1
|
Zhao H, Tang J, Cao L, Jia G, Long D, Liu G, Chen X, Cai J, Shang H. Characterization of bioactive recombinant antimicrobial peptide parasin I fused with human lysozyme expressed in the yeast Pichia pastoris system. Enzyme Microb Technol 2015; 77:61-7. [PMID: 26138401 DOI: 10.1016/j.enzmictec.2015.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 11/16/2022]
Abstract
Parasin I (PI) is a 19 amino acid peptide with potent antimicrobial activities against a broad spectrum of microorganisms and is a good candidate for development as a novel antimicrobial agent. The objective of this study was to express and characterize a codon optimized parasin I peptide fused with human lysozyme (hLY). A 513 bp cDNA fragment encoding the mature hLY protein and parasin I peptide was designed and synthesized according to the codon bias of Pichia pastoris. A 4×Gly flexible amino acid linker with an enterokinase cleavage (DDDDK) was designed to link the PI to the C-terminal of hLY. The codon optimized recombinant hLY-PI was cloned into the pPICZαA vector and expressed in P. pastoris. The over-expressed extracellular rehLY-PI was purified using Ni sepharose affinity column and exhibited a molecular mass of approximately 18 kDa. After digested with enterokinase the rehLY-PI protein release its corresponding rehLY and rePI, with molecular mass of 16 kDa and 2 kDa, respectively, on Tricine-SDS-PAGE. The released rehLY exhibited similar lytical activity against Micrococcus lysodeikticus to its commercial hLY. The digested rehLY-PI product exhibited antimicrobial activities against Bacillus subtilis, Staphylococcus aureus and Escherichia coli, and synergism has been found between the released rePI and rehLY. In conclusion, we successfully optimized a rehLY-PI fusion protein encoding gene and over-expressed the rehLY-PI in P. pastoris. The recombination protein digested with enterokinase released functional hLY and antimicrobial parasin I, which demonstrates a potential for future use as an animal feed additive to partly replace antibiotic.
Collapse
Affiliation(s)
- Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lei Cao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dingbiao Long
- Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haiying Shang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
2
|
Expression of a novel dual-functional protein--the antimicrobial peptide LL-37 fused with human acidic fibroblast growth factor in Escherichia coli. Protein Expr Purif 2011; 81:119-125. [PMID: 21963769 DOI: 10.1016/j.pep.2011.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 09/14/2011] [Accepted: 09/16/2011] [Indexed: 01/14/2023]
Abstract
Human acidic fibroblast growth factor (haFGF) stimulates repair of delayed healing which still remains a tremendously world-wide issue. However, most of the patients with delayed healings have to face another creeping problem - microbial infection, which is one of the most frequent complications that still lead to wound healing failure. LL-37/hCAP-18 is the only cathelicidin-derived antimicrobial peptide found in human with a wide range of antimicrobial activities. In the present study, a novel hybrid protein combining LL-37 with haFGF was designed. The DNA sequence encoding recombination fusion protein LL-37-haFGF was subcloned into the pET-21b vector for protein expression in Escherichia coli strain BL21 (DE3). The recombinant protein was expressed as a His-tagged protein and purified using a combination of Ni affinity and CM-Sepharose chromatography at a purity of 95.43% as detected by RP-HPLC and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Antimicrobial activity assays showed that the purified LL-37-haFGF had improved antimicrobial activities in vitro compared with LL-37. Methylthiazoletetrazolium (MTT) assay showed that the purified LL-37-haFGF also had a distinct mitogenic activity in NIH 3T3 cells. These data suggests the recombinant protein LL-37-haFGF has pharmaceutical potential for applications in wound healing.
Collapse
|
3
|
Yuan S, Pan Q, Liu W, Wu B, Han X, Bi Z. Recombinant BMP 4/7 fusion protein induces differentiation of bone marrow stem cells. J Cell Biochem 2011; 112:3054-60. [DOI: 10.1002/jcb.23230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Expression of the antimicrobial peptide cecropin fused with human lysozyme in Escherichia coli. Appl Microbiol Biotechnol 2010; 87:2169-76. [PMID: 20499232 DOI: 10.1007/s00253-010-2606-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 04/02/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
Lysozyme is an abundant, cationic antimicrobial protein that plays an important role in host defense. It targets the beta (1-4) glycosidic bond between N-acetylglucosamine and N-acetylmuramic residues that make up peptidoglycan, making lysozyme highly active against Gram-positive bacteria. However, lysozyme alone is inactive against Gram-negative bacteria because it cannot reach the peptidoglycan layer. Cecropins are cationic molecules with a wide range of antimicrobial activities. The main target for these peptides is the cytoplasmic membrane. We resume that cecopin may disrupt the outer membrane, giving the enzyme access to the peptidoglycan in cell wall. So in the present study, novel hybrid protein combining Musca domestica cecropin (Mdc) with human lysozyme (Hly) was designed. The DNA sequence encoding recombination fusion protein Mdc-hly was cloned into the pET-32a vector for protein expression in Escherichia coli strain BL21 (DE3). The protein was expressed as a His-tagged fusion protein, and the Mdc-hly was released from the fusion by enterokinase cleavage and separated from the carrier thioredoxin. Antimicrobial activity assays showed that the recombinant fusion protein Mdc-hly has improved in vitro antimicrobial activity and action spectrum compared to Mdc and hly. Mdc-hly may have important potential application as a future safely administered human drug and food additive.
Collapse
|