, Ptito M, Ervin FR, Palmour RM. Dose-Related Reduction in Hippocampal Neuronal Populations in Fetal Alcohol Exposed Vervet Monkeys. Brain Sci 2022; 12:1117. [PMID: 36138853 PMCID: PMC9496786 DOI: 10.3390/brainsci12091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is a chronic debilitating condition resulting in behavioral and intellectual impairments and is considered the most prevalent form of preventable mental retardation in the industrialized world. We previously reported that 2-year-old offspring of vervet monkey (Chlorocebus sabeus) dams drinking, on average, 2.3 ± 0.49 g ethanol per Kg maternal body weight 4 days per week during the last third of pregnancy had significantly lower numbers of CA1 (-51.6%), CA2 (-51.2%) and CA3 (-42.8%) hippocampal neurons, as compared to age-matched sucrose controls. Fetal alcohol-exposed (FAE) offspring also showed significantly lower volumes for these structures at 2 years of age. In the present study, we examined these same parameters in 12 FAE offspring with a similar average but a larger range of ethanol exposures (1.01-2.98 g/Kg/day; total ethanol exposure 24-158 g/Kg). Design-based stereology was performed on cresyl violet-stained and doublecortin (DCX)-immunostained sections of the hippocampus. We report here significant neuronal deficits in the hippocampus with a significant negative correlation between daily dose and neuronal population in CA1 (r2 = 0.486), CA2 (r2 = 0.492), and CA3 (r2 = 0.469). There were also significant correlations between DCX population in the dentate gyrus and daily dose (r2 = 0.560). Both correlations were consistent with linear dose-response models. This study illustrates that neuroanatomical sequelae of fetal ethanol exposure are dose-responsive and suggests that there may be a threshold for this effect.
Collapse
Affiliation(s)
- Mark W. Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC 20059, USA
| | - Hocine Slimani
- School of Optometry and Department of Physiology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Maurice Ptito
- School of Optometry and Department of Physiology, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Neuroscience, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Frank R. Ervin
- Behavioural Science Foundation, St. Kitts, Saint Kitts and Nevis
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC H3A 1A1, Canada
| | - Roberta M. Palmour
- Behavioural Science Foundation, St. Kitts, Saint Kitts and Nevis
- Departments of Human Genetics and Psychiatry, Faculty of Medicine, McGill University, Montréal, QC H3A 1A1, Canada
| |
Collapse
|
15
|
Chang GQ, Yasmin N, Collier AD, Karatayev O, Khalizova N, Onoichenco A, Fam M, Albeg AS, Campbell S, Leibowitz SF. Fibroblast growth factor 2: Role in prenatal alcohol-induced stimulation of hypothalamic peptide neurons. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110536. [PMID: 35176416 PMCID: PMC8920779 DOI: 10.1016/j.pnpbp.2022.110536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure (PAE) increases alcohol consumption and risk for alcohol use disorder. This phenomenon in rodents is suggested to involve a stimulatory effect of PAE, in female more than male offspring, on neurogenesis and density of neurons expressing neuropeptides in lateral hypothalamus (LH), including melanin-concentrating hormone (MCH), known to promote alcohol intake. With evidence suggesting a role for fibroblast growth factor 2 (FGF2) and its receptor FGFR1 in stimulating neurogenesis and alcohol drinking, we investigated here whether the FGF2-FGFR1 system is involved in the PAE-induced increase in MCH neurons, in postnatal offspring of pregnant rats given ethanol orally (embryonic day 10-15) at a low-moderate (2 g/kg/day) or high (5 g/kg/day) dose. Our results demonstrate that PAE at the low-moderate but not high dose stimulates FGF2 and FGFR1 gene expression and increases the density of MCH neurons co-expressing FGF2, only in females, but FGFR1 in both sexes. PAE induces this effect in the dorsal but not ventral area of the LH. Further analysis of FGF2 and FGFR1 transcripts within individual MCH neurons reveals an intracellular, sex-dependent effect, with PAE increasing FGF2 transcripts positively related to FGFR1 in the nucleus as well as cytoplasm of females but transcripts only in the cytoplasm of males. Peripheral injection of FGF2 itself (80 μg/kg, s.c.) in pregnant rats mimics these effects of PAE. Together, these results support the involvement of the FGF2-FGFR1 system in mediating the PAE-induced, sex dependent increase in density of MCH neurons, possibly contributing to increased alcohol consumption in the offspring.
Collapse
Affiliation(s)
- Guo-Qing Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Nailya Khalizova
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Amanda Onoichenco
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Avi S Albeg
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Samantha Campbell
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America.
| |
Collapse
|
16
|
Solar KG, Treit S, Beaulieu C. High-resolution diffusion tensor imaging identifies hippocampal volume loss without diffusion changes in individuals with prenatal alcohol exposure. Alcohol Clin Exp Res 2022; 46:1204-1219. [PMID: 35567310 DOI: 10.1111/acer.14857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies of prenatal alcohol exposure (PAE) commonly report reduced hippocampal volumes, which animal models suggest may result from microstructural changes that include cell loss and altered myelination. Diffusion tensor imaging (DTI) is sensitive to microstructural changes but has not yet been used to study the hippocampus in PAE. METHODS Thirty-six healthy controls (19 females; 8 to 24 years) and 19 participants with PAE (8 females; 8 to 23 years) underwent high-resolution (1 mm isotropic) DTI, anatomical T1-weighted imaging, and cognitive testing. Whole-hippocampus, head, body, and tail subregions were manually segmented to yield DTI metrics (mean, axial, and radial diffusivities-MD, AD, and RD; fractional anisotropy-FA), volumes, and qualitative assessments of hippocampal morphology and digitations. Automated segmentation of T1-weighted images was used to corroborate manual whole-hippocampus volumes. RESULTS Gross morphology and digitation counts were similar in both groups. Whole-hippocampus volumes were 18% smaller in the PAE than the control group on manually traced diffusion images, but automated T1-weighted image segmentations were not significantly different. Subregion segmentation on DTI revealed reduced volumes of the body and tail, but not the head. There were no significant differences in diffusion metrics between groups for any hippocampal region. Correlations between age and volume were not significant in either group, whereas negative correlations between age and whole-hippocampus MD/AD/RD, and head/body (but not tail) MD/AD/RD were significant in both groups. There were no significant effects of sex, group by age, or group by sex for any hippocampal metric. In controls, seven positive linear correlations were found between hippocampal volume and cognition; five of these were left lateralized and included episodic and working memory, and two were right lateralized and included working memory and processing speed. In PAE, left tail MD positively correlated with executive functioning, and right head MD negatively correlated with episodic memory. CONCLUSIONS Reductions of hippocampal volumes and altered relationships with memory suggest disrupted hippocampal development in PAE.
Collapse
Affiliation(s)
- Kevin Grant Solar
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah Treit
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Gillis RF, Palmour RM. mRNA expression analysis of the hippocampus in a vervet monkey model of fetal alcohol spectrum disorder. J Neurodev Disord 2022; 14:21. [PMID: 35305552 PMCID: PMC8934503 DOI: 10.1186/s11689-022-09427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/10/2022] [Indexed: 11/12/2022] Open
Abstract
Background Fetal alcohol spectrum disorders (FASD) are common, yet preventable developmental disorders that stem from prenatal exposure to alcohol. This exposure leads to a wide array of behavioural and physical problems with a complex and poorly defined biological basis. Molecular investigations to date predominantly use rodent animal models, but because of genetic, developmental and social behavioral similarity, primate models are more relevant. We previously reported reduced cortical and hippocampal neuron levels in an Old World monkey (Chlorocebus sabaeus) model with ethanol exposure targeted to the period of rapid synaptogenesis and report here an initial molecular study of this model. The goal of this study was to evaluate mRNA expression of the hippocampus at two different behavioural stages (5 months, 2 years) corresponding to human infancy and early childhood. Methods Offspring of alcohol-preferring or control dams drank a maximum of 3.5 g ethanol per kg body weight or calorically matched sucrose solution 4 days per week during the last 2 months of gestation. Total mRNA expression was measured with the Affymetrix GeneChip Rhesus Macaque Genome Array in a 2 × 2 study design that interrogated two independent variables, age at sacrifice, and alcohol consumption during gestation. Results and discussion Statistical analysis identified a preferential downregulation of expression when interrogating the factor ‘alcohol’ with a balanced effect of upregulation vs. downregulation for the independent variable ‘age’. Functional exploration of both independent variables shows that the alcohol consumption factor generates broad functional annotation clusters that likely implicate a role for epigenetics in the observed differential expression, while the variable age reliably produced functional annotation clusters predominantly related to development. Furthermore, our data reveals a novel connection between EFNB1 and the FASDs; this is highly plausible both due to the role of EFNB1 in neuronal development as well as its central role in craniofrontal nasal syndrome (CFNS). Fold changes for key genes were subsequently confirmed via qRT-PCR. Conclusion Prenatal alcohol exposure leads to global downregulation in mRNA expression. The cellular interference model of EFNB1 provides a potential clue regarding how genetically susceptible individuals may develop the phenotypic triad generally associated with classic fetal alcohol syndrome. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09427-z.
Collapse
|
18
|
Prenatal and Postnatal Choline Supplementation in Fetal Alcohol Spectrum Disorder. Nutrients 2022; 14:nu14030688. [PMID: 35277047 PMCID: PMC8837993 DOI: 10.3390/nu14030688] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is common and represents a significant public health burden, yet very few interventions have been tested in FASD. Cognitive deficits are core features of FASD, ranging from broad intellectual impairment to selective problems in attention, executive functioning, memory, visual–perceptual/motor skills, social cognition, and academics. One potential intervention for the cognitive impairments associated with FASD is the essential nutrient choline, which is known to have numerous direct effects on brain and cognition in both typical and atypical development. We provide a summary of the literature supporting the use of choline as a neurodevelopmental intervention in those affected by prenatal alcohol. We first discuss how alcohol interferes with normal brain development. We then provide a comprehensive overview of the nutrient choline and discuss its role in typical brain development and its application in the optimization of brain development following early insult. Next, we review the preclinical literature that provides evidence of choline’s potential as an intervention following alcohol exposure. Then, we review a handful of existing human studies of choline supplementation in FASD. Lastly, we conclude with a review of practical considerations in choline supplementation, including dose, formulation, and feasibility in children.
Collapse
|
19
|
Smiley JF, Bleiwas C, Canals-Baker S, Williams SZ, Sears R, Teixeira CM, Wilson DA, Saito M. Neonatal ethanol causes profound reduction of cholinergic cell number in the basal forebrain of adult animals. Alcohol 2021; 97:1-11. [PMID: 34464696 DOI: 10.1016/j.alcohol.2021.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/24/2021] [Accepted: 08/12/2021] [Indexed: 11/26/2022]
Abstract
In animal models that mimic human third-trimester fetal development, ethanol causes substantial cellular apoptosis in the brain, but for most brain structures, the extent of permanent neuron loss that persists into adulthood is unknown. We injected ethanol into C57BL/6J mouse pups at postnatal day 7 (P7) to model human late-gestation ethanol toxicity, and then used stereological methods to investigate adult cell numbers in several subcortical neurotransmitter systems that project extensively in the forebrain to regulate arousal states. Ethanol treatment caused especially large reductions (34-42%) in the cholinergic cells of the basal forebrain, including cholinergic cells in the medial septal/vertical diagonal band nuclei (Ch1/Ch2) and in the horizontal diagonal band/substantia innominata/nucleus basalis nuclei (Ch3/Ch4). Cell loss was also present in non-cholinergic basal forebrain cells, as demonstrated by 34% reduction of parvalbumin-immunolabeled GABA cells and 25% reduction of total Nissl-stained neurons in the Ch1/Ch2 region. In contrast, cholinergic cells in the striatum were reduced only 12% by ethanol, and those of the brainstem pedunculopontine/lateral dorsal tegmental nuclei (Ch5/Ch6) were not significantly reduced. Similarly, ethanol did not significantly reduce dopamine cells of the ventral tegmental area/substantia nigra or serotonin cells in the dorsal raphe nucleus. Orexin (hypocretin) cells in the hypothalamus showed a modest reduction (14%). Our findings indicate that the basal forebrain is especially vulnerable to alcohol exposure in the late gestational period. Reduction of cholinergic and GABAergic projection neurons from the basal forebrain that regulate forebrain arousal may contribute to the behavioral and cognitive deficits associated with neonatal ethanol exposure.
Collapse
|
20
|
Gutherz OR, Deyssenroth M, Li Q, Hao K, Jacobson JL, Chen J, Jacobson SW, Carter RC. Potential roles of imprinted genes in the teratogenic effects of alcohol on the placenta, somatic growth, and the developing brain. Exp Neurol 2021; 347:113919. [PMID: 34752786 DOI: 10.1016/j.expneurol.2021.113919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
Despite several decades of research and prevention efforts, fetal alcohol spectrum disorders (FASD) remain the most common preventable cause of neurodevelopmental disabilities worldwide. Animal and human studies have implicated fetal alcohol-induced alterations in epigenetic programming as a chief mechanism in FASD. Several studies have demonstrated fetal alcohol-related alterations in methylation and expression of imprinted genes in placental, brain, and embryonic tissue. Imprinted genes are epigenetically regulated in a parent-of-origin-specific manner, in which only the maternal or paternal allele is expressed, and the other allele is silenced. The chief functions of imprinted genes are in placental development, somatic growth, and neurobehavior-three domains characteristically affected in FASD. In this review, we summarize the growing body of literature characterizing prenatal alcohol-related alterations in imprinted gene methylation and/or expression and discuss potential mechanistic roles for these alterations in the teratogenic effects of prenatal alcohol exposure. Future research is needed to examine potential physiologic mechanisms by which alterations in imprinted genes disrupt development in FASD, which may, in turn, elucidate novel targets for intervention. Furthermore, mechanistic alterations in imprinted gene expression and/or methylation in FASD may inform screening assays that identify individuals with FASD neurobehavioral deficits who may benefit from early interventions.
Collapse
Affiliation(s)
- Olivia R Gutherz
- Institute of Human Nutrition, Columbia University Medical Center, United States of America
| | - Maya Deyssenroth
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, United States of America
| | - Qian Li
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Ke Hao
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, United States of America; Department of Human Biology, University of Cape Town Faculty of Health Sciences, South Africa
| | - Jia Chen
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, United States of America; Department of Human Biology, University of Cape Town Faculty of Health Sciences, South Africa
| | - R Colin Carter
- Institute of Human Nutrition, Columbia University Medical Center, United States of America; Departments of Emergency Medicine and Pediatrics, Columbia University Medical Center, United States of America.
| |
Collapse
|
21
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Wight PA, Kane CJM, Drew PD. Ethanol modulation of hippocampal neuroinflammation, myelination, and neurodevelopment in a postnatal mouse model of fetal alcohol spectrum disorders. Neurotoxicol Teratol 2021; 87:107015. [PMID: 34256161 PMCID: PMC8440486 DOI: 10.1016/j.ntt.2021.107015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common and result in significant personal and societal loss. Neuropathology of the hippocampus is common in FASD leading to aberrant cognitive function. In the current study, we evaluated the effects of ethanol on the expression of a targeted set of molecules involved in neuroinflammation, myelination, neurotransmission, and neuron function in the developing hippocampus in a postnatal model of FASD. Mice were treated with ethanol from P4-P9, hippocampi were isolated 24 h after the final treatment at P10, and mRNA levels were quantitated by qRT-PCR. We evaluated the effects of ethanol on both pro-inflammatory and anti-inflammatory molecules in the hippocampus and identified novel mechanisms by which ethanol induces neuroinflammation. We further demonstrated that ethanol decreased expression of molecules associated with mature oligodendrocytes and greatly diminished expression of a lacZ reporter driven by the first half of the myelin proteolipid protein (PLP) gene (PLP1). In addition, ethanol caused a decrease in genes expressed in oligodendrocyte progenitor cells (OPCs). Together, these studies suggest ethanol may modulate pathogenesis in the developing hippocampus through effects on cells of the oligodendrocyte lineage, resulting in altered oligodendrogenesis and myelination. We also observed differential expression of molecules important in synaptic plasticity, neurogenesis, and neurotransmission. Collectively, the molecules evaluated in these studies may play a role in ethanol-induced pathology in the developing hippocampus and contribute to cognitive impairment associated with FASD. A better understanding of these molecules and their effects on the developing hippocampus may lead to novel treatment strategies for FASD.
Collapse
Affiliation(s)
- Victoria M Niedzwiedz-Massey
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tonya Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Patricia A Wight
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
22
|
Mankiw C, Whitman ET, Torres E, Lalonde F, Clasen LS, Blumenthal JD, Chakravarty MM, Raznahan A. Sex-specific associations between subcortical morphometry in childhood and adult alcohol consumption: A 17-year follow-up study. Neuroimage Clin 2021; 31:102771. [PMID: 34359014 PMCID: PMC8350402 DOI: 10.1016/j.nicl.2021.102771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 01/19/2023]
Abstract
Men and women tend to differ in the age of first alcohol consumption, transition into disordered drinking, and the prevalence of alcohol use disorder. Here, we use a unique longitudinal dataset to test for potentially predispositonal sex-biases in brain organization prior to initial alcohol exposure. Our study combines measures of subcortical morphometry gathered in alcohol naive individuals during childhood (mean age: 9.43 years, SD = 2.06) with self-report measures of alcohol use in the same individuals an average of 17 years later (N = 81, 46 males, 35 females). We observe that pediatric amygdala and hippocampus volume both show sex-biased relationships with adult drinking. Specifically, females show a stronger association between subcortical volumetric reductions in childhood and peak drinking in adulthood as compared to males. Detailed analysis of subcortical shape localizes these effects to the rostro-medial hippocampus and basolateral amygdala subnuclei. In contrast, we did not observe sex-specific associations between striatal anatomy and peak alcohol consumption. These results are consistent with a model in which organization of the amygdala and hippocampus in childhood is more relevant for subsequent patterns of peak alcohol use in females as compared to males. Differential neuroanatomical precursors of alcohol use in males and females could provide a potential developmental basis for well recognized sex-differences in alcohol use behaviors.. Thus, our findings not only indicate that brain correlates of human alcohol consumption are manifest long before alcohol initiation, but that some of these correlates are not equivalent between males and females.
Collapse
Affiliation(s)
- Catherine Mankiw
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Ethan T Whitman
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Erin Torres
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - François Lalonde
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Liv S Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jonathan D Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - M Mallar Chakravarty
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Lee J, Naik V, Orzabal M, Lunde-Young R, Ramadoss J. Morphological alteration in rat hippocampal neuronal dendrites following chronic binge prenatal alcohol exposure. Brain Res 2021; 1768:147587. [PMID: 34297994 DOI: 10.1016/j.brainres.2021.147587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Prenatal alcohol exposure (PAE) may result in Fetal Alcohol Spectrum Disorders (FASD). The hippocampus has been recognized as a vulnerable target to alcohol-induced developmental damage. However, the effect of prenatal exposure to alcohol on dendritic morphological adaptations throughout the hippocampal fields in the developing brain still remains largely unknown in the context of FASD. We hypothesized that chronic binge alcohol exposure during pregnancy alters dendrite arborization throughout the developing rat hippocampus. Pregnant Sprague-Dawley rats were assigned to either a pair-fed control (PF-Cont) or a binge alcohol (Alcohol) treatment group. Alcohol dams were acclimatized via a once-daily orogastric gavage of 4.5 g/kg alcohol from gestational day (GD) 5-10 and progressed to 6 g/kg alcohol from GD 11-21. Pair-fed dams similarly received isocaloric maltose dextrin. After parturition, all dams received an ad libitum diet and nursed their offspring until postnatal day (PND) 10 when the pup brains were collected for morphological analysis. PAE increased dendritic arborization and complexities of CA1, CA2/3, and DG neurons in the PND 10 rat hippocampus. The number of primary dendrites, total dendritic length, and number of dendritic branches were significantly increased following PAE, and Sholl analysis revealed significantly more intersections of the dendritic processes in PND 10 offspring following PAE compared with those in the PF-Cont group. We conclude that chronic binge PAE significantly alters hippocampal dendritic morphology in the developing hippocampus. We conjecture that this morphological alteration in postnatal rat hippocampal dendrites following chronic binge prenatal alcohol exposure may play a critical role in FASD neurobiological phenotypes.
Collapse
Affiliation(s)
- Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Vishal Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Marcus Orzabal
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Raine Lunde-Young
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
24
|
Pinson MR, Holloway KN, Douglas JC, Kane CJM, Miranda RC, Drew PD. Divergent and overlapping hippocampal and cerebellar transcriptome responses following developmental ethanol exposure during the secondary neurogenic period. Alcohol Clin Exp Res 2021; 45:1408-1423. [PMID: 34060105 PMCID: PMC8312515 DOI: 10.1111/acer.14633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
Background The developing hippocampus and cerebellum, unique among brain regions, exhibit a secondary surge in neurogenesis during the third trimester of pregnancy. Ethanol (EtOH) exposure during this period is results in a loss of tissue volume and associated neurobehavioral deficits. However, mechanisms that link EtOH exposure to teratology in these regions are not well understood. We therefore analyzed transcriptomic adaptations to EtOH exposure to identify mechanistic linkages. Methods Hippocampi and cerebella were microdissected at postnatal day (P)10, from control C57BL/6J mouse pups, and pups treated with 4 g/kg of EtOH from P4 to P9. RNA was isolated and RNA‐seq analysis was performed. We compared gene expression in EtOH‐ and vehicle‐treated control neonates and performed biological pathway‐overrepresentation analysis. Results While EtOH exposure resulted in the general induction of genes associated with the S‐phase of mitosis in both cerebellum and hippocampus, overall there was little overlap in differentially regulated genes and associated biological pathways between these regions. In cerebellum, EtOH additionally induced gene expression associated with the G2/M‐phases of the cell cycle and sonic hedgehog signaling, while in hippocampus, EtOH‐induced the pathways for ribosome biogenesis and protein translation. Moreover, EtOH inhibited the transcriptomic identities associated with inhibitory interneuron subpopulations in the hippocampus, while in the cerebellum there was a more pronounced inhibition of transcripts across multiple oligodendrocyte maturation stages. Conclusions These data indicate that during the delayed neurogenic period, EtOH may stimulate the cell cycle, but it otherwise results in widely divergent molecular effects in the hippocampus and cerebellum. Moreover, these data provide evidence for region‐ and cell‐type‐specific vulnerability, which may contribute to the pathogenic effects of developmental EtOH exposure.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Kalee N Holloway
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
25
|
Gursky ZH, Savage LM, Klintsova AY. Executive functioning-specific behavioral impairments in a rat model of human third trimester binge drinking implicate prefrontal-thalamo-hippocampal circuitry in Fetal Alcohol Spectrum Disorders. Behav Brain Res 2021; 405:113208. [PMID: 33640395 PMCID: PMC8005484 DOI: 10.1016/j.bbr.2021.113208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 12/28/2022]
Abstract
Individuals diagnosed with Fetal Alcohol Spectrum Disorders (FASD) often display behavioral impairments in executive functioning (EF). Specifically, the domains of working memory, inhibition, and set shifting are frequently impacted by prenatal alcohol exposure. Coordination between prefrontal cortex and hippocampus appear to be essential for these domains of executive functioning. The current study uses a rodent model of human third-trimester binge drinking to identify the extent of persistent executive functioning deficits following developmental alcohol by using a behavioral battery of hippocampus- and prefrontal cortex-dependent behavioral assays in adulthood. Alcohol added to milk formula was administered to Long Evans rat pups on postnatal days 4-9 (5.25 g/kg/day of ethanol; intragastric intubation), a period when rodent brain development undergoes comparable processes to human third-trimester neurodevelopment. Procedural control animals underwent sham intubation, without administration of any liquids (i.e., alcohol, milk solution). In adulthood, male rats were run on a battery of behavioral assays: novel object recognition, object-in-place associative memory, spontaneous alternation, and behavioral flexibility tasks. Alcohol-exposed rats demonstrated behavioral impairment in object-in-place preference and performed worse when the rule was switched on a plus maze task. All rats showed similar levels of novel object recognition, spontaneous alternation, discrimination learning, and reversal learning, suggesting alcohol-induced behavioral alterations are selective to executive functioning domains of spatial working memory and set-shifting in this widely-utilized rodent model. These specific behavioral alterations support the hypothesis that behavioral impairments in EF following prenatal alcohol exposure are caused by distributed damage to the prefrontal-thalamo-hippocampal circuit consisting of the medial prefrontal cortex, thalamic nucleus reuniens, and CA1 of hippocampus.
Collapse
Affiliation(s)
- Z H Gursky
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - L M Savage
- Department of Psychology, Binghamton University (State University of New York), Binghamton, NY 13902, USA
| | - A Y Klintsova
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
26
|
Gibula-Tarlowska E, Korz V, Lopatynska-Mazurek M, Chlopas-Konowalek A, Grochecki P, Kalaba P, Dragacevic V, Kotlinski R, Kujawski R, Szulc M, Czora-Poczwardowska K, Mikolajczak PL, Lubec G, Kotlinska JH. CE-123, a novel dopamine transporter inhibitor, attenuates locomotor hyperactivity and improves cognitive functions in rat model of fetal alcohol spectrum disorders. Behav Brain Res 2021; 410:113326. [PMID: 33940050 DOI: 10.1016/j.bbr.2021.113326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Perinatal alcohol exposure can lead to fetal alcohol spectrum disorders (FASD), usually first diagnosed in childhood, that are characterized by hyperactivity, impulsivity and learning and memory disability, among others. To test the hypothesis that dopamine signaling is one of the main factors underlying these impairments, a new atypical dopamine transporter (DAT) inhibitor, CE-123 (1, 3 or 10 mg/kg) was assessed for its potential to overcome the ethanol-induced behavioral effects in a rat model of FASD. In the present study, neonatal rats were exposed to alcohol intubations across the neonatal period (postnatal day (PND)4-9, the third trimester equivalent of human gestation) and, after weaning, the animals (male rats) were assigned randomly to three groups. The first group was tested at PND21 (hyperactivity test). A second group was tested at PND45 (anxiety test), at PND47 (locomotor activity test), at PND49 (spatial cognitive test in the Barnes maze) and PND50 (reversal learning in the Barnes maze). The third group was tested at PND50 (dopamine receptor mRNA expression). Our results support the hypothesis that dopamine signaling is associated with FASD because the dopamine (D1, D2 and D5) receptor mRNA expression was altered in the striatum, hippocampus and prefrontal cortex in adult rats exposed to ethanol during neonatal period. CE-123 (3 and 10 mg/kg) inhibited the hyperactivity and ameliorated (10 mg/kg) the impairment of reversal learning in alcohol-exposed rats. Thus, these findings provide support that CE-123 may be a useful intervention for same of the deficits associated with neonatal ethanol exposure.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Volker Korz
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | | | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Paracelsus Private Medical University, Salzburg, Austria
| | - Vladimir Dragacevic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Robert Kotlinski
- Clinical Department of Cardiac Surgery, University of Rzeszow, Rzeszow, Poland
| | - Radosław Kujawski
- Department of Pharmacology, University of Medical Sciences, Poznan, Poland
| | - Michał Szulc
- Department of Pharmacology, University of Medical Sciences, Poznan, Poland
| | | | | | - Gert Lubec
- Paracelsus Private Medical University, Salzburg, Austria
| | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland.
| |
Collapse
|
27
|
Salem NA, Mahnke AH, Konganti K, Hillhouse AE, Miranda RC. Cell-type and fetal-sex-specific targets of prenatal alcohol exposure in developing mouse cerebral cortex. iScience 2021; 24:102439. [PMID: 33997709 PMCID: PMC8105653 DOI: 10.1016/j.isci.2021.102439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/07/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Prenatal alcohol exposure (PAE) results in cerebral cortical dysgenesis. Single-cell RNA sequencing was performed on murine fetal cerebral cortical cells from six timed pregnancies, to decipher persistent cell- and sex-specific effects of an episode of PAE during early neurogenesis. We found, in an analysis of 38 distinct neural subpopulations across 8 lineage subtypes, that PAE altered neural maturation and cell cycle and disrupted gene co-expression networks. Whereas most differentially regulated genes were inhibited, particularly in females, PAE also induced sex-independent neural expression of fetal hemoglobin, a presumptive epigenetic stress adaptation. PAE inhibited Bcl11a, Htt, Ctnnb1, and other upstream regulators of differentially expressed genes and inhibited several autism-linked genes, suggesting that neurodevelopmental disorders share underlying mechanisms. PAE females exhibited neural loss of X-inactivation, with correlated activation of autosomal genes and evidence for spliceosome dysfunction. Thus, episodic PAE persistently alters the developing neural transcriptome, contributing to sex- and cell-type-specific teratology. The neurogenic murine fetal cortex contains about 33 distinct cell subtypes Prenatal Alcohol Exposure (PAE) resulted in sex-specific alterations in developmental trajectory and cell cycle PAE females exhibited neural loss of X-inactivation and spliceosomal dysfunction PAE induced sex-independent neural expression of fetal hemoglobin gene transcripts
Collapse
Affiliation(s)
- Nihal A. Salem
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Amanda H. Mahnke
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
| | - Andrew E. Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
- Corresponding author
| |
Collapse
|
28
|
Stanton ME, Murawski NJ, Jablonski SA, Robinson-Drummer PA, Heroux NA. Mechanisms of context conditioning in the developing rat. Neurobiol Learn Mem 2021; 179:107388. [PMID: 33482320 DOI: 10.1016/j.nlm.2021.107388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
The article reviews our studies of contextual fear conditioning (CFC) in rats during a period of development---Postnatal Day (PND) 17-33---that represents the late-infant, juvenile, and early-adolescent stages. These studies seek to acquire 'systems level' knowledge of brain and memory development and apply it to a rodent model of Fetal Alcohol Spectrum Disorder (FASD). This rodent model focuses on alcohol exposure from PND4-9, a period of brain development equivalent to the human third trimester, when neocortex, hippocampus, and cerebellum are especially vulnerable to adverse effects of alcohol. Our research emphasizes a variant of CFC, termed the Context Preexposure Facilitation Effect (CPFE, Fanselow, 1990), in which context representations incidentally learned on one occasion are retrieved and associated with immediate shock on a subsequent occasion. These representations can be encoded at the earliest developmental stage but seem not to be retained or retrieved until the juvenile period. This is associated with developmental differences in context-elicited expression, in prefrontal cortex, hippocampus, and amygdala, of immediate early genes (IEGs) that are implicated in long-term memory. Loss-of-function studies establish a functional role for these regions as soon as the CPFE emerges during ontogeny. In our rodent model of FASD, the CPFE is much more sensitive to alcohol dose than other commonly used cognitive tasks. This impairment can be reversed by acute administration during behavioral testing of drugs that enhance cholinergic function. This effect is associated with normalized IEG expression in prefrontal cortex during incidental context learning. In summary, our findings suggest that long-term memory of incidentally-learned context representations depends on prefrontal-hippocampal circuitry that is important both for the normative development of context conditioning and for its disruption by developmental alcohol exposure.
Collapse
Affiliation(s)
- Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - Nathen J Murawski
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Sarah A Jablonski
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | | | - Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
29
|
Hippocampal subfield abnormalities and memory functioning in children with fetal alcohol Spectrum disorders. Neurotoxicol Teratol 2020; 83:106944. [PMID: 33232797 DOI: 10.1016/j.ntt.2020.106944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) affects early brain development and has been associated with hippocampal damage. Animal models of PAE have suggested that some subfields of the hippocampus may be more susceptible to damage than others. Recent advances in structural MRI processing now allow us to examine the morphology of hippocampal subfields in humans with PAE. METHOD Structural MRI scans were collected from 40 children with PAE and 39 typically developing children (ages 8-16). The images were processed using the Human Connectome Project Minimal Preprocessing Pipeline (v4.0.1) and the Hippocampal Subfields package (v21) from FreeSurfer. Using a large dataset of typically developing children enrolled in the Human Connectome Project in Development (HCP-D) for normative standards, we computed age-specific volumetric z-scores for our two samples. Using these norm-adjusted hippocampal subfield volumes, comparisons were performed between children with PAE and typically developing children, controlling for total intracranial volume. Lastly, we investigated whether subfield volumes correlated with episodic memory (i.e., Picture Sequence Memory test of the NIH toolbox). RESULTS Five subfields had significantly smaller adjusted volumes in children with PAE than in typically developing controls: CA1, CA4, subiculum, presubiculum, and the hippocampal tail. Subfield volumes were not significantly correlated with episodic memory. CONCLUSIONS The results suggest that several regions of the hippocampus may be particularly affected by PAE. The finding of smaller CA1 volumes parallels previous reports in rodent models. The novel findings of decreased volume in the subicular cortex, CA4 and the hippocampal tail suggest avenues for future research.
Collapse
|
30
|
Bird CW, Barber MJ, Martin J, Mayfield JJ, Valenzuela CF. The mouse-equivalent of the human BDNF VAL66MET polymorphism increases dorsal hippocampal volume and does not interact with developmental ethanol exposure. Alcohol 2020; 86:17-24. [PMID: 32224221 DOI: 10.1016/j.alcohol.2020.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
A relatively common polymorphism in the human brain-derived neurotrophic factor (BDNF) gene (Val66Met, which corresponds to Val68Met in mice) has been shown to modulate cognitive function and vulnerability to mental health disorders. This substitution impairs trafficking and activity-dependent release of BDNF. A number of studies with both humans and transgenic mice suggest that carriers of the Met allele have deficits in the structure and/or function of the hippocampal formation. Using a relatively new transgenic mouse model of this polymorphism, we recently demonstrated that it modulates the effects of developmental ethanol exposure in the hippocampus. Here, we further characterized the effect of this polymorphism on hippocampal morphology and its interaction with ethanol vapor exposure during the 2nd and 3rd trimester equivalents of human pregnancy. We found that BDNFmet/met mice have slightly larger hippocampal volumes than BDNFval/val mice. Ethanol vapor exposure during the 2nd and 3rd trimester equivalents of human pregnancy increased hippocampal volume in a single hippocampal subregion, the CA1 stratum radiatum. Ethanol exposure did not interact with BDNF genotype to affect volume in any hippocampal subregion. These results suggest that the Val66Met polymorphism does not reduce hippocampal size (i.e., it rather increases it slightly) or increase susceptibility to prenatal ethanol exposure-induced structural hippocampal damage during adulthood.
Collapse
|
31
|
Almeida L, Andreu-Fernández V, Navarro-Tapia E, Aras-López R, Serra-Delgado M, Martínez L, García-Algar O, Gómez-Roig MD. Murine Models for the Study of Fetal Alcohol Spectrum Disorders: An Overview. Front Pediatr 2020; 8:359. [PMID: 32760684 PMCID: PMC7373736 DOI: 10.3389/fped.2020.00359] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure is associated to different physical, behavioral, cognitive, and neurological impairments collectively known as fetal alcohol spectrum disorder. The underlying mechanisms of ethanol toxicity are not completely understood. Experimental studies during human pregnancy to identify new diagnostic biomarkers are difficult to carry out beyond genetic or epigenetic analyses in biological matrices. Therefore, animal models are a useful tool to study the teratogenic effects of alcohol on the central nervous system and analyze the benefits of promising therapies. Animal models of alcohol spectrum disorder allow the analysis of key variables such as amount, timing and frequency of ethanol consumption to describe the harmful effects of prenatal alcohol exposure. In this review, we aim to synthetize neurodevelopmental disabilities in rodent fetal alcohol spectrum disorder phenotypes, considering facial dysmorphology and fetal growth restriction. We examine the different neurodevelopmental stages based on the most consistently implicated epigenetic mechanisms, cell types and molecular pathways, and assess the advantages and disadvantages of murine models in the study of fetal alcohol spectrum disorder, the different routes of alcohol administration, and alcohol consumption patterns applied to rodents. Finally, we analyze a wide range of phenotypic features to identify fetal alcohol spectrum disorder phenotypes in murine models, exploring facial dysmorphology, neurodevelopmental deficits, and growth restriction, as well as the methodologies used to evaluate behavioral and anatomical alterations produced by prenatal alcohol exposure in rodents.
Collapse
Affiliation(s)
- Laura Almeida
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Nutrition and Health Deparment, Valencian International University (VIU), Valencia, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisabet Navarro-Tapia
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Aras-López
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
| | - Mariona Serra-Delgado
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Leopoldo Martínez
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Oscar García-Algar
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, Barcelona, Spain
| | - María Dolores Gómez-Roig
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| |
Collapse
|
32
|
Preclinical methodological approaches investigating of the effects of alcohol on perinatal and adolescent neurodevelopment. Neurosci Biobehav Rev 2020; 116:436-451. [PMID: 32681938 DOI: 10.1016/j.neubiorev.2020.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
Despite much evidence of its economic and social costs, alcohol use continues to increase. Much remains to be known as to the effects of alcohol on neurodevelopment across the lifespan and in both sexes. We provide a comprehensive overview of the methodological approaches to ethanol administration when using animal models (primarily rodent models) and their translational relevance, as well as some of the advantages and disadvantages of each approach. Special consideration is given to early developmental periods (prenatal through adolescence), as well as to the types of research questions that are best addressed by specific methodologies. The zebrafish is used increasingly in alcohol research, and how to use this model effectively as a preclinical model is reviewed as well.
Collapse
|
33
|
Reid HMO, Lysenko-Martin MR, Snowden TM, Thomas JD, Christie BR. A Systematic Review of the Effects of Perinatal Alcohol Exposure and Perinatal Marijuana Exposure on Adult Neurogenesis in the Dentate Gyrus. Alcohol Clin Exp Res 2020; 44:1164-1174. [PMID: 32246781 PMCID: PMC7905844 DOI: 10.1111/acer.14332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Marijuana and alcohol are both substances that, when used during pregnancy, may have profound effects on the developing fetus. There is evidence to suggest that both drugs have the capacity to affect working memory, one function of the hippocampal formation; however, there is a paucity of data on how perinatal exposure to alcohol or cannabis impacts the process of adult neurogenesis. METHODS This systematic review examines immunohistochemical data from adult rat and mouse models that assess perinatal alcohol or perinatal marijuana exposure. A comprehensive list of search terms was designed and used to search 3 separate databases. All results were imported to Mendeley and screened by 2 authors. Consensus was reached on a set of final papers that met the inclusion criteria, and their results were summarized. RESULTS Twelve papers were identified as relevant, 10 of which pertained to the effects of perinatal alcohol on the adult hippocampus, and 2 pertained to the effects of perinatal marijuana on the adult hippocampus. Cellular proliferation in the dentate gyrus was not affected in adult rats and mice exposed to alcohol perinatally. In general, perinatal alcohol exposure did not have a significant and reliable effect on the maturation and survival of adult born granule neurons in the dentate gyrus. In contrast, interneuron numbers appear to be reduced in the dentate gyrus of adult rats and mice exposed perinatally to alcohol. Perinatal marijuana exposure was also found to reduce inhibitory interneuron numbers in the dentate gyrus. CONCLUSIONS Perinatal alcohol exposure and perinatal marijuana exposure both act on inhibitory interneurons in the hippocampal formation of adult rats. These findings suggest simultaneous perinatal alcohol and marijuana exposure (SAM) may have a dramatic impact on inhibitory processes in the dentate gyrus.
Collapse
Affiliation(s)
- Hannah M O Reid
- From the, Division of Medical Sciences, (HMOR, MRL, TMS, BRC), University of Victoria, Victoria, British Columbia, Canada
| | - Melanie R Lysenko-Martin
- From the, Division of Medical Sciences, (HMOR, MRL, TMS, BRC), University of Victoria, Victoria, British Columbia, Canada
| | - Taylor M Snowden
- From the, Division of Medical Sciences, (HMOR, MRL, TMS, BRC), University of Victoria, Victoria, British Columbia, Canada
| | - Jennifer D Thomas
- Center for Behavioral Teratology, (JDT), San Diego State University, San Diego, California
| | - Brian R Christie
- From the, Division of Medical Sciences, (HMOR, MRL, TMS, BRC), University of Victoria, Victoria, British Columbia, Canada
- Island Medical Program and Department of Cellular and Physiological Sciences, (BRC), University of British Columbia, Victoria, British Columbia
| |
Collapse
|
34
|
Nucleus reuniens of the midline thalamus of a rat is specifically damaged after early postnatal alcohol exposure. Neuroreport 2020; 30:748-752. [PMID: 31095109 DOI: 10.1097/wnr.0000000000001270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Individuals diagnosed with fetal alcohol spectrum disorders often show behavioral impairments in executive functioning. Mechanistic studies have implicated coordination between the prefrontal cortex and the hippocampus (through thalamic nucleus reuniens) as essential for such executive functions. This study is the first to report the long-term neuroanatomical alterations to the ventral midline thalamus after alcohol exposure on postnatal days 4-9 (a rodent model of binge drinking during the third-trimester of human pregnancy). Alcohol added to a milk formula was administered to female Long-Evans rat pups on postnatal days 4-9 (5.25 g/kg/day of ethanol, intragastric intubation). Control animals were intubated without the administration of liquid. In adulthood, brains were immunohistochemically labeled for a neuronal marker (NeuN) conjugated with Cy3 fluorophore and stained with Hoechst33342 to visualize nuclei. Total non-neuronal cell number (NeuN/Hoechst) and neuron number (NeuN/Hoechst), and total volume were estimated using unbiased stereology in two neighboring midline thalamic nuclei: reuniens and rhomboid. Estimates were analyzed using linear mixed modeling to account for animal and litter as clustering variables. A 21% reduction in the total neuron number (resulting in altered neuron-to-non-neuron ratio) and an 18% reduction in total volume were found exclusively in thalamic nucleus reuniens in rats exposed to ethanol. Non-neuronal cell number was not changed in reuniens. No ethanol-induced changes on any measures were observed in rhomboid nucleus. These specific neuroanatomical alterations provide a necessary foundation for further examination of circuit-level alterations that occur in fetal alcohol spectrum disorder.
Collapse
|
35
|
Dodge NC, Thomas KGF, Meintjes EM, Molteno CD, Jacobson JL, Jacobson SW. Reduced Hippocampal Volumes Partially Mediate Effects of Prenatal Alcohol Exposure on Spatial Navigation on a Virtual Water Maze Task in Children. Alcohol Clin Exp Res 2020; 44:844-855. [PMID: 32196695 DOI: 10.1111/acer.14310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) has been linked to poorer performance on the Morris water maze (MWM), a test of spatial navigation in rodents that is dependent on hippocampal functioning. We recently confirmed these findings in children with PAE on a human analog of the MWM, the virtual water maze (VWM). Previous studies have shown that the hippocampus is particularly sensitive to PAE. Our aim was to determine whether hippocampal volume mediates the relation between PAE and virtual navigation. METHODS VWM and MRI hippocampal data were collected from 50 right-handed 10-year-old children in a heavily exposed Cape Town, South African sample. PAE data had been collected from their mothers during pregnancy, and the children were examined by expert fetal alcohol spectrum disorder (FASD) dysmorphologists. In the VWM, the participant attempts to learn the location of a hidden platform in a virtual pool of water across a series of learning trials using only distal room cues. Hippocampal volumes were derived using FreeSurfer from MRI scans administered within 1 week of completing the VWM task. RESULTS Both the fetal alcohol syndrome (FAS)/partial FAS and nonsyndromal heavy-exposed (HE) groups had smaller hippocampal volumes than controls. PAE was associated with reduced right hippocampal volumes even after control for total intracranial volume (ICV). Hippocampal volume was also positively associated with VWM performance. The relation between PAE and VWM performance was partially mediated by right hippocampal volume but not by total ICV. CONCLUSIONS These data confirm previous reports linking PAE to poorer spatial navigation on the VWM and are the first to provide direct evidence that volume reductions in this region partially mediate the relation of FASD diagnosis to place learning, suggesting that PAE specifically impairs the ability to encode the spatial information necessary for successful location of the hidden platform on a navigation task.
Collapse
Affiliation(s)
- Neil C Dodge
- From the Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kevin G F Thomas
- ACSENT Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Ernesta M Meintjes
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Joseph L Jacobson
- From the Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States.,Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandra W Jacobson
- From the Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States.,Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
Wozniak JR, Fink BA, Fuglestad AJ, Eckerle JK, Boys CJ, Sandness KE, Radke JP, Miller NC, Lindgren C, Brearley AM, Zeisel SH, Georgieff MK. Four-year follow-up of a randomized controlled trial of choline for neurodevelopment in fetal alcohol spectrum disorder. J Neurodev Disord 2020; 12:9. [PMID: 32164522 PMCID: PMC7066854 DOI: 10.1186/s11689-020-09312-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/26/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Despite the high prevalence of fetal alcohol spectrum disorder (FASD), there are few interventions targeting its core neurocognitive and behavioral deficits. FASD is often conceptualized as static and permanent, but interventions that capitalize on brain plasticity and critical developmental windows are emerging. We present a long-term follow-up study evaluating the neurodevelopmental effects of choline supplementation in children with FASD 4 years after an initial efficacy trial. METHODS The initial study was a randomized, double-blind, placebo-controlled trial of choline vs. placebo in 2-5-year-olds with FASD. Participants include 31 children (16 placebo; 15 choline) seen 4 years after trial completion. The mean age at follow-up was 8.6 years. Diagnoses were 12.9% fetal alcohol syndrome (FAS), 41.9% partial FAS, and 45.1% alcohol-related neurodevelopmental disorder. The follow-up included measures of intelligence, memory, executive functioning, and behavior. RESULTS Children who received choline had higher non-verbal intelligence, higher visual-spatial skill, higher working memory ability, better verbal memory, and fewer behavioral symptoms of attention deficit hyperactivity disorder than the placebo group. No differences were seen for verbal intelligence, visual memory, or other executive functions. CONCLUSIONS These data support choline as a potential neurodevelopmental intervention for FASD and highlight the need for long-term follow-up to capture treatment effects on neurodevelopmental trajectories. TRIAL REGISTRATION ClinicalTrials.Gov #NCT01149538; Registered: June 23, 2010; first enrollment July 2, 2010.
Collapse
Affiliation(s)
- Jeffrey R Wozniak
- University of Minnesota Twin Cities, Minneapolis, MN, USA.
- Department of Psychiatry, University of Minnesota, F282 / 2A West, 2450 Riverside Ave, Minneapolis, MN, 55454, USA.
| | - Birgit A Fink
- University of Minnesota Twin Cities, Minneapolis, MN, USA
| | | | | | | | | | | | - Neely C Miller
- University of Minnesota Twin Cities, Minneapolis, MN, USA
| | | | - Ann M Brearley
- University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Steven H Zeisel
- University of North Carolina, Nutrition Research Institute, Kannapolis, NC, USA
| | | |
Collapse
|
37
|
Mira RG, Lira M, Tapia-Rojas C, Rebolledo DL, Quintanilla RA, Cerpa W. Effect of Alcohol on Hippocampal-Dependent Plasticity and Behavior: Role of Glutamatergic Synaptic Transmission. Front Behav Neurosci 2020; 13:288. [PMID: 32038190 PMCID: PMC6993074 DOI: 10.3389/fnbeh.2019.00288] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
Problematic alcohol drinking and alcohol dependence are an increasing health problem worldwide. Alcohol abuse is responsible for approximately 5% of the total deaths in the world, but addictive consumption of it has a substantial impact on neurological and memory disabilities throughout the population. One of the better-studied brain areas involved in cognitive functions is the hippocampus, which is also an essential brain region targeted by ethanol. Accumulated evidence in several rodent models has shown that ethanol treatment produces cognitive impairment in hippocampal-dependent tasks. These adverse effects may be related to the fact that ethanol impairs the cellular and synaptic plasticity mechanisms, including adverse changes in neuronal morphology, spine architecture, neuronal communication, and finally an increase in neuronal death. There is evidence that the damage that occurs in the different brain structures is varied according to the stage of development during which the subjects are exposed to ethanol, and even much earlier exposure to it would cause damage in the adult stage. Studies on the cellular and cognitive deficiencies produced by alcohol in the brain are needed in order to search for new strategies to reduce alcohol neuronal toxicity and to understand its consequences on memory and cognitive performance with emphasis on the crucial stages of development, including prenatal events to adulthood.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile
| | - Matias Lira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Providencia, Chile
| | - Daniela L Rebolledo
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Escuela de Obstetricia y Puericultura and Centro Integrativo de Biología y Química Aplicada (CIBQA), Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Providencia, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
38
|
Lv K, Yang C, Xiao R, Yang L, Liu T, Zhang R, Fan X. Dexmedetomidine attenuates ethanol-induced inhibition of hippocampal neurogenesis in neonatal mice. Toxicol Appl Pharmacol 2020; 390:114881. [PMID: 31954762 DOI: 10.1016/j.taap.2020.114881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Ethanol (EtOH) exposure during a period comparable to the third trimester in human results in obvious neurotoxicity in the developing hippocampus and persistent deficits in hippocampal neurogenesis. Dexmedetomidine (DEX), a highly selective α-2-adrenergic agonist has been demonstrated to restore the impaired neurogenesis and neuronal plasticity in the dentate gyrus (DG) that follows neurological insult. However, the protective roles of DEX in the EtOH-induced deficits of postnatal neurogenesis in the hippocampus are still unknown. METHODS Mice were pretreated with DEX prior to EtOH exposure to determine its protective effects on impaired postnatal hippocampal neurogenesis. Six-day-old neonatal mice were treated with DEX (125 μg/kg) or saline, followed by EtOH at a total of 5 g/kg or an equivalent volume of saline on P7. Immunohistochemistry and immunofluorescence were used to evaluate the neurogenesis and activated microglia in the DG. Quantitative real time PCR (qRT-PCR) was utilized to assess the expression of inflammatory factors in the hippocampus. RESULTS DEX pretreatment attenuated the inhibition of EtOH-mediated hippocampal neurogenesis and the reduction of hippocampal neural precursor cells (NPCs). We further confirmed that DEX pretreatment reversed the EtOH-induced microglia activation in the DG as well as the upregulation of the hippocampal TNFα, MCP-1, IL-6, and IL-1β mRNA levels. CONCLUSION Our findings indicate that DEX pretreatment protects against EtOH-mediated inhibition of hippocampal neurogenesis in postnatal mice and reverses EtOH-induced neuroinflammation via repressing microglia activation and the expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Keyi Lv
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, China
| | - Congwen Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Rui Xiao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, China
| | - Ling Yang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, China
| | - Tianyao Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, China
| | - Ruiyu Zhang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
39
|
Collier AD, Min SS, Campbell SD, Roberts MY, Camidge K, Leibowitz SF. Maternal ethanol consumption before paternal fertilization: Stimulation of hypocretin neurogenesis and ethanol intake in zebrafish offspring. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109728. [PMID: 31394141 PMCID: PMC6815720 DOI: 10.1016/j.pnpbp.2019.109728] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 12/27/2022]
Abstract
There are numerous clinical and pre-clinical studies showing that exposure of the embryo to ethanol markedly affects neuronal development and stimulates alcohol drinking and related behaviors. In rodents and zebrafish, our studies show that embryonic exposure to low-dose ethanol, in addition to increasing voluntary ethanol intake during adolescence, increases the density of hypothalamic hypocretin (hcrt) neurons, a neuropeptide known to regulate reward-related behaviors. The question addressed here in zebrafish is whether maternal ethanol intake before conception also affects neuronal and behavioral development, phenomena suggested by clinical reports but seldom investigated. To determine if preconception maternal ethanol consumption also affects these hcrt neurons and behavior in the offspring, we first standardized a method of measuring voluntary ethanol consumption in AB strain adult and larval zebrafish given gelatin meals containing 10% or 0.1% ethanol, respectively. We found the number of bites of gelatin to be an accurate measure of intake in adults and a strong predictor of blood ethanol levels, and also to be a reliable indicator of intake in larval zebrafish. We then used this feeding paradigm and live imaging to examine the effects of preconception maternal intake of 10% ethanol-gelatin compared to plain-gelatin for 14 days on neuronal development in the offspring. Whereas ethanol consumption by adult female HuC:GFP transgenic zebrafish had no impact on the number of differentiated HuC+ neurons at 28 h post-fertilization (hpf), preconception ethanol consumption by adult female hcrt:EGFP zebrafish significantly increased the number of hcrt neurons in the offspring, an effect observed at 28 hpf and confirmed at 6 and 12 days post-fertilization (dpf). This increase in hcrt neurons was primarily present on the left side of the brain, indicating asymmetry in ethanol's actions, and it was accompanied by behavioral changes in the offspring, including a significant increase in novelty-induced locomotor activity but not thigmotaxis measured at 6 dpf and also in voluntary consumption of 0.1% ethanol-gelatin at 12 dpf. Notably, these measures of ethanol intake and locomotor activity stimulated by preconception ethanol were strongly, positively correlated with the number of hcrt neurons. These findings demonstrate that preconception maternal ethanol consumption affects the brain and behavior of the offspring, producing effects similar to those caused by embryonic ethanol exposure, and they provide further evidence that the ethanol-induced increase in hcrt neurogenesis contributes to the behavioral disturbances caused by ethanol.
Collapse
Affiliation(s)
- Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Soe S Min
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Samantha D Campbell
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Mia Y Roberts
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Kaylin Camidge
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
40
|
Harvey RE, Berkowitz LE, Hamilton DA, Clark BJ. The effects of developmental alcohol exposure on the neurobiology of spatial processing. Neurosci Biobehav Rev 2019; 107:775-794. [PMID: 31526818 PMCID: PMC6876993 DOI: 10.1016/j.neubiorev.2019.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023]
Abstract
The consumption of alcohol during gestation is detrimental to the developing central nervous system. One functional outcome of this exposure is impaired spatial processing, defined as sensing and integrating information pertaining to spatial navigation and spatial memory. The hippocampus, entorhinal cortex, and anterior thalamus are brain regions implicated in spatial processing and are highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on spatial processing may be attributed to changes at the synaptic to circuit level. In this review, we first describe the impact of developmental alcohol exposure on spatial behavior followed by a summary of the development of brain areas involved in spatial processing. We then provide an examination of the consequences of prenatal and early postnatal alcohol exposure in rodents on hippocampal, anterior thalamus, and entorhinal cortex-dependent spatial processing from the cellular to behavioral level. We conclude by highlighting several unanswered questions which may provide a framework for future investigation.
Collapse
Affiliation(s)
- Ryan E Harvey
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Laura E Berkowitz
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
41
|
Episodic Prenatal Exposure To Ethanol Affects Postnatal Neurogenesis In The Macaque Dentate Gyrus And Visual Recognition Memory. Int J Dev Neurosci 2019; 79:65-75. [PMID: 31706015 DOI: 10.1016/j.ijdevneu.2019.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/28/2019] [Accepted: 10/11/2019] [Indexed: 11/23/2022] Open
Abstract
Fetal alcohol syndrome (FAS) is a prime cause of cognitive dysfunction. The present study tested the hypotheses (a) that gestational ethanol exposure results in deficits in hippocampal-related behaviors and associated neurogenesis and (b) that the period of gastrulation is a time of vulnerability. Pregnant macaques were intubated with ethanol or saline once per week for 3, 6, or 24 weeks. Exposures included or omitted the period of gastrulation. Offspring were given behavioral tests including a Visual-Paired Comparison (VPC), a hippocampal-associated memory task, and euthanized as adolescents. Their dentate gyri were processed for immunohistochemical identification of cells passing through the cell cycle (Ki-67 and proliferating cell nuclear antigen), exiting the cell cycle (p21), or passing through early stages of neuronal morphogenesis (Tuj1). Performance in neurobehavioral tasks was unaffected by ethanol exposure, the notable exception being performance in the VPC that was poorer for macaques exposed to ethanol including gastrulation. Anatomical studies show that the expression of Ki-67 was greater and ratio of p21-positive cells to the ratio of Ki-67-expressing cells was lower in animals in which the ethanol exposure included gastrulation. On the other hand, no ethanol-induced differences in TuJ1 expression were detected. Thus, the dentate gyrus is a bellwether of long-term consequences of gestational ethanol exposure. Targeted effects of ethanol on early neural generation (cell cycle and cycle exit) correlate with the timing-dependent degradation in VPC performance and exposure during gastrulation results in notable deficits. These changes evidence a pattern of fetal programming underlying FAS.
Collapse
|
42
|
Dodge NC, Thomas KGF, Meintjes EM, Molteno CD, Jacobson JL, Jacobson SW. Spatial Navigation in Children and Young Adults with Fetal Alcohol Spectrum Disorders. Alcohol Clin Exp Res 2019; 43:2536-2546. [PMID: 31593324 DOI: 10.1111/acer.14210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Rodent studies have consistently shown that prenatal alcohol exposure (PAE) impairs performance on the Morris water maze (MWM), a test of spatial navigation. A previous study comparing boys with fetal alcohol syndrome (FAS) to controls found poorer performance on the virtual water maze (VWM), a human analogue of the MWM. We examined PAE effects on virtual navigation in both sexes using the VWM in a moderately exposed Detroit cohort (N = 104; mean = 19.4 year) and a heavily exposed Cape Town, South African cohort (N = 62; mean = 10.4 year). METHODS The task requires the participant to learn the location of a hidden platform in a virtual pool of water. The set of acquisition trials requires the participant to learn the location of the hidden platform and to return to that location repeatedly. The single-probe trial requires the participant to return to that location without knowing that the platform has been removed. RESULTS No effects of FASD diagnostic group or PAE were detected on virtual navigation in the Detroit moderately exposed cohort. By contrast, in the more heavily exposed Cape Town cohort, the FAS/partial FAS (PFAS) group took longer to locate the hidden platform during acquisition than nonsyndromal heavily exposed (HE) and control groups, an effect that persisted even after controlling for IQ. Among boys, both the FAS/PFAS and HE groups performed more poorly than controls during acquisition, and both boys and girls born to women who binge drank performed more poorly than those born to abstainers/light drinkers. Both amount and frequency of PAE were related to poorer performance during the probe trial at 10 years of age. CONCLUSIONS These data demonstrate deficits in spatial navigation among heavily exposed syndromal boys and girls and in nonsyndromal exposed boys.
Collapse
Affiliation(s)
- Neil C Dodge
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Kevin G F Thomas
- ACSENT Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Ernesta M Meintjes
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan.,Division of Biomedical Engineering, Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan.,Division of Biomedical Engineering, Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| |
Collapse
|
43
|
Gustus K, Lozano E, Newville J, Li L, Valenzuela CF, Cunningham LA. Resistance of Postnatal Hippocampal Neurogenesis to Alcohol Toxicity in a Third Trimester-Equivalent Mouse Model of Gestational Alcohol Exposure. Alcohol Clin Exp Res 2019; 43:2504-2513. [PMID: 31573091 DOI: 10.1111/acer.14207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The adult hippocampal dentate is comprised of both developmentally generated dentate granule cells (dDGCs) and adult-generated dentate granule cells (aDGCs), which play distinct roles in hippocampal information processing and network function. EtOH exposure throughout gestation in mouse impairs the neurogenic response to enriched environment (EE) in adulthood, although the basal rate of adult neurogenesis under standard housing (SH) is unaffected. Here, we tested whether the production and/or survival of either dDGCs or aDGCs are selectively impaired following exposure of mice to EtOH vapors during early postnatal development (human third trimester-equivalent), and whether this exposure paradigm leads to impairment of EE-mediated dentate neurogenesis in adulthood. METHODS All experiments were performed using NestinCreERT2 :tdTomato bitransgenic mice, which harbor a tamoxifen-inducible tdTomato (tdTom) reporter for indelible labeling of newborn hippocampal DGCs. We exposed all mice to EtOH vapor or room air (Control) for 4 h/d from postnatal day (PND) 3 through PND 15. This paradigm resulted in a mean daily postexposure blood EtOH concentration of ~160 mg/dl. One cohort of neonatal mice received a single injection of tamoxifen at PND 2 and was sacrificed at either PND 16 or PND 50 to assess the impact of EtOH exposure on the production and long-term survival of dDGCs born during the early postnatal period. A second cohort of mice received daily injections of tamoxifen at PND 35 to 39 to label aDGCs and was exposed to SH or EE for 6 weeks prior to sacrifice. RESULTS Early postnatal EtOH exposure had no statistically significant effect on the production or survival of tdTom+ dDGCs, as assessed at PND 16 or PND 50. Early postnatal EtOH exposure also had no effect on the number of tdTom+ aDGCs under SH conditions. Furthermore, early postnatal EtOH exposure had no significant impact on the adult neurogenic response to EE. CONCLUSIONS Both early postnatal dentate neurogenesis and adult dentate neurogenesis, as well as the adult neurogenic response to EE, are surprisingly resistant to early postnatal EtOH vapor exposure in mice.
Collapse
Affiliation(s)
- Kymberly Gustus
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Evelyn Lozano
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jessie Newville
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Lu Li
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | - Lee Anna Cunningham
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
44
|
Heroux NA, Horgan CJ, Rosen JB, Stanton ME. Cholinergic rescue of neurocognitive insult following third-trimester equivalent alcohol exposure in rats. Neurobiol Learn Mem 2019; 163:107030. [PMID: 31185278 PMCID: PMC6689250 DOI: 10.1016/j.nlm.2019.107030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 12/28/2022]
Abstract
Neonatal ethanol exposure during the third trimester equivalent of human pregnancy in the rat significantly impairs hippocampal and prefrontal neurobehavioral functioning. Postnatal day [PD] 4-9 ethanol exposure in rats disrupts long-term context memory formation, resulting in abolished post-shock and retention test freezing in a variant of contextual fear conditioning called the Context Preexposure Facilitation Effect (CPFE). This behavioral impairment is accompanied by disrupted medial prefrontal, but not dorsal hippocampal expression of the immediate early genes (IEGs) c-Fos, Arc, Egr-1, and Npas4 (Heroux, Robinson-Drummer, Kawan, Rosen, & Stanton, 2019). The current experiment examined if systemic administration of the acetylcholinesterase inhibitor physostigmine (PHY) prior to context learning would rescue prefrontal IEG expression and freezing in the CPFE. From PD4-9, Long-Evans rats received oral intubation of ethanol (EtOH; 5.25 g/kg/day) or sham-intubation (SI). Rats received a systemic injection of saline (SAL) or PHY (0.01 mg/kg) prior to all three phases (Experiment 1) or just context exposure (Experiment 2) in the CPFE from PD31-33. A subset of rats were sacrificed 30 min after context learning to assay changes in IEG expression in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC), and ventral hippocampus (vHPC). Administration of PHY prior to all three phases or just context learning rescued both post-shock and retention test freezing in the CPFE in EtOH rats without altering performance in SI rats. EtOH-SAL rats had significantly reduced mPFC but not dHPC expression of c-Fos, Arc, Egr-1, and Npas4. EtOH-PHY treatment rescued mPFC expression of c-Fos in ethanol-exposed rats and increased Arc and Npas4 regardless of dosing condition. While there was no effect of PHY on dHPC or vHPC expression of Arc, Egr-1, or Npas4, this treatment significantly boosted hippocampal expression of c-Fos regardless of ethanol treatment. These findings implicate impaired cholinergic and prefrontal function in cognitive deficits arising from 3rd-trimester equivalent alcohol exposure.
Collapse
Affiliation(s)
- Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - Colin J Horgan
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Jeffrey B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
45
|
Collier AD, Halkina V, Min SS, Roberts MY, Campbell SD, Camidge K, Leibowitz SF. Embryonic Ethanol Exposure Affects the Early Development, Migration, and Location of Hypocretin/Orexin Neurons in Zebrafish. Alcohol Clin Exp Res 2019; 43:1702-1713. [PMID: 31206717 PMCID: PMC6677602 DOI: 10.1111/acer.14126] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/03/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Embryonic ethanol (EtOH) exposure is known to increase alcohol drinking later in life and have long-term effects on neurochemical systems in the brain. With zebrafish having marked advantages for elucidating neural mechanisms underlying brain disorders, we recently tested and showed in these fish, similar to rodents, that low-dose embryonic EtOH stimulates voluntary consumption of EtOH while increasing expression of hypocretin/orexin (hcrt) neurons, a neuropeptide that promotes consummatory and reward-related behaviors. The goal of the present study was to characterize how embryonic EtOH affects early development of the hcrt system and produces persistent changes at older ages that may contribute to this increase in EtOH consumption. METHODS We utilized live imaging and Imaris software to investigate how low-dose embryonic EtOH (0.5%), administered from 22 to 24 hours postfertilization, affects specific properties of hcrt neurons in hcrt:EGFP transgenic zebrafish at different ages. RESULTS Time-lapse imaging from 24 to 28 hpf showed that embryonic EtOH increased the number of hcrt neurons, reduced the speed, straightness, and displacement of their migratory paths, and altered their direction early in development. At older ages up to 6 dpf, the embryonic EtOH-induced increase in hcrt neurons was persistent, and the neurons became more widely dispersed. These effects of embryonic EtOH were found to be asymmetric, occurring predominantly on the left side of the brain, and at 6 dpf, they resulted in marked changes in the anatomical location of the hcrt neurons, with some detected outside their normal position in the anterior hypothalamus again primarily on the left side. CONCLUSIONS Our findings demonstrate that low-dose embryonic EtOH has diverse, persistent, and asymmetric effects on the early development of hypothalamic hcrt neurons, which lead to abnormalities in their ultimate location that may contribute to behavioral disturbances, including an increase in EtOH consumption.
Collapse
Affiliation(s)
- Adam D. Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Viktoriya Halkina
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Soe S. Min
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Mia Y. Roberts
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | | | - Kaylin Camidge
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| |
Collapse
|
46
|
Halcomb ME, Chumin EJ, Goñi J, Dzemidzic M, Yoder KK. Aberrations of anterior insular cortex functional connectivity in nontreatment-seeking alcoholics. Psychiatry Res Neuroimaging 2019; 284:21-28. [PMID: 30640144 PMCID: PMC6668713 DOI: 10.1016/j.pscychresns.2018.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/11/2018] [Accepted: 12/31/2018] [Indexed: 01/28/2023]
Abstract
An emergent literature suggests that resting state functional magnetic resonance imaging (rsfMRI) functional connectivity (FC) patterns are aberrant in alcohol use disorder (AUD) populations. The salience network (SAL) is an established set of brain regions prominent in salience attribution and valuation, and includes the anterior insular cortex (AIC). The SAL is thought to play a role in AUD through directing increased attention to interoceptive cues of intoxication. There is very little information on the salience network (SAL) in AUD, and, in particular, there are no data on SAL FC in currently drinking, nontreatment seeking individuals with AUD (NTS). rsfMRI data from 16 NTS and 21 social drinkers (SD) were compared using FC correlation maps from ten seed regions of interest in the bilateral AIC. As anticipated, SD subjects demonstrated greater insular FC with frontal and parietal regions. We also found that, compared to SD, NTS had higher insular FC with hippocampal and medial orbitofrontal regions. The apparent overactivity in brain networks involved in salience, learning, and behavioral control in NTS suggests possible mechanisms in the development and maintenance of AUD.
Collapse
Affiliation(s)
- Meredith E Halcomb
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Evgeny J Chumin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indiananpolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joaquín Goñi
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mario Dzemidzic
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karmen K Yoder
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indiananpolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
47
|
Neonatal ethanol exposure impairs long-term context memory formation and prefrontal immediate early gene expression in adolescent rats. Behav Brain Res 2018; 359:386-395. [PMID: 30447241 DOI: 10.1016/j.bbr.2018.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 11/21/2022]
Abstract
Fetal alcohol exposure leads to severe disruptions in learning and memory involving the hippocampus and prefrontal cortex in humans. Animal model research on FASD has documented impairment of hippocampal neuroanatomy and function but animal studies of cognition involving the prefrontal cortex are sparse. We have found that a variant of contextual fear conditioning in which both the hippocampus and prefrontal cortex is required, the Context Preexposure Facilitation Effect (CPFE), is particularly sensitive to neurobehavioral disruption caused by neonatal ethanol exposure during the third trimester equivalent of human pregnancy in the rat (i.e., PD4-9). In the CPFE, learning about the context, acquiring a context-shock association, and retrieving contextual fear are temporally separated across three days. The current study asked whether neonatal alcohol exposure impairs context learning, consolidation, or retrieval and examined prefrontal and hippocampal molecular signaling as correlates of this impairment. Long-Evans rats that received oral intubation of ethanol (AE; 5.25 g/kg/day, split into two doses) or underwent sham-intubation (SI) from PND4-9 were tested on the CPFE on PD31-33. Extending our previous reports, ethanol abolished both post-shock and retention test freezing in the CPFE. Assays (qPCR) of immediate early gene expression revealed that ethanol disrupted prefrontal but not hippocampal expression of c-Fos, Arc, Egr-1, and Npas4 during context learning. Finally, ethanol-exposed animals were unimpaired in a standard contextual fear conditioning procedure in which learning about the context and acquiring a context-shock association occurs concurrently. These findings implicate impaired prefrontal function in cognitive deficits arising from 3rd-trimester equivalent alcohol exposure in the rat.
Collapse
|
48
|
Jablonski SA, Robinson-Drummer PA, Schreiber WB, Asok A, Rosen JB, Stanton ME. Impairment of the context preexposure facilitation effect in juvenile rats by neonatal alcohol exposure is associated with decreased Egr-1 mRNA expression in the prefrontal cortex. Behav Neurosci 2018; 132:497-511. [PMID: 30346189 DOI: 10.1037/bne0000272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a variant of contextual fear conditioning in which learning about the context (preexposure) and associating the context with a shock (training) occur on separate occasions. The CPFE is sensitive to a range of neonatal alcohol doses (Murawski & Stanton, 2011). The current study examined the impact of neonatal alcohol on Egr-1 mRNA expression in the infralimbic (IL) and prelimbic (PL) subregions of the mPFC, the CA1 of dorsal hippocampus (dHPC), and the lateral nucleus of the amygdala (LA), following the preexposure and training phases of the CPFE. Rat pups were exposed to a 5.25 g/kg/day single binge-like dose of alcohol (Group EtOH) or were sham intubated (SI; Group SI) over postnatal days (PD) 7-9. In behaviorally tested rats, alcohol administration disrupted freezing. Following context preexposure, Egr-1 mRNA was elevated in both EtOH and SI groups compared with baseline control animals in all regions analyzed. Following both preexposure and training, Group EtOH displayed a significant decrease in mPFC Egr-1 mRNA expression compared with Group SI. However, this decrease was greatest after training. Training day decreases in Egr-1 expression were not found in LA or CA1 in Group EtOH compared with Group SI. A second experiment confirmed that the EtOH-induced training-day deficits in mPFC Egr-1 mRNA expression were specific to groups which learned contextual fear (vs. nonassociative controls). Thus, memory processes that engage the mPFC during the context-shock association may be most susceptible to the teratogenic effects of neonatal alcohol. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | - Arun Asok
- Department of Psychological and Brain Sciences
| | | | | |
Collapse
|
49
|
Kozanian OO, Rohac DJ, Bavadian N, Corches A, Korzus E, Huffman KJ. Long-Lasting Effects of Prenatal Ethanol Exposure on Fear Learning and Development of the Amygdala. Front Behav Neurosci 2018; 12:200. [PMID: 30233337 PMCID: PMC6131196 DOI: 10.3389/fnbeh.2018.00200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
Prenatal ethanol exposure (PrEE) produces developmental abnormalities in brain and behavior that often persist into adulthood. We have previously reported abnormal cortical gene expression, disorganized neural circuitry along with deficits in sensorimotor function and anxiety in our CD-1 murine model of fetal alcohol spectrum disorders, or FASD (El Shawa et al., 2013; Abbott et al., 2016). We have proposed that these phenotypes may underlie learning, memory, and behavioral deficits in humans with FASD. Here, we evaluate the impact of PrEE on fear memory learning, recall and amygdala development at two adult timepoints. PrEE alters learning and memory of aversive stimuli; specifically, PrEE mice, fear conditioned at postnatal day (P) 50, showed deficits in fear acquisition and memory retrieval when tested at P52 and later at P70–P72. Interestingly, this deficit in fear acquisition observed during young adulthood was not present when PrEE mice were conditioned later, at P80. These mice displayed similar levels of fear expression as controls when tested on fear memory recall. To test whether PrEE alters development of brain circuitry associated with fear conditioning and fear memory recall, we histologically examined subdivisions of the amygdala in PrEE and control mice and found long-term effects of PrEE on fear memory circuitry. Thus, results from this study will provide insight on the neurobiological and behavioral effects of PrEE and provide new information on developmental trajectories of brain dysfunction in people prenatally exposed to ethanol.
Collapse
Affiliation(s)
- Olga O Kozanian
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - David J Rohac
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Niusha Bavadian
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Alex Corches
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Edward Korzus
- Department of Psychology, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Kelly J Huffman
- Department of Psychology, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States.,Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
50
|
Georgieff MK, Tran PV, Carlson ES. Atypical fetal development: Fetal alcohol syndrome, nutritional deprivation, teratogens, and risk for neurodevelopmental disorders and psychopathology. Dev Psychopathol 2018; 30:1063-1086. [PMID: 30068419 PMCID: PMC6074054 DOI: 10.1017/s0954579418000500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that the fetal environment plays an important role in brain development and sets the brain on a trajectory across the life span. An abnormal fetal environment results when factors that should be present during a critical period of development are absent or when factors that should not be in the developing brain are present. While these factors may acutely disrupt brain function, the real cost to society resides in the long-term effects, which include important mental health issues. We review the effects of three factors, fetal alcohol exposure, teratogen exposure, and nutrient deficiencies, on the developing brain and the consequent risk for developmental psychopathology. Each is reviewed with respect to the evidence found in epidemiological and clinical studies in humans as well as preclinical molecular and cellular studies that explicate mechanisms of action.
Collapse
Affiliation(s)
| | - Phu V Tran
- University of Minnesota School of Medicine
| | | |
Collapse
|