1
|
Grina/TMBIM3 modulates voltage-gated Ca V2.2 Ca 2+ channels in a G-protein-like manner. Cell Calcium 2019; 80:71-78. [PMID: 30991297 DOI: 10.1016/j.ceca.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 11/21/2022]
Abstract
Grina/TMBIM3 is a poorly characterized transmembrane protein with a broad expression pattern in mammals and with a very ancient origin within eukaryotes. Although initially characterized as an NMDA-receptor associated subunit, there is increasing evidence that Grina/TMBIM3 is involved in the unfolded protein response and controls apoptosis via regulation of Ca2+ homeostasis. Here, we investigate a putative direct interaction of Grina/TMBIM3 with voltage gated Ca2+ channels, in particular with the CaV2.2 α1-subunit and describe its modulatory effects on the current through CaV2.2 N-type channels. Direct interaction was confirmed by co-immunoprecipitation studies and membrane localization was proven. Co-expression of Grina/TMBIM3 with CaV2.2 channels resulted in a significant decrease of the current amplitude and in a slowing of the kinetics of current activation. This effect was accompanied by a significant shift of the voltage dependencies of activation time constants towards more depolarized voltages. Application of a stimulus protocol including a strong depolarizing pulse relieved inhibition of current amplitude by Grina/TMBIM3. When Grina/TMBIM3 was present, inactivation by an action potential-like train of pulses was diminished. Both observations resemble mechanisms that are well-studied modulatory effects of G-protein βγ subunits on CaV2 channels. The impact of Grina/TMBIM3 and G-protein βγ subunits are rather comparable with respect to suppression of current amplitude and slowing of activation kinetics. Furthermore, both modulators had the same effect on current inactivation when evoked by an action potential-like train of pulses.
Collapse
|
2
|
Zurawski Z, Thompson Gray AD, Brady LJ, Page B, Church E, Harris NA, Dohn MR, Yim YY, Hyde K, Mortlock DP, Jones CK, Winder DG, Alford S, Hamm HE. Disabling the Gβγ-SNARE interaction disrupts GPCR-mediated presynaptic inhibition, leading to physiological and behavioral phenotypes. Sci Signal 2019; 12:12/569/eaat8595. [PMID: 30783011 DOI: 10.1126/scisignal.aat8595] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptors (GPCRs) that couple to Gi/o proteins modulate neurotransmission presynaptically by inhibiting exocytosis. Release of Gβγ subunits from activated G proteins decreases the activity of voltage-gated Ca2+ channels (VGCCs), decreasing excitability. A less understood Gβγ-mediated mechanism downstream of Ca2+ entry is the binding of Gβγ to SNARE complexes, which facilitate the fusion of vesicles with the cell plasma membrane in exocytosis. Here, we generated mice expressing a form of the SNARE protein SNAP25 with premature truncation of the C terminus and that were therefore partially deficient in this interaction. SNAP25Δ3 homozygote mice exhibited normal presynaptic inhibition by GABAB receptors, which inhibit VGCCs, but defective presynaptic inhibition by receptors that work directly on the SNARE complex, such as 5-hydroxytryptamine (serotonin) 5-HT1b receptors and adrenergic α2a receptors. Simultaneously stimulating receptors that act through both mechanisms showed synergistic inhibitory effects. SNAP25Δ3 homozygote mice had various behavioral phenotypes, including increased stress-induced hyperthermia, defective spatial learning, impaired gait, and supraspinal nociception. These data suggest that the inhibition of exocytosis by Gi/o-coupled GPCRs through the Gβγ-SNARE interaction is a crucial component of numerous physiological and behavioral processes.
Collapse
Affiliation(s)
- Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Lillian J Brady
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brian Page
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emily Church
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nicholas A Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Michael R Dohn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Douglas P Mortlock
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
3
|
Schneider T, Alpdogan S, Hescheler J, Neumaier F. In vitro and in vivo phosphorylation of the Ca v2.3 voltage-gated R-type calcium channel. Channels (Austin) 2018; 12:326-334. [PMID: 30165790 PMCID: PMC6986797 DOI: 10.1080/19336950.2018.1516984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
During the recording of whole cell currents from stably transfected HEK-293 cells, the decline of currents carried by the recombinant human Cav2.3+β3 channel subunits is related to adenosine triphosphate (ATP) depletion after rupture of the cells. It reduces the number of functional channels and leads to a progressive shift of voltage-dependent gating to more negative potentials (Neumaier F., et al., 2018). Both effects can be counteracted by hydrolysable ATP, whose protective action is almost completely prevented by inhibition of serine/threonine but not tyrosine or lipid kinases. These findings indicate that ATP promotes phosphorylation of either the channel or an associated protein, whereas dephosphorylation during cell dialysis results in run-down. Protein phosphorylation is required for Cav2.3 channel function and could directly influence the normal features of current carried by these channels. Therefore, results from in vitro and in vivo phosphorylation of Cav2.3 are summarized to come closer to a functional analysis of structural variations in Cav2.3 splice variants.
Collapse
Affiliation(s)
- T. Schneider
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, Cologne, Germany
| | - S. Alpdogan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, Cologne, Germany
| | - J. Hescheler
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, Cologne, Germany
| | - F. Neumaier
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, Cologne, Germany
| |
Collapse
|
4
|
Syringaresinol suppresses excitatory synaptic transmission and picrotoxin-induced epileptic activity in the hippocampus through presynaptic mechanisms. Neuropharmacology 2017; 131:68-82. [PMID: 29225041 DOI: 10.1016/j.neuropharm.2017.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 01/18/2023]
Abstract
Many neuromodulating drugs acting on the nervous system originate from botanical sources. These plant-derived substances modulate the activity of receptors, ion channels, or transporters in neurons. Their properties make the substances useful for medicine and research. Here, we show that the plant lignan (+)-syringaresinol (SYR) suppresses excitatory synaptic transmission via presynaptic modulation. Bath application of SYR rapidly reduced the slopes of the field excitatory postsynaptic potentials (fEPSPs) at the hippocampal Schaffer collateral (SC)-CA1 synapse in a dose-dependent manner. SYR preferentially affected excitatory synapses, while inhibitory synaptic transmission remained unchanged. SYR had no effect on the conductance or the desensitization of AMPARs but increased the paired-pulse ratios of synaptic responses at short (20-200 ms) inter-stimulus intervals. These presynaptic changes were accompanied by a reduction of the readily releasable pool size. Pretreatment of hippocampal slices with the Gi/o protein inhibitor N-ethylmaleimide (NEM) abolished the effect of SYR on excitatory synaptic transmission, while the application of SYR significantly decreased Ca2+ currents and hyperpolarized the resting membrane potentials of hippocampal neurons. In addition, SYR suppressed picrotoxin-induced epileptiform activity in hippocampal slices. Overall, our study identifies SYR as a new neuromodulating agent and suggests that SYR suppresses excitatory synaptic transmission by modulating presynaptic transmitter release.
Collapse
|
5
|
Silva FR, Miranda AS, Santos RP, Olmo IG, Zamponi GW, Dobransky T, Cruz JS, Vieira LB, Ribeiro FM. N-type Ca2+ channels are affected by full-length mutant huntingtin expression in a mouse model of Huntington's disease. Neurobiol Aging 2017; 55:1-10. [DOI: 10.1016/j.neurobiolaging.2017.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/06/2017] [Accepted: 03/09/2017] [Indexed: 11/30/2022]
|
6
|
Dick IE, Joshi-Mukherjee R, Yang W, Yue DT. Arrhythmogenesis in Timothy Syndrome is associated with defects in Ca(2+)-dependent inactivation. Nat Commun 2016; 7:10370. [PMID: 26822303 PMCID: PMC4740114 DOI: 10.1038/ncomms10370] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022] Open
Abstract
Timothy Syndrome (TS) is a multisystem disorder, prominently featuring cardiac action potential prolongation with paroxysms of life-threatening arrhythmias. The underlying defect is a single de novo missense mutation in CaV1.2 channels, either G406R or G402S. Notably, these mutations are often viewed as equivalent, as they produce comparable defects in voltage-dependent inactivation and cause similar manifestations in patients. Yet, their effects on calcium-dependent inactivation (CDI) have remained uncertain. Here, we find a significant defect in CDI in TS channels, and uncover a remarkable divergence in the underlying mechanism for G406R versus G402S variants. Moreover, expression of these TS channels in cultured adult guinea pig myocytes, combined with a quantitative ventricular myocyte model, reveals a threshold behaviour in the induction of arrhythmias due to TS channel expression, suggesting an important therapeutic principle: a small shift in the complement of mutant versus wild-type channels may confer significant clinical improvement. Timothy Syndrome (TS) is a multisystem disorder caused by two mutations leading to dysfunction of the CaV1.2 channel. Here, Dick et al. uncover a major and mechanistically divergent effect of both mutations on Ca2+/calmodulin-dependent inactivation of CaV1.2 channels, suggesting genetic variant-tailored therapy for TS treatment.
Collapse
Affiliation(s)
- Ivy E Dick
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Rosy Joshi-Mukherjee
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Wanjun Yang
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - David T Yue
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| |
Collapse
|
7
|
Abstract
A central theme in the quest to unravel the genetic basis of epilepsy has been the effort to elucidate the roles played by inherited defects in ion channels. The ubiquitous expression of voltage-gated calcium channels (VGCCs) throughout the central nervous system (CNS), along with their involvement in fundamental processes, such as neuronal excitability and synaptic transmission, has made them attractive candidates. Recent insights provided by the identification of mutations in the P/Q-type calcium channel in humans and rodents with epilepsy and the finding of thalamic T-type calcium channel dysfunction in the absence of seizures have raised expectations of a causal role of calcium channels in the polygenic inheritance of idiopathic epilepsy. In this review, we consider how genetic variation in neuronal VGCCs may influence the development of epilepsy.
Collapse
Affiliation(s)
- Sanjeev Rajakulendran
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| | - Michael G Hanna
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
8
|
Pedunculopontine Gamma Band Activity and Development. Brain Sci 2015; 5:546-67. [PMID: 26633526 PMCID: PMC4701027 DOI: 10.3390/brainsci5040546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/25/2022] Open
Abstract
This review highlights the most important discovery in the reticular activating system in the last 10 years, the manifestation of gamma band activity in cells of the reticular activating system (RAS), especially in the pedunculopontine nucleus, which is in charge of waking and rapid eye movement (REM) sleep. The identification of different cell groups manifesting P/Q-type Ca(2+) channels that control waking vs. those that manifest N-type channels that control REM sleep provides novel avenues for the differential control of waking vs. REM sleep. Recent discoveries on the development of this system can help explain the developmental decrease in REM sleep and the basic rest-activity cycle.
Collapse
|
9
|
Proft J, Weiss N. G protein regulation of neuronal calcium channels: back to the future. Mol Pharmacol 2014; 87:890-906. [PMID: 25549669 DOI: 10.1124/mol.114.096008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/30/2014] [Indexed: 11/22/2022] Open
Abstract
Neuronal voltage-gated calcium channels have evolved as one of the most important players for calcium entry into presynaptic endings responsible for the release of neurotransmitters. In turn, and to fine-tune synaptic activity and neuronal communication, numerous neurotransmitters exert a potent negative feedback over the calcium signal provided by G protein-coupled receptors. This regulation pathway of physiologic importance is also extensively exploited for therapeutic purposes, for instance in the treatment of neuropathic pain by morphine and other μ-opioid receptor agonists. However, despite more than three decades of intensive research, important questions remain unsolved regarding the molecular and cellular mechanisms of direct G protein inhibition of voltage-gated calcium channels. In this study, we revisit this particular regulation and explore new considerations.
Collapse
Affiliation(s)
- Juliane Proft
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
10
|
Tyson JR, Snutch TP. Molecular nature of voltage‐gated calcium channels: structure and species comparison. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/wmts.91] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John R. Tyson
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
| | - Terrance P. Snutch
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
| |
Collapse
|
11
|
Ferrero JJ, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. Potentiation of mGlu7 receptor-mediated glutamate release at nerve terminals containing N and P/Q type Ca2+ channels. Neuropharmacology 2013; 67:213-22. [DOI: 10.1016/j.neuropharm.2012.10.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/18/2012] [Accepted: 10/06/2012] [Indexed: 12/27/2022]
|
12
|
Pérez-Garci E, Larkum ME, Nevian T. Inhibition of dendritic Ca2+ spikes by GABAB receptors in cortical pyramidal neurons is mediated by a direct Gi/o-β-subunit interaction with Cav1 channels. J Physiol 2012. [PMID: 23184512 DOI: 10.1113/jphysiol.2012.245464] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Voltage-dependent calcium channels (VDCCs) serve a wide range of physiological functions and their activity is modulated by different neurotransmitter systems. GABAergic inhibition of VDCCs in neurons has an important impact in controlling transmitter release, neuronal plasticity, gene expression and neuronal excitability. We investigated the molecular signalling mechanisms by which GABA(B) receptors inhibit calcium-mediated electrogenesis (Ca(2+) spikes) in the distal apical dendrite of cortical layer 5 pyramidal neurons. Ca(2+) spikes are the basis of coincidence detection and signal amplification of distal tuft synaptic inputs characteristic for the computational function of cortical pyramidal neurons. By combining dendritic whole-cell recordings with two-photon fluorescence Ca(2+) imaging we found that all subtypes of VDCCs were present in the Ca(2+) spike initiation zone, but that they contribute differently to the initiation and sustaining of dendritic Ca(2+) spikes. Particularly, Ca(v)1 VDCCs are the most abundant VDCC present in this dendritic compartment and they generated the sustained plateau potential characteristic for the Ca(2+) spike. Activation of GABA(B) receptors specifically inhibited Ca(v)1 channels. This inhibition of L-type Ca(2+) currents was transiently relieved by strong depolarization but did not depend on protein kinase activity. Therefore, our findings suggest a novel membrane-delimited interaction of the G(i/o)-βγ-subunit with Ca(v)1 channels identifying this mechanism as the general pathway of GABA(B) receptor-mediated inhibition of VDCCs. Furthermore, the characterization of the contribution of the different VDCCs to the generation of the Ca(2+) spike provides new insights into the molecular mechanism of dendritic computation.
Collapse
Affiliation(s)
- Enrique Pérez-Garci
- Department of Physiology, University of Berne, Bühlplatz 5, CH-3012 Bern, Switzerland.
| | | | | |
Collapse
|
13
|
Zamponi GW, Currie KPM. Regulation of Ca(V)2 calcium channels by G protein coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1629-43. [PMID: 23063655 DOI: 10.1016/j.bbamem.2012.10.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 12/29/2022]
Abstract
Voltage gated calcium channels (Ca²⁺ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of Ca(V)2 (N- and P/Q-type) Ca²⁺-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of Ca(V)2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Canada
| | | |
Collapse
|
14
|
Weiss S, Keren-Raifman T, Oz S, Ben Mocha A, Haase H, Dascal N. Modulation of distinct isoforms of L-type calcium channels by G(q)-coupled receptors in Xenopus oocytes: antagonistic effects of Gβγ and protein kinase C. Channels (Austin) 2012; 6:426-37. [PMID: 22990911 DOI: 10.4161/chan.22016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
L-type voltage dependent Ca(2+) channels (L-VDCCs; Ca(v)1.2) are crucial in cardiovascular physiology. In heart and smooth muscle, hormones and transmitters operating via G(q) enhance L-VDCC currents via essential protein kinase C (PKC) involvement. Heterologous reconstitution studies in Xenopus oocytes suggested that PKC and G(q)-coupled receptors increased L-VDCC currents only in cardiac long N-terminus (NT) isoforms of α(1C), whereas known smooth muscle short-NT isoforms were inhibited by PKC and G(q) activators. We report a novel regulation of the long-NT α(1C) isoform by Gβγ. Gβγ inhibited whereas a Gβγ scavenger protein augmented the G(q)--but not phorbol ester-mediated enhancement of channel activity, suggesting that Gβγ acts upstream from PKC. In vitro binding experiments reveal binding of both Gβγ and PKC to α(1C)-NT. However, PKC modulation was not altered by mutations of multiple potential phosphorylation sites in the NT, and was attenuated by a mutation of C-terminally located serine S1928. The insertion of exon 9a in intracellular loop 1 rendered the short-NT α(1C) sensitive to PKC stimulation and to Gβγ scavenging. Our results suggest a complex antagonistic interplay between G(q)-activated PKC and Gβγ in regulation of L-VDCC, in which multiple cytosolic segments of α(1C) are involved.
Collapse
Affiliation(s)
- Sharon Weiss
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
15
|
Interneuronal calcium channel abnormalities in posttraumatic epileptogenic neocortex. Neurobiol Dis 2011; 45:821-8. [PMID: 22172650 DOI: 10.1016/j.nbd.2011.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/01/2011] [Accepted: 11/28/2011] [Indexed: 01/14/2023] Open
Abstract
Decreased release probability (Pr) and increased failure rate for monosynaptic inhibitory postsynaptic currents (IPSCs) indicate abnormalities in presynaptic inhibitory terminals on pyramidal (Pyr) neurons of the undercut (UC) model of posttraumatic epileptogenesis. These indices of inhibition are normalized in high [Ca++] ACSF, suggesting dysfunction of Ca2+ channels in GABAergic terminals. We tested this hypothesis using selective blockers of P/Q and N-type Ca2+ channels whose activation underlies transmitter release in cortical inhibitory terminals. Pharmacologically isolated monosynaptic IPSCs were evoked in layer V Pyr cells by extracellular stimuli in adult rat sensorimotor cortical slices. Local perfusion of 0.2/1 μM ω-agatoxin IVa and/or 1 μM ω-conotoxin GVIA was used to block P/Q and N-type calcium channels, respectively. In control layer V Pyr cells, peak amplitude of eIPSCs was decreased by ~50% after treatment with either 1 μM ω-conotoxin GVIA or 1 μM ω-agatoxin IVa. In contrast, there was a lack of sensitivity to 1 μM ω-conotoxin GVIA in UCs. Immunocytochemical results confirmed decreased perisomatic density of N-channels on Pyr cells in UCs. We suggest that decreased calcium influx via N-type channels in presynaptic GABAergic terminals is a mechanism contributing to decreased inhibitory input onto layer V Pyr cells in this model of cortical posttraumatic epileptogenesis.
Collapse
|
16
|
|
17
|
Abstract
Voltage-gated calcium (Ca(2+)) channels are key transducers of membrane potential changes into intracellular Ca(2+) transients that initiate many physiological events. There are ten members of the voltage-gated Ca(2+) channel family in mammals, and they serve distinct roles in cellular signal transduction. The Ca(V)1 subfamily initiates contraction, secretion, regulation of gene expression, integration of synaptic input in neurons, and synaptic transmission at ribbon synapses in specialized sensory cells. The Ca(V)2 subfamily is primarily responsible for initiation of synaptic transmission at fast synapses. The Ca(V)3 subfamily is important for repetitive firing of action potentials in rhythmically firing cells such as cardiac myocytes and thalamic neurons. This article presents the molecular relationships and physiological functions of these Ca(2+) channel proteins and provides information on their molecular, genetic, physiological, and pharmacological properties.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA.
| |
Collapse
|
18
|
Giugovaz-Tropper B, González-Inchauspe C, Di Guilmi MN, Urbano FJ, Forsythe ID, Uchitel OD. P/Q-type calcium channel ablation in a mice glycinergic synapse mediated by multiple types of Ca²+ channels alters transmitter release and short term plasticity. Neuroscience 2011; 192:219-30. [PMID: 21718757 DOI: 10.1016/j.neuroscience.2011.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
Ca(v)2.1 channels (P/Q-type) play a prominent role in controlling neurotransmitter release. Transgenic mice in which the α1A pore-forming subunit of Ca(v)2.1 channels is ablated (KO) provide a powerful tool to study Ca(v)2.1 function in synaptic transmission in vivo. Whole-cell patch clamp was used to measure inhibitory glycinergic postsynaptic currents (IPSCs) from the lateral superior olive (LSO). Comparing wild-type (WT) and KO mice, we investigated the relevance of P/Q-type calcium channels at a glycinergic synapse mediated by multiple types of Ca(2+) channels, in opposition to synapses where only this type of Ca(2+) channels are in charge of transmitter release. We found that in KO mice, N-type and L-type Ca(2+) channels control synaptic transmission, resulting in a functional but reduced glycinergic transmitter release. Pair pulse facilitation of synaptic currents is retained in KO mice, even when synaptic transmission is driven by either N or L-type calcium channels alone, in contrast with lack of this phenomenon in other synapses which are exclusively mediated by P/Q-type channels. Thus, pointing a difference between P/Q- and N-type channels present in single or multiple types of calcium channels driven synapses. Significant alterations in short-term synaptic plasticity were observed. KO mice exhibited a stronger short term depression (STD) of IPSCs during repetitive stimulation at high frequency and recovered with a larger time constant compared to WT mice. Finally, transmitter release at the LSO synapse from KO mice was strongly modulated by presynaptic GTP-binding protein-coupled receptor γ-aminobutyric acid type B (GABA(B)).
Collapse
Affiliation(s)
- B Giugovaz-Tropper
- Instituto de Fisiología, Biología molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
19
|
Giri J, Fonseca JE, Boda D, Henderson D, Eisenberg B. Self-organized models of selectivity in calcium channels. Phys Biol 2011; 8:026004. [DOI: 10.1088/1478-3975/8/2/026004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Le Duigou C, Holden T, Kullmann DM. Short- and long-term depression at glutamatergic synapses on hippocampal interneurons by group I mGluR activation. Neuropharmacology 2010; 60:748-56. [PMID: 21185314 DOI: 10.1016/j.neuropharm.2010.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/10/2010] [Accepted: 12/15/2010] [Indexed: 01/16/2023]
Abstract
Group I metabotropic glutamate receptors (mGluRs) are expressed by many interneurons of the hippocampus. Although they have been implicated in short- and long-term synaptic plasticity of glutamatergic transmission, their roles in modulating transmission to interneurons are incompletely understood. The selective group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) acutely depressed transmission at synapses in the feed-forward inhibitory pathway made by Schaffer collaterals on interneurons in the rat hippocampal CA1 sub-field. DHPG elicited a qualitatively similar depression at synapses made by pyramidal neuron axon collaterals on interneurons in the feedback circuit in stratum oriens. Selective blockers revealed a link from mGluR1 to reversible, and mGluR5 to long-lasting, depression. The acute DHPG-induced depression was consistently accompanied by an elevation in paired-pulse ratio, implying a presynaptic decrease in release probability. However, it was also attenuated by blocking G-protein and Ca(2+) signalling within the postsynaptic neuron, arguing for a retrograde signalling cascade. The DHPG-evoked depression was unaffected by antagonists of CB1 and GABA(B) receptors but was occluded when presynaptic P/Q-type Ca(2+) channels were blocked. Finally, high-frequency stimulation delivered to an independent conditioning pathway evoked a heterosynaptic reversible depression, which was sensitive to group I mGluR antagonists. Group I mGluRs thus powerfully modulate synaptic excitation of hippocampal interneurons and mediate inter-synaptic cross-talk. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.
Collapse
Affiliation(s)
- Caroline Le Duigou
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | | | | |
Collapse
|
21
|
Abstract
Calcium regulates a wide spectrum of physiological processes such as heartbeat, muscle contraction, neuronal communication, hormone release, cell division, and gene transcription. Major entryways for Ca(2+) in excitable cells are high-voltage activated (HVA) Ca(2+) channels. These are plasma membrane proteins composed of several subunits, including α(1), α(2)δ, β, and γ. Although the principal α(1) subunit (Ca(v)α(1)) contains the channel pore, gating machinery and most drug binding sites, the cytosolic auxiliary β subunit (Ca(v)β) plays an essential role in regulating the surface expression and gating properties of HVA Ca(2+) channels. Ca(v)β is also crucial for the modulation of HVA Ca(2+) channels by G proteins, kinases, and the Ras-related RGK GTPases. New proteins have emerged in recent years that modulate HVA Ca(2+) channels by binding to Ca(v)β. There are also indications that Ca(v)β may carry out Ca(2+) channel-independent functions, including directly regulating gene transcription. All four subtypes of Ca(v)β, encoded by different genes, have a modular organization, consisting of three variable regions, a conserved guanylate kinase (GK) domain, and a conserved Src-homology 3 (SH3) domain, placing them into the membrane-associated guanylate kinase (MAGUK) protein family. Crystal structures of Ca(v)βs reveal how they interact with Ca(v)α(1), open new research avenues, and prompt new inquiries. In this article, we review the structure and various biological functions of Ca(v)β, with both a historical perspective as well as an emphasis on recent advances.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
22
|
Abstract
Voltage-gated Ca(2+) channels translate the electrical inputs of excitable cells into biochemical outputs by controlling influx of the ubiquitous second messenger Ca(2+) . As such the channels play pivotal roles in many cellular functions including the triggering of neurotransmitter and hormone release by CaV2.1 (P/Q-type) and CaV2.2 (N-type) channels. It is well established that G protein coupled receptors (GPCRs) orchestrate precise regulation neurotransmitter and hormone release through inhibition of CaV2 channels. Although the GPCRs recruit a number of different pathways, perhaps the most prominent, and certainly most studied among these is the so-called voltage-dependent inhibition mediated by direct binding of Gβγ to the α1 subunit of CaV2 channels. This article will review the basics of Ca(2+) -channels and G protein signaling, and the functional impact of this now classical inhibitory mechanism on channel function. It will also provide an update on more recent developments in the field, both related to functional effects and crosstalk with other signaling pathways, and advances made toward understanding the molecular interactions that underlie binding of Gβγ to the channel and the voltage-dependence that is a signature characteristic of this mechanism.
Collapse
Affiliation(s)
- Kevin P M Currie
- Department of Anesthesiology, Pharmacology and Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
23
|
Catterall WA. Signaling complexes of voltage-gated sodium and calcium channels. Neurosci Lett 2010; 486:107-16. [PMID: 20816922 DOI: 10.1016/j.neulet.2010.08.085] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 08/27/2010] [Accepted: 08/29/2010] [Indexed: 01/09/2023]
Abstract
Membrane depolarization and intracellular Ca(2+) transients generated by activation of voltage-gated Na+ and Ca(2+) channels are local signals, which initiate physiological processes such as action potential conduction, synaptic transmission, and excitation-contraction coupling. Targeting of effector proteins and regulatory proteins to ion channels is an important mechanism to ensure speed, specificity, and precise regulation of signaling events in response to local stimuli. This article reviews experimental results showing that Na+ and Ca(2+) channels form local signaling complexes, in which effector proteins, anchoring proteins, and regulatory proteins interact directly with ion channels. The intracellular domains of these channels serve as signaling platforms, mediating their participation in intracellular signaling processes. These protein-protein interactions are important for regulation of cellular plasticity through modulation of Na+ channel function in brain neurons, for short-term synaptic plasticity through modulation of presynaptic Ca(V)2 channels, and for the fight-or-flight response through regulation of postsynaptic Ca(V)1 channels in skeletal and cardiac muscle. These localized signaling complexes are essential for normal function and regulation of electrical excitability, synaptic transmission, and excitation-contraction coupling.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195-7280, United States.
| |
Collapse
|
24
|
Yan LD, Liu YL, Zhang L, Dong HJ, Zhou PL, Su RB, Gong ZH, Huang PT. Spinal antinociception of synthetic omega-conotoxin SO-3, a selective N-type neuronal voltage-sensitive calcium channel blocker, and its effects on morphine analgesia in chemical stimulus tests in rodent. Eur J Pharmacol 2010; 636:73-81. [DOI: 10.1016/j.ejphar.2010.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/25/2010] [Accepted: 03/12/2010] [Indexed: 11/17/2022]
|
25
|
Ladera C, Martín R, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. Partial compensation for N-type Ca(2+) channel loss by P/Q-type Ca(2+) channels underlines the differential release properties supported by these channels at cerebrocortical nerve terminals. Eur J Neurosci 2009; 29:1131-40. [PMID: 19302149 DOI: 10.1111/j.1460-9568.2009.06675.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-type and P/Q-type Ca(2+) channels support glutamate release at central synapses. To determine whether the glutamate release mediated by these channels exhibits distinct properties, we have isolated each release component in cerebrocortical nerve terminals from wild-type mice by specifically blocking N-type Ca(2+) channels with omega-conotoxin-GVIA and P/Q-type Ca(2+) channels with omega-agatoxin-IVA. In addition, we have determined the release properties at terminals from mice lacking the alpha(1B) subunit of N-type channels (Ca(v) 2.2) to test the possibility that P/Q-type channels can compensate for the loss of N-type Ca(2+) channels. We recently demonstrated that, while evoked glutamate release depends on P/Q- and N-type channels in wild-type nerve terminals, only P/Q-type channels participate in these knockout mice. Moreover, in nerve terminals expressing solely P/Q-type channels, metabotropic glutamate receptor 7 (mGluR7) fails to inhibit the evoked Ca(2+) influx and glutamate release. Here, we show that the failure of mGluR7 to modulate evoked glutamate release is not due to a lack of receptors, as nerve terminals from mice lacking N-type Ca(2+) channels express mGluR7. Indeed, we show that other receptor responses, such as the inhibition of forskolin-induced release, are preserved in these knockout mice. N-type channels are more loosely coupled to release than P/Q-type channels in nerve terminals from wild-type mice, as reflected by the tighter coupling of release in knockout nerve terminals. We conclude that the glutamate release supported by N- and P/Q-type channels exhibits distinct properties, and that P/Q-type channels cannot fully compensate for the loss of N-type channels.
Collapse
Affiliation(s)
- Carolina Ladera
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Zhang Y, Chen YH, Bangaru SD, He L, Abele K, Tanabe S, Kozasa T, Yang J. Origin of the voltage dependence of G-protein regulation of P/Q-type Ca2+ channels. J Neurosci 2008; 28:14176-88. [PMID: 19109500 PMCID: PMC2685181 DOI: 10.1523/jneurosci.1350-08.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
G-protein (Gbetagamma)-mediated voltage-dependent inhibition of N- and P/Q-type Ca(2+) channels contributes to presynaptic inhibition and short-term synaptic plasticity. The voltage dependence derives from the dissociation of Gbetagamma from the inhibited channels, but the underlying molecular and biophysical mechanisms remain largely unclear. In this study we investigated the role in this process of Ca(2+) channel beta subunit (Ca(v)beta) and a rigid alpha-helical structure between the alpha-interacting domain (AID), the primary Ca(v)beta docking site on the channel alpha(1) subunit, and the pore-lining IS6 segment. Gbetagamma inhibition of P/Q-type channels was reconstituted in giant inside-out membrane patches from Xenopus oocytes. Large populations of channels devoid of Ca(v)beta were produced by washing out a mutant Ca(v)beta with a reduced affinity for the AID. These beta-less channels were still inhibited by Gbetagamma, but without any voltage dependence, indicating that Ca(v)beta is indispensable for voltage-dependent Gbetagamma inhibition. A truncated Ca(v)beta containing only the AID-binding guanylate kinase (GK) domain could fully confer voltage dependence to Gbetagamma inhibition. Gbetagamma did not alter inactivation properties, and channels recovered from Gbetagamma inhibition exhibited the same activation property as un-inhibited channels, indicating that Gbetagamma does not dislodge Ca(v)beta from the inhibited channel. Furthermore, voltage-dependent Gbetagamma inhibition was abolished when the rigid alpha-helix between the AID and IS6 was disrupted by insertion of multiple glycines, which also eliminated Ca(v)beta regulation of channel gating, revealing a pivotal role of this rigid alpha-helix in both processes. These results suggest that depolarization-triggered movement of IS6, coupled to the subsequent conformational change of the Gbetagamma-binding pocket through a rigid alpha-helix induced partly by the Ca(v)beta GK domain, causes the dissociation of Gbetagamma and is fundamental to voltage-dependent Gbetagamma inhibition.
Collapse
Affiliation(s)
- Yun Zhang
- 1Department of Biological Sciences, Columbia University, New York, New York 10027, and
| | - Yu-hang Chen
- 1Department of Biological Sciences, Columbia University, New York, New York 10027, and
| | - Saroja D. Bangaru
- 1Department of Biological Sciences, Columbia University, New York, New York 10027, and
| | - Linling He
- 1Department of Biological Sciences, Columbia University, New York, New York 10027, and
| | - Kathryn Abele
- 1Department of Biological Sciences, Columbia University, New York, New York 10027, and
| | - Shihori Tanabe
- 2Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Tohru Kozasa
- 2Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Jian Yang
- 1Department of Biological Sciences, Columbia University, New York, New York 10027, and
| |
Collapse
|
27
|
Catterall WA, Hulme JT, Jiang X, Few WP. Regulation of Sodium and Calcium Channels by Signaling Complexes. J Recept Signal Transduct Res 2008; 26:577-98. [PMID: 17118799 DOI: 10.1080/10799890600915100] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Membrane depolarization and intracellular calcium transients generated by activation of voltage-gated sodium and calcium channels are local signals, which initiate physiological processes such as action potential conduction, synaptic transmission, and excitation-contraction coupling. Targeting of effector proteins and regulatory proteins to ion channels is an important mechanism to ensure speed, specificity, and precise regulation of signaling events in response to local stimuli. In this article, we review recent experimental results showing that sodium and calcium channels form local signaling complexes, in which effector proteins, anchoring proteins, and regulatory proteins interact directly with ion channels. The intracellular domains of these channels serve as signaling platforms, mediating their participation in intracellular signaling processes. These protein-protein interactions are important for efficient synaptic transmission and for regulation of ion channels by neurotransmitters and intracellular second messengers. These localized signaling complexes are essential for normal function and regulation of electrical excitability, synaptic transmission, and excitation-contraction coupling.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA.
| | | | | | | |
Collapse
|
28
|
Martín R, Ladera C, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. The inhibition of release by mGlu7 receptors is independent of the Ca2+ channel type but associated to GABAB and adenosine A1 receptors. Neuropharmacology 2008; 55:464-73. [PMID: 18514236 DOI: 10.1016/j.neuropharm.2008.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/08/2008] [Accepted: 04/15/2008] [Indexed: 11/16/2022]
Abstract
Neurotransmitter release is inhibited by G-protein coupled receptors (GPCRs) through signalling pathways that are negatively coupled to Ca2+ channels and adenylyl cyclase. Through Ca2+ imaging and immunocytochemistry, we have recently shown that adenosine A1, GABAB and the metabotropic glutamate type 7 receptors coexist in a subset of cerebrocortical nerve terminals. As these receptors inhibit glutamate release through common intracellular signalling pathways, their co-activation occluded each other responses. Here we have addressed whether the occlusion of receptor responses is restricted to the glutamate release mediated by N-type Ca2+ channels by analysing this process in nerve terminals from mice lacking the alpha1B subunit (Cav 2.2) of these channels. We found that glutamate release from cerebrocortical nerve terminals without these channels, in which release relies exclusively on P/Q type Ca2+ channels, is not modulated by mGlu7 receptors. Furthermore, there is no occlusion of the release inhibition by GABAB and adenosine A1. Hence, in the cerebrocortical preparation, these three receptors only appear to coexist in N-type channel containing nerve terminals. In contrast, in hippocampal nerve terminals lacking this subunit, where mGlu7 receptors modulate glutamate release via P/Q type channels, the occlusion of inhibitory responses by co-stimulation of adenosine A1, GABAB and mGlu7 receptors was observed. Thus, occlusion of the responses by the three GPCRs is independent of the Ca2+ channel type but rather, it is associated to functional mGlu7 receptors.
Collapse
Affiliation(s)
- Ricardo Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda Puerta de Hierro s/n, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
29
|
Fox AP, Cahill AL, Currie KPM, Grabner C, Harkins AB, Herring B, Hurley JH, Xie Z. N- and P/Q-type Ca2+ channels in adrenal chromaffin cells. Acta Physiol (Oxf) 2008; 192:247-61. [PMID: 18021320 DOI: 10.1111/j.1748-1716.2007.01817.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ca2+ is the most ubiquitous second messenger found in all cells. Alterations in [Ca2+]i contribute to a wide variety of cellular responses including neurotransmitter release, muscle contraction, synaptogenesis and gene expression. Voltage-dependent Ca2+ channels, found in all excitable cells (Hille 1992), mediate the entry of Ca2+ into cells following depolarization. Ca2+ channels are composed of a large pore-forming subunit, called the alpha1 subunit, and several accessory subunits. Ten different alpha1 subunit genes have been identified and classified into three families, Ca(v1-3) (Dunlap et al. 1995, Catterall 2000). Each alpha1 gene produces a unique Ca2+ channel. Although chromaffin cells express several different types of Ca2+ channels, this review will focus on the Cav(2.1) and Cav(2.2) channels, also known as P/Q- and N-type respectively (Nowycky et al. 1985, Llinas et al. 1989b, Wheeler et al. 1994). These channels exhibit physiological and pharmacological properties similar to their neuronal counterparts. N-, P/Q and to a lesser extent R-type Ca2+ channels are known to regulate neurotransmitter release (Hirning et al. 1988, Horne & Kemp 1991, Uchitel et al. 1992, Luebke et al. 1993, Takahashi & Momiyama 1993, Turner et al. 1993, Regehr & Mintz 1994, Wheeler et al. 1994, Wu & Saggau 1994, Waterman 1996, Wright & Angus 1996, Reid et al. 1997). N- and P/Q-type Ca2+ channels are abundant in nerve terminals where they colocalize with synaptic vesicles. Similarly, these channels play a role in neurotransmitter release in chromaffin cells (Garcia et al. 2006). N- and P/Q-type channels are subject to many forms of regulation (Ikeda & Dunlap 1999). This review pays particular attention to the regulation of N- and P/Q-type channels by heterotrimeric G-proteins, interaction with SNARE proteins, and channel inactivation in the context of stimulus-secretion coupling in adrenal chromaffin cells.
Collapse
Affiliation(s)
- A P Fox
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Ladera C, Godino MDC, Martín R, Luján R, Shigemoto R, Ciruela F, Torres M, Sánchez-Prieto J. The coexistence of multiple receptors in a single nerve terminal provides evidence for pre-synaptic integration. J Neurochem 2007; 103:2314-26. [DOI: 10.1111/j.1471-4159.2007.04964.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Inchauspe CG, Forsythe ID, Uchitel OD. Changes in synaptic transmission properties due to the expression of N-type calcium channels at the calyx of Held synapse of mice lacking P/Q-type calcium channels. J Physiol 2007; 584:835-51. [PMID: 17823210 PMCID: PMC2277003 DOI: 10.1113/jphysiol.2007.139683] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
P/Q-type and N-type calcium channels mediate transmitter release at rapidly transmitting central synapses, but the reasons for the specific expression of one or the other in each particular synapse are not known. Using whole-cell patch clamping from in vitro slices of the auditory brainstem we have examined presynaptic calcium currents (I(pCa)) and glutamatergic excitatory postsynaptic currents (EPSCs) at the calyx of Held synapse from transgenic mice in which the alpha(1A) pore-forming subunit of the P/Q-type Ca(2+) channels is ablated (KO). The power relationship between Ca(2+) influx and quantal output was studied by varying the number of Ca(2+) channels engaged in triggering release. Our results have shown that more overlapping Ca(2+) channel domains are required to trigger exocytosis when N-type replace P/Q-type calcium channels suggesting that P/Q type Ca(2+) channels are more tightly coupled to synaptic vesicles than N-type channels, a hypothesis that is verified by the decrease in EPSC amplitudes in KO synapses when the slow Ca(2+) buffer EGTA-AM was introduced into presynaptic calyces. Significant alterations in short-term synaptic plasticity were observed. Repetitive stimulation at high frequency generates short-term depression (STD) of EPSCs, which is not caused by presynaptic Ca(2+) current inactivation neither in WT or KO synapses. Recovery after STD is much slower in the KO than in the WT mice. Synapses from KO mice exhibit reduced or no EPSC paired-pulse facilitation and absence of facilitation in their presynaptic N-type Ca(2+) currents. Simultaneous pre- and postsynaptic double patch recordings indicate that presynaptic Ca(2+) current facilitation is the main determinant of facilitation of transmitter release. Finally, KO synapses reveal a stronger modulation of transmitter release by presynaptic GTP-binding protein-coupled receptors (gamma-aminobutyric acid type B receptors, GABA(B), and adenosine). In contrast, metabotropic glutamate receptors (mGluRs) are not functional at the synapses of these mice. These experiments reinforce the idea that presynaptic Ca(2+) channels expression may be tuned for speed and modulatory control through differential subtype expression.
Collapse
Affiliation(s)
- Carlota González Inchauspe
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | |
Collapse
|
33
|
Török TL. Electrogenic Na+/Ca2+-exchange of nerve and muscle cells. Prog Neurobiol 2007; 82:287-347. [PMID: 17673353 DOI: 10.1016/j.pneurobio.2007.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/12/2007] [Accepted: 06/12/2007] [Indexed: 12/19/2022]
Abstract
The plasma membrane Na(+)/Ca(2+)-exchanger is a bi-directional electrogenic (3Na(+):1Ca(2+)) and voltage-sensitive ion transport mechanism, which is mainly responsible for Ca(2+)-extrusion. The Na(+)-gradient, required for normal mode operation, is created by the Na(+)-pump, which is also electrogenic (3Na(+):2K(+)) and voltage-sensitive. The Na(+)/Ca(2+)-exchanger operational modes are very similar to those of the Na(+)-pump, except that the uncoupled flux (Na(+)-influx or -efflux?) is missing. The reversal potential of the exchanger is around -40 mV; therefore, during the upstroke of the AP it is probably transiently activated, leading to Ca(2+)-influx. The Na(+)/Ca(2+)-exchange is regulated by transported and non-transported external and internal cations, and shows ATP(i)-, pH- and temperature-dependence. The main problem in determining the role of Na(+)/Ca(2+)-exchange in excitation-secretion/contraction coupling is the lack of specific (mode-selective) blockers. During recent years, evidence has been accumulated for co-localisation of the Na(+)-pump, and the Na(+)/Ca(2+)-exchanger and their possible functional interaction in the "restricted" or "fuzzy space." In cardiac failure, the Na(+)-pump is down-regulated, while the exchanger is up-regulated. If the exchanger is working in normal mode (Ca(2+)-extrusion) during most of the cardiac cycle, upregulation of the exchanger may result in SR Ca(2+)-store depletion and further impairment in contractility. If so, a normal mode selective Na(+)/Ca(2+)-exchange inhibitor would be useful therapy for decompensation, and unlike CGs would not increase internal Na(+). In peripheral sympathetic nerves, pre-synaptic alpha(2)-receptors may regulate not only the VSCCs but possibly the reverse Na(+)/Ca(2+)-exchange as well.
Collapse
Affiliation(s)
- Tamás L Török
- Department of Pharmacodynamics, Semmelweis University, P.O. Box 370, VIII. Nagyvárad-tér 4, H-1445 Budapest, Hungary.
| |
Collapse
|
34
|
Abstract
The regulation of presynaptic, voltage-gated calcium channels by activation of heptahelical G protein-coupled receptors exerts a crucial influence on presynaptic calcium entry and hence on neurotransmitter release. Receptor activation subjects presynaptic N- and P/Q-type calcium channels to a rapid, membrane-delimited inhibition-mediated by direct, voltage-dependent interactions between G protein betagamma subunits and the channels-and to a slower, voltage-independent modulation involving soluble second messenger molecules. In turn, the direct inhibition of the channels is regulated as a function of many factors, including channel subtype, ancillary calcium channel subunits, and the types of G proteins and G protein regulatory factors involved. Twenty-five years after this mode of physiological regulation was first described, we review the investigations that have led to our current understanding of its molecular mechanisms.
Collapse
Affiliation(s)
- H William Tedford
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Canada
| | | |
Collapse
|
35
|
Weiss N, Tadmouri A, Mikati M, Ronjat M, De Waard M. Importance of voltage-dependent inactivation in N-type calcium channel regulation by G-proteins. Pflugers Arch 2006; 454:115-29. [PMID: 17171365 PMCID: PMC2703660 DOI: 10.1007/s00424-006-0184-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 10/29/2006] [Indexed: 10/23/2022]
Abstract
Direct regulation of N-type calcium channels by G-proteins is essential to control neuronal excitability and neurotransmitter release. Binding of the G(betagamma) dimer directly onto the channel is characterized by a marked current inhibition ("ON" effect), whereas the pore opening- and time-dependent dissociation of this complex from the channel produce a characteristic set of biophysical modifications ("OFF" effects). Although G-protein dissociation is linked to channel opening, the contribution of channel inactivation to G-protein regulation has been poorly studied. Here, the role of channel inactivation was assessed by examining time-dependent G-protein de-inhibition of Ca(v)2.2 channels in the presence of various inactivation-altering beta subunit constructs. G-protein activation was produced via mu-opioid receptor activation using the DAMGO agonist. Whereas the "ON" effect of G-protein regulation is independent of the type of beta subunit, the "OFF" effects were critically affected by channel inactivation. Channel inactivation acts as a synergistic factor to channel activation for the speed of G-protein dissociation. However, fast inactivating channels also reduce the temporal window of opportunity for G-protein dissociation, resulting in a reduced extent of current recovery, whereas slow inactivating channels undergo a far more complete recovery from inhibition. Taken together, these results provide novel insights on the role of channel inactivation in N-type channel regulation by G-proteins and contribute to the understanding of the physiological consequence of channel inactivation in the modulation of synaptic activity by G-protein coupled receptors.
Collapse
Affiliation(s)
- Norbert Weiss
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Abir Tadmouri
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Mohamad Mikati
- Department of Pediatrics
American University of Beirut Medical CenterBeyrouth,LB
| | - Michel Ronjat
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Michel De Waard
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
- * Correspondence should be adressed to: Michel De Waard
| |
Collapse
|
36
|
Weiss N, De Waard M. Introducing an alternative biophysical method to analyze direct G protein regulation of voltage-dependent calcium channels. J Neurosci Methods 2006; 160:26-36. [PMID: 16987552 DOI: 10.1016/j.jneumeth.2006.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 07/27/2006] [Accepted: 08/09/2006] [Indexed: 10/24/2022]
Abstract
Direct G protein inhibition of voltage-dependent calcium channels is currently indirectly assessed by the gain of current produced by depolarizing prepulse potentials (PP). Indeed, PPs produce a channel opening- and time-dependent dissociation of G proteins from the channel that is responsible for the increase in Ca(2+) permeation. Parameters of G protein dissociation are essential to describe the characteristic landmark modifications in channel activities that underlie G protein regulation. From the kinetics and opening-dependence of this dissociation, crucial biophysical parameters are extracted such as the extent and the rate of G protein unbinding from the channel. Unfortunately, the method used so far assumes that G protein regulated channels undergo the same inactivation kinetics than control channels. Herein, we demonstrate for the first time that G protein-bound channels undergo a much slower inactivation than control channels. We thus introduce a novel simple-to-use method that avoids the use of PPs and that is not affected by potential changes in channel inactivation kinetics conferred by G protein binding. This method extracts G protein unbinding parameters from ionic currents induced by regular depolarizing pulses by separating the ionic currents due to non-regulated channels from the ionic currents that result from a progressive departure of G proteins from regulated channels.
Collapse
Affiliation(s)
- Norbert Weiss
- Inserm U607, Laboratoire Canaux Calciques, Fonctions et Pathologies, 17 Rue des Martyrs, Bâtiment C3, 38054 Grenoble Cedex 09, France; Commissariat à l'Energie Atomique, Grenoble, France
| | | |
Collapse
|
37
|
|
38
|
Hosoi N, Arai I, Tachibana M. Group III metabotropic glutamate receptors and exocytosed protons inhibit L-type calcium currents in cones but not in rods. J Neurosci 2006; 25:4062-72. [PMID: 15843608 PMCID: PMC6724956 DOI: 10.1523/jneurosci.2735-04.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Light responses of photoreceptors (rods and cones) are transmitted to the second-order neurons (bipolar cells and horizontal cells) via glutamatergic synapses located in the outer plexiform layer of the retina. Although it has been well established that postsynaptic group III metabotropic glutamate receptors (mGluRs) of ON bipolar cells contribute to generating the ON signal, presynaptic roles of group III mGluRs remain to be elucidated at this synaptic connection. We addressed this issue by applying the slice patch-clamp technique to the newt retina. OFF bipolar cells and horizontal cells generate a steady inward current in the dark and a transient inward current at light offset, both of which are mediated via postsynaptic non-NMDA receptors. A group III mGluR-specific agonist, L-2-amino-4-phosphonobutyric acid (L-AP-4), inhibited both the steady and off-transient inward currents but did not affect the glutamate-induced current in these postsynaptic neurons. L-AP-4 inhibited the presynaptic L-type calcium current (ICa) in cones by shifting the voltage dependence of activation to more positive membrane potentials. The inhibition of ICa was most prominent around the physiological range of cone membrane potentials. In contrast, L-AP-4 did not affect L-type ICa in rods. Paired recordings from photoreceptors and the synaptically connected second-order neurons confirmed that L-AP-4 inhibited both ICa and glutamate release in cones but not in rods. Furthermore, we found that exocytosed protons also inhibited ICa in cones but not in rods. Selective modulation of ICa in cones may help broaden the dynamic range of synaptic transfer by controlling the amount of transmitter release from cones.
Collapse
Affiliation(s)
- Nobutake Hosoi
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
39
|
Wong E, Yu WP, Yap WH, Venkatesh B, Soong TW. Comparative genomics of the human and Fugu voltage-gated calcium channel alpha1-subunit gene family reveals greater diversity in Fugu. Gene 2005; 366:117-27. [PMID: 16337095 DOI: 10.1016/j.gene.2005.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 07/14/2005] [Accepted: 08/05/2005] [Indexed: 11/26/2022]
Abstract
Extensive search for the orthologs of 10 human voltage-gated calcium channel (VGCC) alpha(1)-subunit genes in the Fugu genome sequence revealed 21 alpha(1)-subunit genes in the compact genome of Fugu. Subtype classification of the identified Fugu alpha(1) orthologs based on phylogenetic analysis, genomic organization and sequence comparison of the most divergent II/III loop and the C-terminal regions of the alpha(1)-subunits indicated extra copies of alpha(1S)-, alpha(1D)-, alpha(1F)-, alpha(1A)-, alpha(1E)-, alpha(1H)- and alpha(1G)-subunit genes. Phylogenetic analysis reveals that this is likely due to fish lineage specific alpha(1)-subunit subtype duplication. Sequence comparison shows that many of the structural features characteristic of VGCC and specific channel subtypes are also present in the Fugu alpha(1)-subunits. All the Fugu alpha(1)-subunits showed similar expression profile to that of the mammalian alpha(1)-subunits except for Fugu alpha(1S), alpha(1A), alpha(1B) and alpha(1H) which have a more widespread tissue distribution. These results indicate that Fugu, a lower vertebrate, has more extensive channel heterogeneity compared to human.
Collapse
Affiliation(s)
- Esther Wong
- Ion Channel and Transporter Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, S308433, Singapore
| | | | | | | | | |
Collapse
|
40
|
Li D, Wang F, Lai M, Chen Y, Zhang JF. A protein phosphatase 2calpha-Ca2+ channel complex for dephosphorylation of neuronal Ca2+ channels phosphorylated by protein kinase C. J Neurosci 2005; 25:1914-23. [PMID: 15728831 PMCID: PMC6726054 DOI: 10.1523/jneurosci.4790-04.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phosphorylation and dephosphorylation are primary means for rapid regulation of a variety of neuronal functions, such as membrane excitability, neurotransmitter release, and gene expression. Voltage-gated Ca2+ channels are targets for phosphorylation by a variety of second messengers through activation of different types of protein kinases (PKs). Protein phosphatases (PPs), like PKs, are equally important in regulating Ca2+ channels in neurons. However, much less is understood about whether and how a particular type of PP contributes to regulating neuronal Ca2+ channel activities. This is primarily because of the lack of specific inhibitors/activators for different types of PPs, particularly the PP2c family. The functional roles of PP2c and its substrates in the brain remain virtually unknown. During our yeast two-hybrid screening, PP2calpha was pulled out by both N- and P/Q-type Ca2+ channel C termini. This raised the possibility that PP2calpha might be associated with voltage-gated Ca2+ channels for regulation of the Ca(2+) channel activity. Biochemical studies show that PP2calpha binds directly to neuronal Ca2+ channels forming a functional protein complex in vivo. PP2calpha, unlike PP1, PP2a and PP2b, is more effective in dephosphorylation of neuronal Ca2+ channels after their phosphorylation by PKC. In hippocampal neurons, disruption of the PP2calpha-Ca2+ channel interaction significantly enhances the response of Ca2+ channels to modulation by PKC. Thus, the PP2calpha-Ca2+ channel complex is responsible for rapid dephosphorylation of Ca2+ channels and may contribute to regulation of synaptic transmission in neurons.
Collapse
Affiliation(s)
- Dongjun Li
- Department of Physiology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
41
|
Agler HL, Evans J, Tay LH, Anderson MJ, Colecraft HM, Yue DT. G protein-gated inhibitory module of N-type (ca(v)2.2) ca2+ channels. Neuron 2005; 46:891-904. [PMID: 15953418 DOI: 10.1016/j.neuron.2005.05.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 03/08/2005] [Accepted: 05/06/2005] [Indexed: 11/22/2022]
Abstract
Voltage-dependent G protein (Gbetagamma) inhibition of N-type (CaV2.2) channels supports presynaptic inhibition and represents a central paradigm of channel modulation. Still controversial are the proposed determinants for such modulation, which reside on the principal alpha1B channel subunit. These include the interdomain I-II loop (I-II), the carboxy tail (CT), and the amino terminus (NT). Here, we probed these determinants and related mechanisms, utilizing compound-state analysis with yeast two-hybrid and mammalian cell FRET assays of binding among channel segments and G proteins. Chimeric channels confirmed the unique importance of NT. Binding assays revealed selective interaction between NT and I-II elements. Coexpressing NT peptide with Gbetagamma induced constitutive channel inhibition, suggesting that the NT domain constitutes a G protein-gated inhibitory module. Such inhibition was limited to NT regions interacting with I-II, and G-protein inhibition was abolished within alpha1B channels lacking these NT regions. Thus, an NT module, acting via interactions with the I-II loop, appears fundamental to such modulation.
Collapse
Affiliation(s)
- Heather L Agler
- Department of Biomedical Engineering and Ca2+ Signals Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
42
|
De Waard M, Hering J, Weiss N, Feltz A. How do G proteins directly control neuronal Ca2+ channel function? Trends Pharmacol Sci 2005; 26:427-36. [PMID: 16009433 DOI: 10.1016/j.tips.2005.06.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 05/03/2005] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
Ca2+ entry into neuronal cells is modulated by the activation of numerous G-protein-coupled receptors (GPCRs). Much effort has been invested in studying direct G-protein-mediated inhibition of voltage-dependent CaV2 Ca2+ channels. This inhibition occurs through a series of convergent modifications in the biophysical properties of the channels. An integrated view of the structural organization of the Gbetagamma-dimer binding-site pocket within the channel is emerging. In this review, we discuss how variable geometry of the Gbetagamma binding pocket can yield distinct sets of channel inhibition. In addition, we propose specific mechanisms for the regulation of the channel by G proteins that take into account the regulatory input of each Gbetagamma binding element.
Collapse
Affiliation(s)
- Michel De Waard
- Laboratoire Canaux Calciques, Fonctions et Pathologies, Inserm U607, CEA, DRDC, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France.
| | | | | | | |
Collapse
|
43
|
Ishikawa T, Kaneko M, Shin HS, Takahashi T. Presynaptic N-type and P/Q-type Ca2+ channels mediating synaptic transmission at the calyx of Held of mice. J Physiol 2005; 568:199-209. [PMID: 16037093 PMCID: PMC1474759 DOI: 10.1113/jphysiol.2005.089912] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
At the nerve terminal, both N- and P/Q-type Ca2+ channels mediate synaptic transmission, with their relative contribution varying between synapses and with postnatal age. To clarify functional significance of different presynaptic Ca2+ channel subtypes, we recorded N-type and P/Q-type Ca2+ currents directly from calyces of Held nerve terminals in alpha1A-subunit-deficient mice and wild-type (WT) mice, respectively. The most prominent feature of P/Q-type Ca2+ currents was activity-dependent facilitation, which was absent for N-type Ca2+ currents. EPSCs mediated by P/Q-type Ca2+ currents showed less depression during high-frequency stimulation compared with those mediated by N-type Ca2+ currents. In addition, the maximal inhibition by the GABAB receptor agonist baclofen was greater for EPSCs mediated by N-type channels than for those mediated by P/Q-type channels. These results suggest that the developmental switch of presynaptic Ca2+ channels from N- to P/Q-type may serve to increase synaptic efficacy at high frequencies of activity, securing high-fidelity synaptic transmission.
Collapse
Affiliation(s)
- Taro Ishikawa
- Department of Neurophysiology, University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
44
|
Scheuber A, Miles R, Poncer JC. Presynaptic Cav2.1 and Cav2.2 differentially influence release dynamics at hippocampal excitatory synapses. J Neurosci 2005; 24:10402-9. [PMID: 15548655 PMCID: PMC6730307 DOI: 10.1523/jneurosci.1664-04.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic calcium influx at most excitatory central synapses is carried by both Cav2.1 and Cav2.2 channels. The kinetics and modulation of Cav2.1 and Cav2.2 channels differ and may affect presynaptic calcium influx. We compared release dynamics at CA3/CA1 synapses in rat hippocampus after selective blockade of either channel subtype and subsequent quantal content restoration. Selective blockade of Cav2.1 channels enhanced paired-pulse facilitation, whereas blockade of Cav2.2 channels decreased it. This effect was observed at short (50 msec) but not longer (500 msec) intervals and was maintained during prolonged bursts of presynaptic activity. It did not reflect differences in the distance of the channels from the calcium sensor. The suppression of this effect by preincubation with the G(o/i)-protein inhibitor pertussis toxin suggests instead that high-frequency stimulation relieves inhibition of Cav2.2 by G(o/i), thereby increasing the number of available channels.
Collapse
Affiliation(s)
- Anita Scheuber
- Institut National de la Santé et de la Recherche Médicale, Equipe Mixte 224 Cortex et Epilepsie, Centre Hospitalier Universitaire Pitié-Salpêtrière, 75013 Paris, France
| | | | | |
Collapse
|
45
|
Li X, Hümmer A, Han J, Xie M, Melnik-Martinez K, Moreno RL, Buck M, Mark MD, Herlitze S. G protein beta2 subunit-derived peptides for inhibition and induction of G protein pathways. Examination of voltage-gated Ca2+ and G protein inwardly rectifying K+ channels. J Biol Chem 2005; 280:23945-59. [PMID: 15824105 DOI: 10.1074/jbc.m414078200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated Ca2+ channels of the N-, P/Q-, and R-type and G protein inwardly rectifying K+ channels (GIRK) are modulated via direct binding of G proteins. The modulation is mediated by G protein betagamma subunits. By using electrophysiological recordings and fluorescence resonance energy transfer, we characterized the modulatory domains of the G protein beta subunit on the recombinant P/Q-type channel and GIRK channel expressed in HEK293 cells and on native non-L-type Ca2+ currents of cultured hippocampal neurons. We found that Gbeta2 subunit-derived deletion constructs and synthesized peptides can either induce or inhibit G protein modulation of the examined ion channels. In particular, the 25-amino acid peptide derived from the Gbeta2 N terminus inhibits G protein modulation, whereas a 35-amino acid peptide derived from the Gbeta2 C terminus induced modulation of voltage-gated Ca2+ channels and GIRK channels. Fluorescence resonance energy transfer (FRET) analysis of the live action of these peptides revealed that the 25-amino acid peptide diminished the FRET signal between G protein beta2gamma3 subunits, indicating a reorientation between G protein beta2gamma3 subunits in the presence of the peptide. In contrast, the 35-amino acid peptide increased the FRET signal between GIRK1,2 channel subunits, similarly to the Gbetagamma-mediated FRET increase observed for this GIRK subunit combination. Circular dichroism spectra of the synthesized peptides suggest that the 25-amino acid peptide is structured. These results indicate that individual G protein beta subunit domains can act as independent, separate modulatory domains to either induce or inhibit G protein modulation for several effector proteins.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kinoshita-Kawada M, Oberdick J, Xi Zhu M. A Purkinje cell specific GoLoco domain protein, L7/Pcp-2, modulates receptor-mediated inhibition of Cav2.1 Ca2+ channels in a dose-dependent manner. ACTA ACUST UNITED AC 2005; 132:73-86. [PMID: 15548431 DOI: 10.1016/j.molbrainres.2004.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
L7/Pcp-2 is a GoLoco domain protein encoded by a Purkinje cell dendritic mRNA. Although biochemical interactions of GoLoco proteins with Galpha(o) and Galpha(i) are well documented, little is known about effector function modulation resulting from these interactions. The P-type Ca2+ channels might be physiological effectors of L7 because (1) they are the major voltage-dependent Ca2+ channels (VDCC) that modulate Purkinje cell output and (2) they are regulated by G(i/o) proteins. As a first step towards validating this hypothesis and to further understand the possible physiological effect of L7 protein and its two isoforms, we have coexpressed Ca(v)2.1 channels and kappa-opioid receptors (KORs) with varying amounts of L7A or L7B in Xenopus oocytes and measured ionic currents by two-electrode voltage clamping. Without receptor activation L7 did not alter the Ca2+ channel activity. With tonic and weak activation of the receptors, however, the Ca2+ channels were inhibited by 40-50%. This inhibition was enhanced by low, but dampened by high, expression levels of L7A and L7B and differences were observed between the two isoforms. The enhancing effect of L7 was occluded by overexpression of Gbetagamma, whereas the disinhibition was antagonized by overexpression of Galpha(o). We propose that L7 differentially affects the Galpha and Gbetagamma arms of receptor-induced G(i/o) signaling in a concentration-dependent manner, through which it increases the dynamic range of regulation of P/Q-type Ca2+ channels by G(i/o) protein-coupled receptors. This provides a framework for designing further experiments to determine how dendritic local fluctuations in L7 protein levels might influence signal processing in Purkinje cells.
Collapse
MESH Headings
- Animals
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/metabolism
- Calcium Channels, P-Type/genetics
- Calcium Channels, P-Type/metabolism
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Dendrites/metabolism
- Female
- GTP-Binding Protein alpha Subunits/genetics
- GTP-Binding Protein alpha Subunits/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein beta Subunits/genetics
- GTP-Binding Protein beta Subunits/metabolism
- GTP-Binding Protein gamma Subunits/genetics
- GTP-Binding Protein gamma Subunits/metabolism
- Gene Dosage
- Membrane Potentials/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neural Inhibition/genetics
- Oocytes
- Patch-Clamp Techniques
- Protein Structure, Tertiary/genetics
- Purkinje Cells/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Signal Transduction/genetics
- Xenopus laevis
Collapse
Affiliation(s)
- Mariko Kinoshita-Kawada
- Department of Neuroscience and the Center for Molecular Neurobiology, The Ohio State University, 168 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | | |
Collapse
|
47
|
Kochegarov AA. Therapeutical application of voltage-gated calcium channel modulators. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.2.243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Fisyunov A, Pluzhnikov K, Molyavka A, Grishin E, Lozovaya N, Krishtal O. Novel spider toxin slows down the activation kinetics of P-type Ca2+ channels in Purkinje neurons of rat. Toxicology 2005; 207:129-36. [PMID: 15590128 DOI: 10.1016/j.tox.2004.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 09/10/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
We have identified a novel polypeptide toxin (Lsp-1) from the venom of the spider Lycosa (LS). Its effect has been examined on the P-type calcium channels in Purkinje neurons, using whole-cell patch-clamp. This toxin (at saturating concentration 7 nM) produces prominent (four-fold) deceleration of the activation kinetics and partial (71+/-6%) decrease of the amplitude of P-current without affecting either deactivation or inactivation kinetics. These effects are not use-dependent. They are partially reversible within a minute upon the wash-out of the toxin. Intracellular perfusion of Purkinje neurons with 100 microM of GDP or 2 microM of GTPgammaS, as well as strong depolarising pre-pulses (+100 mV), do not eliminate the action of Lsp-1 on P-channels indicating that down-modulation via guanine nucleotide-binding proteins (G-proteins) is not involved in the observed phenomenon. In view of extremely high functional significance of P-channels, the toxin can be suggested as a useful pharmacological tool.
Collapse
Affiliation(s)
- Alexander Fisyunov
- Department of Cellular Membranology, A.A. Bogomoletz Institute of Physiology, Bogomoletz Street 4, Kiev 01024, Ukraine
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
There are many different calcium channels expressed in the mammalian nervous system, but N-type and P/Q-type calcium channels appear to dominate the presynaptic terminals of central and peripheral neurons. The neurotransmitter-induced modulation of these channels can result in alteration of synaptic transmission. This review highlights the mechanisms by which neurotransmitters affect the activity of N-type and P/Q-type calcium channels. The inhibition of these channels by voltage-dependent and voltage-independent mechanisms is emphasized because of the wealth of information available on the intracellular mediators and on the effect of these pathways on the single-channel gating.
Collapse
Affiliation(s)
- Keith S Elmslie
- Department of Physiology, Tulane University Health Science Center, New Orleans, Louisiana 70112, USA.
| |
Collapse
|
50
|
Van Petegem F, Clark KA, Chatelain FC, Minor DL. Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature 2004; 429:671-5. [PMID: 15141227 PMCID: PMC3076333 DOI: 10.1038/nature02588] [Citation(s) in RCA: 341] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 04/23/2004] [Indexed: 11/08/2022]
Abstract
Voltage-gated calcium channels (Ca(V)s) govern muscle contraction, hormone and neurotransmitter release, neuronal migration, activation of calcium-dependent signalling cascades, and synaptic input integration. An essential Ca(V) intracellular protein, the beta-subunit (Ca(V)beta), binds a conserved domain (the alpha-interaction domain, AID) between transmembrane domains I and II of the pore-forming alpha(1) subunit and profoundly affects multiple channel properties such as voltage-dependent activation, inactivation rates, G-protein modulation, drug sensitivity and cell surface expression. Here, we report the high-resolution crystal structures of the Ca(V)beta2a conserved core, alone and in complex with the AID. Previous work suggested that a conserved region, the beta-interaction domain (BID), formed the AID-binding site; however, this region is largely buried in the Ca(V)beta core and is unavailable for protein-protein interactions. The structure of the AID-Ca(V)beta2a complex shows instead that Ca(V)beta2a engages the AID through an extensive, conserved hydrophobic cleft (named the alpha-binding pocket, ABP). The ABP-AID interaction positions one end of the Ca(V)beta near the intracellular end of a pore-lining segment, called IS6, that has a critical role in Ca(V) inactivation. Together, these data suggest that Ca(V)betas influence Ca(V) gating by direct modulation of IS6 movement within the channel pore.
Collapse
Affiliation(s)
- Filip Van Petegem
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California San Francisco, 513 Parnassus Avenue, Box 0130, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|