1
|
Nath VR, Krishnan H, Mishra S, Raghu P. Ca2+ binding to Esyt modulates membrane contact site density in Drosophila photoreceptors. J Cell Biol 2025; 224:e202407190. [PMID: 40042442 PMCID: PMC11893162 DOI: 10.1083/jcb.202407190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/09/2024] [Accepted: 01/29/2025] [Indexed: 03/12/2025] Open
Abstract
Membrane contact sites (MCS) between the plasma membrane (PM) and endoplasmic reticulum (ER) regulate Ca2+ influx. However, the mechanisms by which cells modulate ER-PM MCS density are not understood, and the role of Ca2+, if any, in regulating these is unknown. We report that in Drosophila photoreceptors, MCS density is regulated by the Ca2+ channels, TRP and TRPL. Regulation of MCS density by Ca2+ is mediated by Drosophila extended synaptotagmin (dEsyt), a protein localized to ER-PM MCS and previously shown to regulate MCS density. We find that the Ca2+-binding activity of dEsyt is required for its function in vivo. dEsytCaBM, a Ca2+ non-binding mutant of dEsyt is unable to modulate MCS structure. Further, reconstitution of dEsyt null photoreceptors with dEsytCaBM is unable to rescue ER-PM MCS density and other key phenotypes. Thus, our data supports a role for Ca2+ binding to dEsyt in regulating ER-PM MCS density in photoreceptors thus tuning signal transduction during light-activated Ca2+ influx.
Collapse
Affiliation(s)
- Vaisaly R. Nath
- National Centre for Biological Sciences-TIFR, Bangalore, India
- School of Biotechnology, Amrita University, Kollam, India
| | - Harini Krishnan
- National Centre for Biological Sciences-TIFR, Bangalore, India
| | - Shirish Mishra
- National Centre for Biological Sciences-TIFR, Bangalore, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bangalore, India
| |
Collapse
|
2
|
Delgado R, Wilson CAM, Caballero L, Melo F, Bacigalupo J. Mechanical force activates the light-dependent channels TRP and TRPL in excised patches from the rhabdomere of Drosophila photoreceptors. Neuroscience 2024; 555:23-31. [PMID: 39032804 DOI: 10.1016/j.neuroscience.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Drosophila phototransduction in light-sensitive microvilli involves a metabotropic signaling cascade. Photoisomerized rhodopsin couples to G-protein, activating phospholipase C, which cleaves phosphatidylinositol bisphosphate (PIP2) into inositol trisphosphate, diacylglycerol (DAG) and a proton. DAG is converted into phosphatidic acid by DAG-kinase and metabolized to L-linoleoyl glycerol (2-LG) by DAG-lipase. This complex enzyme cascade ultimately opens the light-dependent transient receptor potential channels, TRP and TRPL. PIP2, DAG, H+ and 2-LG are possible channel activators, either individually or combined, but their direct participation in channel-gating remains unresolved. Molecular interaction with the channels, modification of the channels' lipid moiety and mechanical force on the channels by changes in the membrane structure derived from light-dependent changes in lipid composition are possible gating agents. In this regard, mechanical activation was suggested, based on a rapid light-dependent contraction of the photoreceptors mediated by the phototransduction cascade. Here, we further examined this possibility by applying force to inside-out patches from the microvilli membrane by changing the pressure in the pipette or pulling the membrane with a magnet through superparamagnetic nanospheres. The channels were opened by mechanical force, while mutant lacking both channels was insensitive to mechanical stimulation. Atomic Force Microscopy showed that the stiffness of an artificial phospholipid bilayer was increased by arachidonic acid and diacylglycerol whereas elaidic acid was ineffective, mirroring their relative effects in channel activity previously observed electrophysiologically. Together, the results are consistent with the notion that light-induced changes in lipid composition alter the membrane structure, generating mechanical force on the channels leading to channel opening.
Collapse
Affiliation(s)
- Ricardo Delgado
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras, 3425, Santiago Chile.
| | - Christian A M Wilson
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, University of Chile, Dr Carlos Lorca Tobar 964, Santiago Chile.
| | - Leonardo Caballero
- Department of Physics and Center for Soft Matter Research SMAT-C, Faculty of Science, University of Santiago of Chile(,)Av Libertador Bernardo O'Higgins 3363, Santiago Chile.
| | - Francisco Melo
- Department of Physics and Center for Soft Matter Research SMAT-C, Faculty of Science, University of Santiago of Chile(,)Av Libertador Bernardo O'Higgins 3363, Santiago Chile.
| | - Juan Bacigalupo
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras, 3425, Santiago Chile.
| |
Collapse
|
3
|
Kodakandla G, Akimzhanov AM, Boehning D. Regulatory mechanisms controlling store-operated calcium entry. Front Physiol 2023; 14:1330259. [PMID: 38169682 PMCID: PMC10758431 DOI: 10.3389/fphys.2023.1330259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Calcium influx through plasma membrane ion channels is crucial for many events in cellular physiology. Cell surface stimuli lead to the production of inositol 1,4,5-trisphosphate (IP3), which binds to IP3 receptors (IP3R) in the endoplasmic reticulum (ER) to release calcium pools from the ER lumen. This leads to the depletion of ER calcium pools, which has been termed store depletion. Store depletion leads to the dissociation of calcium ions from the EF-hand motif of the ER calcium sensor Stromal Interaction Molecule 1 (STIM1). This leads to a conformational change in STIM1, which helps it to interact with the plasma membrane (PM) at ER:PM junctions. At these ER:PM junctions, STIM1 binds to and activates a calcium channel known as Orai1 to form calcium release-activated calcium (CRAC) channels. Activation of Orai1 leads to calcium influx, known as store-operated calcium entry (SOCE). In addition to Orai1 and STIM1, the homologs of Orai1 and STIM1, such as Orai2/3 and STIM2, also play a crucial role in calcium homeostasis. The influx of calcium through the Orai channel activates a calcium current that has been termed the CRAC current. CRAC channels form multimers and cluster together in large macromolecular assemblies termed "puncta". How CRAC channels form puncta has been contentious since their discovery. In this review, we will outline the history of SOCE, the molecular players involved in this process, as well as the models that have been proposed to explain this critical mechanism in cellular physiology.
Collapse
Affiliation(s)
- Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, TX, United States
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
4
|
Križaj D, Cordeiro S, Strauß O. Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration. Prog Retin Eye Res 2023; 92:101114. [PMID: 36163161 PMCID: PMC9897210 DOI: 10.1016/j.preteyeres.2022.101114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels are a widely expressed family of 28 evolutionarily conserved cationic ion channels that operate as primary detectors of chemical and physical stimuli and secondary effectors of metabotropic and ionotropic receptors. In vertebrates, the channels are grouped into six related families: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. As sensory transducers, TRP channels are ubiquitously expressed across the body and the CNS, mediating critical functions in mechanosensation, nociception, chemosensing, thermosensing, and phototransduction. This article surveys current knowledge about the expression and function of the TRP family in vertebrate retinas, which, while dedicated to transduction and transmission of visual information, are highly susceptible to non-visual stimuli. Every retinal cell expresses multiple TRP subunits, with recent evidence establishing their critical roles in paradigmatic aspects of vertebrate vision that include TRPM1-dependent transduction of ON bipolar signaling, TRPC6/7-mediated ganglion cell phototransduction, TRP/TRPL phototransduction in Drosophila and TRPV4-dependent osmoregulation, mechanotransduction, and regulation of inner and outer blood-retina barriers. TRP channels tune light-dependent and independent functions of retinal circuits by modulating the intracellular concentration of the 2nd messenger calcium, with emerging evidence implicating specific subunits in the pathogenesis of debilitating diseases such as glaucoma, ocular trauma, diabetic retinopathy, and ischemia. Elucidation of TRP channel involvement in retinal biology will yield rewards in terms of fundamental understanding of vertebrate vision and therapeutic targeting to treat diseases caused by channel dysfunction or over-activation.
Collapse
Affiliation(s)
- David Križaj
- Departments of Ophthalmology, Neurobiology, and Bioengineering, University of Utah, Salt Lake City, USA
| | - Soenke Cordeiro
- Institute of Physiology, Faculty of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
5
|
Su M, Yuan F, Li T, Wei C. A Non-Gradual Development Process of Cicada Eyes at the End of the Fifth-Instar Nymphal Stage to Obtain Visual Ability. INSECTS 2022; 13:1170. [PMID: 36555080 PMCID: PMC9787698 DOI: 10.3390/insects13121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Insects' visual system is directly related to ecology and critical for their survival. Some cicadas present obvious differences in color and ultrastructure of compound eyes between nymphal and adult stages, but little is known about when cicadas obtain their visual ability to deal with the novel above-ground habitat. We use transcriptome analyses and reveal that cicada Meimuna mongolica has a trichromatic color vision system and that the eyes undergo a non-gradual development process at the end of the 5th-instar nymphal stage. The white-eye 5th-instar nymphs (i.e., younger 5th-instar nymphs) have no visual ability because critical components of the visual system are deficient. The transformation of eyes toward possessing visual function takes place after a tipping point in the transition phase from the white-eye period to the subsequent red-eye period, which is related to a decrease of Juvenile Hormone. The period shortly after adult emergence is also critical for eye development. Key differentially-expressed genes related to phototransduction and chromophore synthesis play positive roles for cicadas to adapt to above-ground habitat. The accumulation of ommochromes corresponds to the color change of eyes from white to red and dark brown during the end of the 5th-instar nymphal period. Cuticle tanning leads to eye color changing from dark-brown to light-brown during the early adult stage. We hypothesize that the accumulation of ommochromes occurring at the end of 5th-instar nymphal stage and the early adult stage is not only for cicadas to obtain visual ability, but also is a secure strategy to cope with potential photodamage after emergence.
Collapse
|
6
|
Ignatova II, Frolov RV. Distinct mechanisms of light adaptation of elementary responses in photoreceptors of Dipteran flies and American cockroach. J Neurophysiol 2022; 128:263-277. [PMID: 35730751 DOI: 10.1152/jn.00519.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Of many light adaptation mechanisms optimizing photoreceptor functioning in the compound eyes of insects, those modifying the single photon response, the quantum bump (QB), remain least studied. Here, by recording from photoreceptors of the blow fly Protophormia terraenovae, the hover fly Volucella pellucens and the cockroach Periplaneta americana, we investigated mechanisms of rapid light adaptation by examining how properties of QBs change after light stimulation and multiquantal impulse responses during repetitive stimulation. In P. terraenovae, light stimulation reduced latencies, characteristic durations and amplitudes of QBs in the intensity- and duration-dependent manner. In P. americana, only QB amplitudes decreased consistently. In both species, time constants of QB parameters' recovery increased with the strength and duration of stimulation, reaching about 30 s after bright prolonged 10 s pulses. In the blow fly, changes in QB amplitudes during recovery correlated with changes in half-widths but not latencies, suggesting at least two separate mechanisms of light adaptation: acceleration of QB onset by sensitizing transduction channels, and acceleration of transduction channel inactivation causing QB shortening and diminishment. In the cockroach, light adaptation reduced QB amplitude by apparently lowering the transduction channel availability. Impulse response data in the blow fly and cockroach were consistent with the mechanistic inferences from the QB recovery experiments. However, in the hover fly V. pellucens, impulse response latencies and durations decreased simultaneously whereas amplitudes decreased little, even when bright flashes were applied at high frequencies. These findings indicate existence of dissimilar mechanisms of light adaptation in the microvilli of different species.
Collapse
Affiliation(s)
- Irina I Ignatova
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Roman V Frolov
- Laboratory of Comparative Sensory Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
7
|
Guo C, Yang X, Shi H, Chen C, Hu Z, Zheng X, Yang X, Xie C. Identification of VdASP F2-interacting protein as a regulator of microsclerotial formation in Verticillium dahliae. Microb Biotechnol 2022; 15:2040-2054. [PMID: 35478269 PMCID: PMC9249328 DOI: 10.1111/1751-7915.14066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022] Open
Abstract
Verticillium dahliae, a notorious phytopathogenic fungus, causes vascular wilt diseases in many plant species. The melanized microsclerotia enable V. dahliae to survive for years in soil and are crucial for its disease cycle. In a previous study, we characterized the secretory protein VdASP F2 from V. dahliae and found that VdASP F2 deletion significantly affected the formation of microsclerotia under adverse environmental conditions. In this study, we clarified that VdASP F2 is localized to the cell wall. However, the underlying mechanism of VdASP F2 in microsclerotial formation remains unclear. Transmembrane ion channel protein VdTRP was identified as a candidate protein that interacts with VdASP F2 using pull‐down assays followed by liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) analysis, and interaction of VdASP F2 and VdTRP was confirmed by bimolecular fluorescence complementary and coimmunoprecipitation assays. The deletion mutant was analysed to reveal that VdTRP is required for microsclerotial production, but it is not essential for stress resistance, carbon utilization and pathogenicity of V. dahliae. RNA‐seq revealed some differentially expressed genes related to melanin synthesis and microsclerotial formation were significantly downregulated in the VdTRP deletion mutants. Taken together, these results indicate that VdASP F2 regulates the formation of melanized microsclerotia by interacting with VdTRP.
Collapse
Affiliation(s)
- Cuimei Guo
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Xing Yang
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Hongli Shi
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Chi Chen
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Zhijuan Hu
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Xinyao Zheng
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Chengjian Xie
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.,Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
8
|
Montell C. Drosophila sensory receptors-a set of molecular Swiss Army Knives. Genetics 2021; 217:1-34. [PMID: 33683373 DOI: 10.1093/genetics/iyaa011] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Genetic approaches in the fruit fly, Drosophila melanogaster, have led to a major triumph in the field of sensory biology-the discovery of multiple large families of sensory receptors and channels. Some of these families, such as transient receptor potential channels, are conserved from animals ranging from worms to humans, while others, such as "gustatory receptors," "olfactory receptors," and "ionotropic receptors," are restricted to invertebrates. Prior to the identification of sensory receptors in flies, it was widely assumed that these proteins function in just one modality such as vision, smell, taste, hearing, and somatosensation, which includes thermosensation, light, and noxious mechanical touch. By employing a vast combination of genetic, behavioral, electrophysiological, and other approaches in flies, a major concept to emerge is that many sensory receptors are multitaskers. The earliest example of this idea was the discovery that individual transient receptor potential channels function in multiple senses. It is now clear that multitasking is exhibited by other large receptor families including gustatory receptors, ionotropic receptors, epithelial Na+ channels (also referred to as Pickpockets), and even opsins, which were formerly thought to function exclusively as light sensors. Genetic characterizations of these Drosophila receptors and the neurons that express them also reveal the mechanisms through which flies can accurately differentiate between different stimuli even when they activate the same receptor, as well as mechanisms of adaptation, amplification, and sensory integration. The insights gleaned from studies in flies have been highly influential in directing investigations in many other animal models.
Collapse
Affiliation(s)
- Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
9
|
Potcoava M, Mann C, Art J, Alford S. Spatio-temporal performance in an incoherent holography lattice light-sheet microscope (IHLLS). OPTICS EXPRESS 2021; 29:23888-23901. [PMID: 34614645 PMCID: PMC8327923 DOI: 10.1364/oe.425069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/29/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
We propose an Incoherent holography detection technique for lattice light-sheet (IHLLS) systems for 3D imaging without moving either the sample stage or the detection microscope objective, providing intrinsic instrumental simplicity and high accuracy when compared to the original LLS schemes. The approach is based on a modified dual-lens Fresnel Incoherent Correlation Holography technique to produce a complex hologram and to provide the focal distance needed for the hologram reconstruction. We report such an IHLLS microscope, including characterization of the sensor performance, and demonstrate a significant contrast improvement on beads and neuronal structures within a biological test sample as well as quantitative phase imaging. The IHLLS has similar or better transverse performances when compared to the LLS technique. In addition, the IHLLS allows for volume reconstruction from fewer z-galvo displacements, thus facilitating faster volume acquisition.
Collapse
Affiliation(s)
- Mariana Potcoava
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612, USA
| | - Christopher Mann
- Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, Arizona 86011, USA
- Center for Materials Interfaces in Research and Development, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Jonathan Art
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Chen W, Shen Z, Asteriti S, Chen Z, Ye F, Sun Z, Wan J, Montell C, Hardie RC, Liu W, Zhang M. Calmodulin binds to Drosophila TRP with an unexpected mode. Structure 2020; 29:330-344.e4. [PMID: 33326749 DOI: 10.1016/j.str.2020.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/16/2020] [Accepted: 11/20/2020] [Indexed: 02/04/2023]
Abstract
Drosophila TRP is a calcium-permeable cation channel essential for fly visual signal transduction. During phototransduction, Ca2+ mediates both positive and negative feedback regulation on TRP channel activity, possibly via binding to calmodulin (CaM). However, the molecular mechanism underlying Ca2+ modulated CaM/TRP interaction is poorly understood. Here, we discover an unexpected, Ca2+-dependent binding mode between CaM and TRP. The TRP tail contains two CaM binding sites (CBS1 and CBS2) separated by an ∼70-residue linker. CBS1 binds to the CaM N-lobe and CBS2 recognizes the CaM C-lobe. Structural studies reveal the lobe-specific binding of CaM to CBS1&2. Mutations introduced in both CBS1 and CBS2 eliminated CaM binding in full-length TRP, but surprisingly had no effect on the response to light under physiological conditions, suggesting alternative mechanisms governing Ca2+-mediated feedback on the channel activity. Finally, we discover that TRPC4, the closest mammalian paralog of Drosophila TRP, adopts a similar CaM binding mode.
Collapse
Affiliation(s)
- Weidi Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zeyu Shen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sabrina Asteriti
- Department of Physiology, Development and Neuroscience, Cambridge University, Downing St, Cambridge CB2 3EG, UK; Department of Neurosciences, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Zijing Chen
- Department of Molecular, Cellular and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ziling Sun
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Craig Montell
- Department of Molecular, Cellular and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Roger C Hardie
- Department of Physiology, Development and Neuroscience, Cambridge University, Downing St, Cambridge CB2 3EG, UK
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| | - Mingjie Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
11
|
TRPM8 facilitates proliferation and immune evasion of esophageal cancer cells. Biosci Rep 2020; 39:BSR20191878. [PMID: 31519770 PMCID: PMC6822499 DOI: 10.1042/bsr20191878] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer is seen with increasing incidence, but the underlying mechanism of esophageal cancer is still unknown. Transient receptor potential melastatin (TRPM) is non-selective cation channels. It has been verified that TRPM channels play crucial roles in development and progression of multiple tumors. Increasing studies have shown that TRPM8, a member of TRPM channels, promotes growth of tumors. However, it is still unclear whether TRPM8 has biological effect on esophageal cancer. In the current work, we found that TRPM8 was overexpressed in esophageal cancer samples and cell lines. Further investigation revealed that TRPM8 promoted proliferation of esophageal cancer cells. Next, the co-incubation assay including EC109 cells and CD8+ T cells revealed that TRPM8 overexpression and TRPM8 agonist reduced the cytotoxic effect of CD8+ T cell on esophageal cancer cells. Finally, we explored the mechanism and found that calcineurin-nuclear factor of activated T cells 3 (NFATc3) pathway contributed to the expression of programmed death ligand 1 (PD-L1) induced by TRPM8 overexpression and TRPM8 agonist, which might lead to immune evasion of esophageal cancer cells. These findings uncovered the crucial role of TRPM8 in the pathogenesis of esophageal cancer.
Collapse
|
12
|
Chen X, Sooch G, Demaree IS, White FA, Obukhov AG. Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. Cells 2020; 9:E1983. [PMID: 32872338 PMCID: PMC7565274 DOI: 10.3390/cells9091983] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Twenty-five years ago, the first mammalian Transient Receptor Potential Canonical (TRPC) channel was cloned, opening the vast horizon of the TRPC field. Today, we know that there are seven TRPC channels (TRPC1-7). TRPCs exhibit the highest protein sequence similarity to the Drosophila melanogaster TRP channels. Similar to Drosophila TRPs, TRPCs are localized to the plasma membrane and are activated in a G-protein-coupled receptor-phospholipase C-dependent manner. TRPCs may also be stimulated in a store-operated manner, via receptor tyrosine kinases, or by lysophospholipids, hypoosmotic solutions, and mechanical stimuli. Activated TRPCs allow the influx of Ca2+ and monovalent alkali cations into the cytosol of cells, leading to cell depolarization and rising intracellular Ca2+ concentration. TRPCs are involved in the continually growing number of cell functions. Furthermore, mutations in the TRPC6 gene are associated with hereditary diseases, such as focal segmental glomerulosclerosis. The most important recent breakthrough in TRPC research was the solving of cryo-EM structures of TRPC3, TRPC4, TRPC5, and TRPC6. These structural data shed light on the molecular mechanisms underlying TRPCs' functional properties and propelled the development of new modulators of the channels. This review provides a historical overview of the major advances in the TRPC field focusing on the role of gene knockouts and pharmacological tools.
Collapse
Affiliation(s)
- Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Gagandeep Sooch
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Isaac S. Demaree
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Fletcher A. White
- The Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G. Obukhov
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Gu Q, Wu J, Tian Y, Cheng S, Zhang ZC, Han J. Gαq splice variants mediate phototransduction, rhodopsin synthesis, and retinal integrity in Drosophila. J Biol Chem 2020; 295:5554-5563. [PMID: 32198182 PMCID: PMC7186184 DOI: 10.1074/jbc.ra120.012764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/19/2020] [Indexed: 11/06/2022] Open
Abstract
Heterotrimeric G proteins mediate a variety of signaling processes by coupling G protein-coupled receptors to intracellular effector molecules. In Drosophila, the Gαq gene encodes several Gαq splice variants, with the Gαq1 isoform protein playing a major role in fly phototransduction. However, Gαq1 null mutant flies still exhibit a residual light response, indicating that other Gαq splice variants or additional Gq α subunits are involved in phototransduction. Here, we isolated a mutant fly with no detectable light responses, decreased rhodopsin (Rh) levels, and rapid retinal degeneration. Using electrophysiological and genetic studies, biochemical assays, immunoblotting, real-time RT-PCR, and EM analysis, we found that mutations in the Gαq gene disrupt light responses and demonstrate that the Gαq3 isoform protein is responsible for the residual light response in Gαq1 null mutants. Moreover, we report that Gαq3 mediates rhodopsin synthesis. Depletion of all Gαq splice variants led to rapid light-dependent retinal degeneration, due to the formation stable Rh1-arrestin 2 (Arr2) complexes. Our findings clarify essential roles of several different Gαq splice variants in phototransduction and retinal integrity in Drosophila and reveal that Gαq3 functions in rhodopsin synthesis.
Collapse
Affiliation(s)
- Qiuxiang Gu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jinglin Wu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Shanshan Cheng
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zi Chao Zhang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
14
|
Rapid Release of Ca 2+ from Endoplasmic Reticulum Mediated by Na +/Ca 2+ Exchange. J Neurosci 2020; 40:3152-3164. [PMID: 32156830 DOI: 10.1523/jneurosci.2675-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 11/21/2022] Open
Abstract
Phototransduction in Drosophila is mediated by phospholipase C (PLC) and Ca2+-permeable TRP channels, but the function of endoplasmic reticulum (ER) Ca2+ stores in this important model for Ca2+ signaling remains obscure. We therefore expressed a low affinity Ca2+ indicator (ER-GCaMP6-150) in the ER, and measured its fluorescence both in dissociated ommatidia and in vivo from intact flies of both sexes. Blue excitation light induced a rapid (tau ∼0.8 s), PLC-dependent decrease in fluorescence, representing depletion of ER Ca2+ stores, followed by a slower decay, typically reaching ∼50% of initial dark-adapted levels, with significant depletion occurring under natural levels of illumination. The ER stores refilled in the dark within 100-200 s. Both rapid and slow store depletion were largely unaffected in InsP3 receptor mutants, but were much reduced in trp mutants. Strikingly, rapid (but not slow) depletion of ER stores was blocked by removing external Na+ and in mutants of the Na+/Ca2+ exchanger, CalX, which we immuno-localized to ER membranes in addition to its established localization in the plasma membrane. Conversely, overexpression of calx greatly enhanced rapid depletion. These results indicate that rapid store depletion is mediated by Na+/Ca2+ exchange across the ER membrane induced by Na+ influx via the light-sensitive channels. Although too slow to be involved in channel activation, this Na+/Ca2+ exchange-dependent release explains the decades-old observation of a light-induced rise in cytosolic Ca2+ in photoreceptors exposed to Ca2+-free solutions.SIGNIFICANCE STATEMENT Phototransduction in Drosophila is mediated by phospholipase C, which activates TRP cation channels by an unknown mechanism. Despite much speculation, it is unknown whether endoplasmic reticulum (ER) Ca2+ stores play any role. We therefore engineered flies expressing a genetically encoded Ca2+ indicator in the photoreceptor ER. Although NCX Na+/Ca2+ exchangers are classically believed to operate only at the plasma membrane, we demonstrate a rapid light-induced depletion of ER Ca2+ stores mediated by Na+/Ca2+ exchange across the ER membrane. This NCX-dependent release was too slow to be involved in channel activation, but explains the decades-old observation of a light-induced rise in cytosolic Ca2+ in photoreceptors bathed in Ca2+-free solutions.
Collapse
|
15
|
Ca2+ Signaling in Drosophila Photoreceptor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:857-879. [DOI: 10.1007/978-3-030-12457-1_34] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Electrophysiological adaptations of insect photoreceptors and their elementary responses to diurnal and nocturnal lifestyles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:55-69. [PMID: 31858215 PMCID: PMC6995784 DOI: 10.1007/s00359-019-01392-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Nocturnal vision in insects depends on the ability to reliably detect scarce photons. Nocturnal insects tend to have intrinsically more sensitive and larger rhabdomeres than diurnal species. However, large rhabdomeres have relatively high membrane capacitance (Cm), which can strongly low-pass filter the voltage bumps, widening and attenuating them. To investigate the evolution of photoreceptor signaling under near dark, we recorded elementary current and voltage responses from a number of species in six insect orders. We found that the gain of phototransduction increased with Cm, so that nocturnal species had relatively large and prolonged current bumps. Consequently, although the voltage bump amplitude correlated negatively with Cm, the strength of the total voltage signal increased. Importantly, the background voltage noise decreased strongly with increasing Cm, yielding a notable increase in signal-to-noise ratio for voltage bumps. A similar decrease in the background noise with increasing Cm was found in intracellular recordings in vivo. Morphological measurements of rhabdomeres were consistent with our Cm estimates. Our results indicate that the increased photoreceptor Cm in nocturnal insects is a major sensitivity-boosting and noise-suppressing adaptation. However, by requiring a compensatory increase in the gain of phototransduction, this adaptation comes at the expense of the signaling bandwidth.
Collapse
|
17
|
Riehle M, Tsvetkov D, Gohlke BO, Preissner R, Harteneck C, Gollasch M, Nürnberg B. Molecular basis for the sensitivity of TRP channels to polyunsaturated fatty acids. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:833-846. [PMID: 29736621 PMCID: PMC6061713 DOI: 10.1007/s00210-018-1507-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 11/29/2022]
Abstract
Transient receptor potential (TRP) channels represent a superfamily of unselective cation channels that are subdivided into seven subfamilies based on their sequence homology and differences in gating and functional properties. Little is known about the molecular mechanisms of TRP channel regulation, particularly of the “canonical” TRP (TRPC) subfamily and their activation by polyunsaturated fatty acids (PUFAs). Here, we analyzed the structure-function relationship of Drosophila fruit fly TRPC channels. The primary aim was to uncover the molecular basis of PUFA sensitivity of Drosophila TRP-like (TRPL) and TRPgamma channels. Amino acid (aa) sequence alignment of the three Drosophila TRPC channels revealed 50 aa residues highly conserved in PUFA-sensitive TRPL and TRPgamma channels but not in the PUFA-insensitive TRP channel. Substitution of respective aa in TRPL by corresponding aa of TRP identified 18 residues that are necessary for PUFA-mediated activation of TRPL. Most aa positions are located within a stretch comprising transmembrane domains S2–S4, whereas six aa positions have been assigned to the proximal cytosolic C-terminus. Interestingly, residues I465 and S471 are required for activation by 5,8,11,14-eicosatetraynoic acid (ETYA) but not 5,8,11-eicosatriynoic acid (ETI). As proof of concept, we generated a PUFA-sensitive TRP channel by exchanging the corresponding aa from TRPL to TRP. Our study demonstrates a specific aa pattern in the transmembrane domains S2–S4 and the proximal C-terminus essential for TRP channel activation by PUFAs.
Collapse
Affiliation(s)
- Marc Riehle
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Dmitry Tsvetkov
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Wilhelmstrasse 56, 72074, Tübingen, Germany.,Experimental and Clinical Research Center (ECRC), a joint cooperation of the Charité University Medicine and Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125, Berlin, Germany.,Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Björn-Oliver Gohlke
- Structural Bioinformatics Group, Institute for Physiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Robert Preissner
- Structural Bioinformatics Group, Institute for Physiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Christian Harteneck
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC), a joint cooperation of the Charité University Medicine and Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125, Berlin, Germany. .,Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Berlin, Germany.
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Wilhelmstrasse 56, 72074, Tübingen, Germany.
| |
Collapse
|
18
|
Honkanen A, Immonen EV, Salmela I, Heimonen K, Weckström M. Insect photoreceptor adaptations to night vision. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0077. [PMID: 28193821 DOI: 10.1098/rstb.2016.0077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 01/25/2023] Open
Abstract
Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Anna Honkanen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Esa-Ville Immonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Iikka Salmela
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Kyösti Heimonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Matti Weckström
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| |
Collapse
|
19
|
Katz B, Voolstra O, Tzadok H, Yasin B, Rhodes-Modrov E, Bartels JP, Strauch L, Huber A, Minke B. The latency of the light response is modulated by the phosphorylation state of Drosophila TRP at a specific site. Channels (Austin) 2017; 11:678-685. [PMID: 28762890 DOI: 10.1080/19336950.2017.1361073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Drosophila photoreceptors respond to oscillating light of high frequency (∼100 Hz), while increasing the oscillating light intensity raises the maximally detected frequency. Recently, we reported that dephosphorylation of the light-activated TRP ion channel at S936 is a fast, graded, light-, and Ca2+-dependent process. We further found that this process affects the detection limit of high frequency oscillating light. Accordingly, transgenic Drosophila, which do not undergo phosphorylation at the S936-TRP site (trpS936A), revealed a short time-interval before following the high stimulus frequency (oscillation-lock response) in both dark- and light-adapted flies. In contrast, the trpS936D transgenic flies, which mimic constant phosphorylation, showed a long-time interval to oscillation-lock response in both dark- and light-adapted flies. Here we extend these findings by showing that dark-adapted trpS936A flies reveal light-induced current (LIC) with short latency relative to trpWT or trpS936D flies, indicating that the channels are a limiting factor of response kinetics. The results indicate that properties of the light-activated channels together with the dynamic light-dependent process of TRP phosphorylation at the S936 site determine response kinetics.
Collapse
Affiliation(s)
- Ben Katz
- a Department of Medical Neurobiology , Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University , Jerusalem , Israel
| | - Olaf Voolstra
- b Department of Biosensorics , Institute of Physiology, University of Hohenheim , Stuttgart , Germany
| | - Hanan Tzadok
- a Department of Medical Neurobiology , Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University , Jerusalem , Israel
| | - Bushra Yasin
- a Department of Medical Neurobiology , Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University , Jerusalem , Israel
| | - Elisheva Rhodes-Modrov
- a Department of Medical Neurobiology , Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University , Jerusalem , Israel
| | - Jonas-Peter Bartels
- b Department of Biosensorics , Institute of Physiology, University of Hohenheim , Stuttgart , Germany
| | - Lisa Strauch
- b Department of Biosensorics , Institute of Physiology, University of Hohenheim , Stuttgart , Germany
| | - Armin Huber
- b Department of Biosensorics , Institute of Physiology, University of Hohenheim , Stuttgart , Germany
| | - Baruch Minke
- a Department of Medical Neurobiology , Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University , Jerusalem , Israel
| |
Collapse
|
20
|
Phototransduction in Drosophila Is Compromised by Gal4 Expression but not by InsP 3 Receptor Knockdown or Mutation. eNeuro 2017; 4:eN-NWR-0143-17. [PMID: 28660247 PMCID: PMC5483600 DOI: 10.1523/eneuro.0143-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 01/18/2023] Open
Abstract
Drosophila phototransduction is mediated by phospholipase C, leading to activation of transient receptor potential (TRP) and TRP-like (TRPL) channels by mechanisms that are unresolved. A role for InsP3 receptors (IP3Rs) had been excluded because IP3R mutants (itpr) appeared to have normal light responses; however, this was recently challenged by Kohn et al. (“Functional cooperation between the IP3 receptor and phospholipase C secures the high sensitivity to light of Drosophila photoreceptors in vivo,” Journal of Neuroscience 35:2530), who reported defects in phototransduction after IP3R-RNAi knockdown. They concluded that InsP3-induced Ca2+ release plays a critical role in facilitating channel activation, and that previous failure to detect IP3R phenotypes resulted from trace Ca2+ in electrodes substituting for InsP3-induced Ca2+ release. In an attempt to confirm this, we performed electroretinograms, whole-cell recordings, and GCaMP6f Ca2+ imaging from both IP3R-RNAi flies and itpr-null mutants. Like Kohn et al., we used GMRGal4 to drive expression of UAS-IP3R-RNAi, but we also used controls expressing GMRGal4 alone. We describe several GMRGal4 phenotypes suggestive of compromised development, including reductions in sensitivity, dark noise, potassium currents, and cell size and capacitance, as well as extreme variations in sensitivity between cells. However, we found no effect of IP3R RNAi or mutation on photoreceptor responses or Ca2+ signals, indicating that the IP3R plays little or no role in Drosophila phototransduction.
Collapse
|
21
|
Katz B, Gutorov R, Rhodes-Mordov E, Hardie RC, Minke B. Electrophysiological Method for Whole-cell Voltage Clamp Recordings from Drosophila Photoreceptors. J Vis Exp 2017. [PMID: 28654039 PMCID: PMC5608386 DOI: 10.3791/55627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Whole-cell voltage clamp recordings from Drosophila melanogaster photoreceptors have revolutionized the field of invertebrate visual transduction, enabling the use of D. melanogaster molecular genetics to study inositol-lipid signaling and Transient Receptor Potential (TRP) channels at the single-molecule level. A handful of labs have mastered this powerful technique, which enables the analysis of the physiological responses to light under highly controlled conditions. This technique allows control over the intracellular and extracellular media; the membrane voltage; and the fast application of pharmacological compounds, such as a variety of ionic or pH indicators, to the intra- and extracellular media. With an exceptionally high signal-to-noise ratio, this method enables the measurement of dark spontaneous and light-induced unitary currents (i.e. spontaneous and quantum bumps) and macroscopic Light-induced Currents (LIC) from single D. melanogaster photoreceptors. This protocol outlines, in great detail, all the key steps necessary to perform this technique, which includes both electrophysiological and optical recordings. The fly retina dissection procedure for the attainment of intact and viable ex vivo isolated ommatidia in the bath chamber is described. The equipment needed to perform whole-cell and fluorescence imaging measurements are also detailed. Finally, the pitfalls in using this delicate preparation during extended experiments are explained.
Collapse
Affiliation(s)
- Ben Katz
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University
| | - Rita Gutorov
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University
| | - Elisheva Rhodes-Mordov
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University
| | - Roger C Hardie
- Department of Physiology, Development and Neuroscience, University of Cambridge;
| | - Baruch Minke
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University;
| |
Collapse
|
22
|
Saari P, French AS, Torkkeli PH, Liu H, Immonen EV, Frolov RV. Distinct roles of light-activated channels TRP and TRPL in photoreceptors of Periplaneta americana. J Gen Physiol 2017; 149:455-464. [PMID: 28283577 PMCID: PMC5379922 DOI: 10.1085/jgp.201611737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
Electrophysiological studies in Drosophila melanogaster and Periplaneta americana have found that the receptor current in their microvillar photoreceptors is generated by two light-activated cationic channels, TRP (transient receptor potential) and TRPL (TRP-like), each having distinct properties. However, the relative contribution of the two channel types to sensory information coding by photoreceptors remains unclear. We recently showed that, in contrast to the diurnal Drosophila in which TRP is the principal phototransduction channel, photoreceptors of the nocturnal P. americana strongly depend on TRPL. Here, we perform a functional analysis, using patch-clamp and intracellular recordings, of P. americana photoreceptors after RNA interference to knock down TRP (TRPkd) and TRPL (TRPLkd). Several functional properties were changed in both knockdown phenotypes: cell membrane capacitance was reduced 1.7-fold, light sensitivity was greatly reduced, and amplitudes of sustained light-induced currents and voltage responses decreased more than twofold over the entire range of light intensities. The information rate (IR) was tested using a Gaussian white-noise modulated light stimulus and was lower in TRPkd photoreceptors (28 ± 21 bits/s) than in controls (52 ± 13 bits/s) because of high levels of bump noise. In contrast, although signal amplitudes were smaller than in controls, the mean IR of TRPLkd photoreceptors was unchanged at 54 ± 29 bits/s1 because of proportionally lower noise. We conclude that TRPL channels provide high-gain/high-noise transduction, suitable for vision in dim light, whereas transduction by TRP channels is relatively low-gain/low-noise and allows better information transfer in bright light.
Collapse
Affiliation(s)
- Paulus Saari
- Biophysics Group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu FI-90014, Finland
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Esa-Ville Immonen
- Biophysics Group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu FI-90014, Finland.,Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Roman V Frolov
- Biophysics Group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu FI-90014, Finland
| |
Collapse
|
23
|
Immonen EV, French AS, Torkkeli PH, Liu H, Vähäsöyrinki M, Frolov RV. EAG channels expressed in microvillar photoreceptors are unsuited to diurnal vision. J Physiol 2017; 595:5465-5479. [PMID: 28087896 DOI: 10.1113/jp273612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/16/2017] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS The principles underlying the evolutionary selection of ion channels for expression in sensory neurons are unclear. Photoreceptor depolarization in the diurnal Drosophila melanogaster is predominantly provided by light-activated transient receptor potential (TRP) channels, whereas repolarization is mediated by sustained voltage-gated K+ channels of the Shab family. In the present study, we show that phototransduction in the nocturnal cockroach Periplaneta americana is predominantly mediated by TRP-like channels, whereas membrane repolarization is based on EAG channels. Although bright light stimulates Shab channels in Drosophila, further restricting depolarization and improving membrane bandwidth, it strongly suppresses EAG conductance in Periplaneta. This light-dependent inhibition (LDI) is caused by calcium and is abolished by chelating intracellular calcium or suppressing eag gene expression. LDI increases membrane resistance, augments gain and reduces the signalling bandwidth. This makes EAG unsuitable for light response conditioning during the day and might have resulted in the evolutionary replacement of EAG by other delayed rectifiers in diurnal insects. ABSTRACT The principles underlying evolutionary selection of ion channels for expression in sensory neurons are unclear. Among species possessing microvillar photoreceptors, the major ionic conductances have only been identified in Drosophila melanogaster. In Drosophila, depolarization is provided by light-activated transient receptor potential (TRP) channels with a minor contribution from TRP-like (TRPL) channels, whereas repolarization is mediated by sustained voltage-gated K+ (Kv) channels of the Shab family. Bright light stimulates Shab channels, further restricting depolarization and improving membrane bandwidth. In the present study, data obtained using a combination of electrophysiological, pharmacological and molecular knockdown techniques strongly suggest that in photoreceptors of the nocturnal cockroach Periplaneta americana the major excitatory channel is TRPL, whereas the predominant delayed rectifier is EAG, a ubiquitous but enigmatic Kv channel. By contrast to the diurnal Drosophila, bright light strongly suppresses EAG conductance in Periplaneta. This light-dependent inhibition (LDI) is caused by calcium entering the cytosol and is amplified following inhibition of calcium extrusion, and it can also be abolished by chelating intracellular calcium or suppressing eag gene expression by RNA interference. LDI increases membrane resistance, augments gain and reduces the signalling bandwidth, impairing information transfer. LDI is also observed in the nocturnal cricket Gryllus integer, whereas, in the diurnal water strider Gerris lacustris, the delayed rectifier is up-regulated by light. Although LDI is not expected to reduce delayed rectifier current in the normal illumination environment of nocturnal cockroaches and crickets, it makes EAG unsuitable for light response conditioning during the day, and might have resulted in the evolutionary replacement of EAG by other delayed rectifiers in diurnal insects.
Collapse
Affiliation(s)
- Esa-Ville Immonen
- Biophysics group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Mikko Vähäsöyrinki
- Biophysics group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Roman V Frolov
- Biophysics group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
24
|
Asteriti S, Liu CH, Hardie RC. Calcium signalling in Drosophila photoreceptors measured with GCaMP6f. Cell Calcium 2017; 65:40-51. [PMID: 28238353 PMCID: PMC5472182 DOI: 10.1016/j.ceca.2017.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/30/2022]
Abstract
Drosophila phototransduction is mediated by phospholipase C leading to activation of cation channels (TRP and TRPL) in the 30000 microvilli forming the light-absorbing rhabdomere. The channels mediate massive Ca2+ influx in response to light, but whether Ca2+ is released from internal stores remains controversial. We generated flies expressing GCaMP6f in their photoreceptors and measured Ca2+ signals from dissociated cells, as well as in vivo by imaging rhabdomeres in intact flies. In response to brief flashes, GCaMP6f signals had latencies of 10-25ms, reached 50% Fmax with ∼1200 effectively absorbed photons and saturated (ΔF/F0∼10-20) with 10000-30000 photons. In Ca2+ free bath, smaller (ΔF/F0 ∼4), long latency (∼200ms) light-induced Ca2+ rises were still detectable. These were unaffected in InsP3 receptor mutants, but virtually eliminated when Na+ was also omitted from the bath, or in trpl;trp mutants lacking light-sensitive channels. Ca2+ free rises were also eliminated in Na+/Ca2+ exchanger mutants, but greatly accelerated in flies over-expressing the exchanger. These results show that Ca2+ free rises are strictly dependent on Na+ influx and activity of the exchanger, suggesting they reflect re-equilibration of Na+/Ca2+ exchange across plasma or intracellular membranes following massive Na+ influx. Any tiny Ca2+ free rise remaining without exchanger activity was equivalent to <10nM (ΔF/F0 ∼0.1), and unlikely to play any role in phototransduction.
Collapse
Affiliation(s)
- Sabrina Asteriti
- Cambridge University, Department of Physiology Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK
| | - Che-Hsiung Liu
- Cambridge University, Department of Physiology Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK
| | - Roger C Hardie
- Cambridge University, Department of Physiology Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
25
|
Frolov RV. Current advances in invertebrate vision: insights from patch-clamp studies of photoreceptors in apposition eyes. J Neurophysiol 2016; 116:709-23. [PMID: 27250910 DOI: 10.1152/jn.00288.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022] Open
Abstract
Traditional electrophysiological research on invertebrate photoreceptors has been conducted in vivo, using intracellular recordings from intact compound eyes. The only exception used to be Drosophila melanogaster, which was exhaustively studied by both intracellular recording and patch-clamp methods. Recently, several patch-clamp studies have provided new information on the biophysical properties of photoreceptors of diverse insect species, having both apposition and neural superposition eyes, in the contexts of visual ecology, behavior, and ontogenesis. Here, I discuss these and other relevant results, emphasizing differences between fruit flies and other species, between photoreceptors of diurnal and nocturnal insects, properties of distinct functional types of photoreceptors, postembryonic developmental changes, and relationships between voltage-gated potassium channels and visual ecology.
Collapse
Affiliation(s)
- Roman V Frolov
- Department of Physics, Division of Biophysics, University of Oulu, Oulun Yliopisto, Finland
| |
Collapse
|
26
|
Poletini MO, Moraes MN, Ramos BC, Jerônimo R, Castrucci AMDL. TRP channels: a missing bond in the entrainment mechanism of peripheral clocks throughout evolution. Temperature (Austin) 2015; 2:522-34. [PMID: 27227072 PMCID: PMC4843991 DOI: 10.1080/23328940.2015.1115803] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/10/2015] [Accepted: 10/29/2015] [Indexed: 11/03/2022] Open
Abstract
Circadian rhythm may be understood as a temporal organization that works to orchestrate physiological processes and behavior in a period of approximately 24 h. Because such temporal organization has evolved in the presence of predictable environmental clues, such as day length, tides, seasons, and temperature, the organism has confronted the natural selection in highly precise intervals of opportunities and risks, generating temporal programs and resetting mechanisms, which are well conserved among different taxa of animals. The present review brings some evidence of how these programs may have co-evolved in systems able to deal with 2 or more environmental clues, and how they similarly function in different group of animals, stressing how important temperature and light were to establish the temporal organizations. For example, melanopsin and rhodopsin, photopigments present respectively in circadian and visual photoreceptors, are required for temperature discrimination in Drosophila melanogaster. These pigments may signal light and temperature via activation of cationic membrane channel, named transient-receptor potential channel (TRP). In fact, TRPs have been suggested to function as thermal sensor for various groups of animals. Another example is the clock machinery at the molecular level. A set of very-well conserved proteins, known as clock proteins, function as transcription factors in positive and negative auto-regulatory loops generating circadian changes of their expression, and of clock-controlled genes. Similar molecular machinery is present in organisms as diverse as cyanobacteria (Synechococcus), fungi (Neurospora), insects (Drosophila), and vertebrates including humans.
Collapse
Affiliation(s)
- Maristela O Poletini
- Department of Physiology and Biophysics; Institute of Biological Sciences; Federal University of Minas Gerais ; Belo Horizonte, Brazil
| | - Maria Nathália Moraes
- Department of Physiology; Institute of Biosciences; University of Sao Paulo ; São Paulo, Brazil
| | - Bruno César Ramos
- Department of Physiology; Institute of Biosciences; University of Sao Paulo ; São Paulo, Brazil
| | - Rodrigo Jerônimo
- Department of Physiology; Institute of Biosciences; University of Sao Paulo ; São Paulo, Brazil
| | | |
Collapse
|
27
|
Hardie RC, Liu CH, Randall AS, Sengupta S. In vivo tracking of phosphoinositides in Drosophila photoreceptors. J Cell Sci 2015; 128:4328-40. [PMID: 26483384 PMCID: PMC4712823 DOI: 10.1242/jcs.180364] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/12/2015] [Indexed: 01/26/2023] Open
Abstract
In order to monitor phosphoinositide turnover during phospholipase C (PLC)-mediated Drosophila phototransduction, fluorescently tagged lipid probes were expressed in photoreceptors and imaged both in dissociated cells, and in eyes of intact living flies. Of six probes tested, Tb(R332H) (a mutant of the Tubby protein pleckstrin homology domain) was judged the best reporter for phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2], and the P4M domain from Legionella SidM for phosphatidylinositol 4-phosphate (PtdIns4P). Using accurately calibrated illumination, we found that only ∼50% of PtdIns(4,5)P2 and very little PtdIns4P were depleted by full daylight intensities in wild-type flies, but both were severely depleted by ∼100-fold dimmer intensities in mutants lacking Ca(2+)-permeable transient receptor potential (TRP) channels or protein kinase C (PKC). Resynthesis of PtdIns4P (t½ ∼12 s) was faster than PtdIns(4,5)P2 (t½ ∼40 s), but both were greatly slowed in mutants of DAG kinase (rdgA) or PtdIns transfer protein (rdgB). The results indicate that Ca(2+)- and PKC-dependent inhibition of PLC is required for enabling photoreceptors to maintain phosphoinositide levels despite high rates of hydrolysis by PLC, and suggest that phosphorylation of PtdIns4P to PtdIns(4,5)P2 is the rate-limiting step of the cycle.
Collapse
Affiliation(s)
- Roger C Hardie
- Department of Physiology Development and Neuroscience, Cambridge University, Cambridge CB2 3EG, UK
| | - Che-Hsiung Liu
- Department of Physiology Development and Neuroscience, Cambridge University, Cambridge CB2 3EG, UK
| | - Alexander S Randall
- Department of Physiology Development and Neuroscience, Cambridge University, Cambridge CB2 3EG, UK
| | - Sukanya Sengupta
- Department of Physiology Development and Neuroscience, Cambridge University, Cambridge CB2 3EG, UK
| |
Collapse
|
28
|
French AS, Meisner S, Liu H, Weckström M, Torkkeli PH. Transcriptome analysis and RNA interference of cockroach phototransduction indicate three opsins and suggest a major role for TRPL channels. Front Physiol 2015; 6:207. [PMID: 26257659 PMCID: PMC4513288 DOI: 10.3389/fphys.2015.00207] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/09/2015] [Indexed: 11/13/2022] Open
Abstract
Our current understanding of insect phototransduction is based on a small number of species, but insects occupy many different visual environments. We created the retinal transcriptome of a nocturnal insect, the cockroach, Periplaneta americana to identify proteins involved in the earliest stages of compound eye phototransduction, and test the hypothesis that different visual environments are reflected in different molecular contributions to function. We assembled five novel mRNAs: two green opsins, one UV opsin, and one each TRP and TRPL ion channel homologs. One green opsin mRNA (pGO1) was 100–1000 times more abundant than the other opsins (pGO2 and pUVO), while pTRPL mRNA was 10 times more abundant than pTRP, estimated by transcriptome analysis or quantitative PCR (qPCR). Electroretinograms were used to record photoreceptor responses. Gene-specific in vivo RNA interference (RNAi) was achieved by injecting long (596–708 bp) double-stranded RNA into head hemolymph, and verified by qPCR. RNAi of the most abundant green opsin reduced both green opsins by more than 97% without affecting UV opsin, and gave a maximal reduction of 75% in ERG amplitude 7 days after injection that persisted for at least 19 days. RNAi of pTRP and pTRPL genes each specifically reduced the corresponding mRNA by 90%. Electroretinogram (ERG) reduction by pTRPL RNAi was slower than for opsin, reaching 75% attenuation by 21 days, without recovery at 29 days. pTRP RNAi attenuated ERG much less; only 30% after 21 days. Combined pTRP plus pTRPL RNAi gave only weak evidence of any cooperative interactions. We conclude that silencing retinal genes by in vivo RNAi using long dsRNA is effective, that visible light transduction in Periplaneta is dominated by pGO1, and that pTRPL plays a major role in cockroach phototransduction.
Collapse
Affiliation(s)
- Andrew S French
- Department of Physiology and Biophysics, Dalhousie University Halifax, NS, Canada
| | - Shannon Meisner
- Department of Physiology and Biophysics, Dalhousie University Halifax, NS, Canada
| | - Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University Halifax, NS, Canada
| | - Matti Weckström
- Department of Biophysics, Research Centre for Molecular Materials, University of Oulu Oulu, Finland
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University Halifax, NS, Canada
| |
Collapse
|
29
|
Speed and sensitivity of phototransduction in Drosophila depend on degree of saturation of membrane phospholipids. J Neurosci 2015; 35:2731-46. [PMID: 25673862 DOI: 10.1523/jneurosci.1150-14.2015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drosophila phototransduction is mediated via a G-protein-coupled PLC cascade. Recent evidence, including the demonstration that light evokes rapid contractions of the photoreceptors, suggested that the light-sensitive channels (TRP and TRPL) may be mechanically gated, together with protons released by PLC-mediated PIP2 hydrolysis. If mechanical gating is involved we predicted that the response to light should be influenced by altering the physical properties of the membrane. To achieve this, we used diet to manipulate the degree of saturation of membrane phospholipids. In flies reared on a yeast diet, lacking polyunsaturated fatty acids (PUFAs), mass spectrometry showed that the proportion of polyunsaturated phospholipids was sevenfold reduced (from 38 to ∼5%) but rescued by adding a single species of PUFA (linolenic or linoleic acid) to the diet. Photoreceptors from yeast-reared flies showed a 2- to 3-fold increase in latency and time to peak of the light response, without affecting quantum bump waveform. In the absence of Ca(2+) influx or in trp mutants expressing only TRPL channels, sensitivity to light was reduced up to ∼10-fold by the yeast diet, and essentially abolished in hypomorphic G-protein mutants (Gαq). PLC activity appeared little affected by the yeast diet; however, light-induced contractions measured by atomic force microscopy or the activation of ectopic mechanosensitive gramicidin channels were also slowed ∼2-fold. The results are consistent with mechanosensitive gating and provide a striking example of how dietary fatty acids can profoundly influence sensory performance in a classical G-protein-coupled signaling cascade.
Collapse
|
30
|
Myeong J, Kwak M, Jeon JP, Hong C, Jeon JH, So I. Close spatio-association of the transient receptor potential canonical 4 (TRPC4) channel with Gαi in TRPC4 activation process. Am J Physiol Cell Physiol 2015; 308:C879-89. [PMID: 25788576 DOI: 10.1152/ajpcell.00374.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/12/2015] [Indexed: 01/03/2023]
Abstract
TPRC channels are Ca(2+)-permeable, nonselective cation channels that are activated by a wide variety of stimuli, including G protein-coupled receptors (GPCRs). TRPC4 is commonly assumed to be activated by Gq/phospholipase C-coupled receptors. However, the other molecular mechanisms by which Gα proteins regulate TRPC4 remain unclear. Here, we found that Gαi2 regulates TRPC4 activation by direct binding. To investigate this mechanism, we used whole patch clamp and fluorescence resonance energy transfer (FRET). We tagged an isoform of mTRPC4 and G protein with CFP and YFP, respectively, and transiently transfected cells with the FRET pair. The FRET efficiency between TRPC4β-CFP and the constitutively active mutant form of Gαi2 was nearly 15% and was greater than that observed with wild-type Gαi2 (nearly 5%). Gβγ and the TRPC4 channel showed a FRET efficiency lower than 6%. In HEK293 cells transfected with the M2 muscarinic receptor, the application of carbachol increased the FRET efficiency between TRPC4β-CFP and Gαi2(WT)-YFP from 4.7 ± 0.4% (n = 7) to 12.6 ± 1.4% (n = 7). We also found that the TRPC4 channel directly interacts with Gαi2, but not with Gαq, when the channel is open. We analyzed the calcium levels in HEK293 cells expressing the channels and Gαi2 or Gαq using the calcium indicator YC6.1 (Yellow Cameleon 6.1). In response to the muscarinic agonist carbachol, M2-, Gαi2-, and TRPC4-expressing cells showed a prolonged Ca(2+) influx compared with cells expressing only M2. Together, these data suggest that Gαi2 activates the TRPC4 channel by direct binding, which then induces Ca(2+) entry.
Collapse
Affiliation(s)
- JongYun Myeong
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| | - Misun Kwak
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| | - Jae-Pyo Jeon
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chansik Hong
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| |
Collapse
|
31
|
Permeation, regulation and control of expression of TRP channels by trace metal ions. Pflugers Arch 2014; 467:1143-64. [PMID: 25106481 PMCID: PMC4435931 DOI: 10.1007/s00424-014-1590-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/10/2014] [Accepted: 07/13/2014] [Indexed: 01/26/2023]
Abstract
Transient receptor potential (TRP) channels form a diverse family of cation channels comprising 28 members in mammals. Although some TRP proteins can only be found on intracellular membranes, most of the TRP protein isoforms reach the plasma membrane where they form ion channels and control a wide number of biological processes. There, their involvement in the transport of cations such as calcium and sodium has been well documented. However, a growing number of studies have started to expand our understanding of these proteins by showing that they also transport other biologically relevant metal ions like zinc, magnesium, manganese and cobalt. In addition to this newly recognized property, the activity and expression of TRP channels can be regulated by metal ions like magnesium, gadolinium, lanthanum or cisplatin. The aim of this review is to highlight the complex relationship between metal ions and TRP channels.
Collapse
|
32
|
Diacylglycerol activates the light-dependent channel TRP in the photosensitive microvilli of Drosophila melanogaster photoreceptors. J Neurosci 2014; 34:6679-86. [PMID: 24806693 DOI: 10.1523/jneurosci.0513-14.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drosophila light-dependent channels, TRP and TRPL, reside in the light-sensitive microvilli of the photoreceptor's rhabdomere. Phospholipase C mediates TRP/TRPL opening, but the gating process remains unknown. Controversial evidence has suggested diacylglycerol (DAG), polyunsaturated fatty acids (PUFAs, a DAG metabolite), phosphatidylinositol bisphosphate (PIP2), and H(+) as possible channel activators. We tested each of them directly in inside-out TRP-expressing patches excised from the rhabdomere, making use of mutants and pharmacology. When patches were excised in darkness TRP remained closed, while when excised under illumination it stayed constitutively active. TRP was opened by DAG and silenced by ATP, suggesting DAG-kinase (DGK) involvement. The ATP effect was abolished by inhibiting DGK and in the rdgA mutant, lacking functional DGK, implicating DGK. DAG activated TRP even in the presence of a DAG-lipase inhibitor, inconsistent with a requirement of PUFAs in opening TRP. PIP2 had no effect and acidification, pH 6.4, activated TRP irreversibly, unlike the endogenous activator. Complementary liquid-chromatography/mass-spectrometry determinations of DAG and PUFAs in membranes enriched in rhabdomere obtained from light- and dark-adapted eyes showed light-dependent increment in six DAG species and no changes in PUFAs. The results strongly support DAG as the endogenous TRP agonist, as some of its vertebrate TRPC homologs of the same channel family.
Collapse
|
33
|
Immonen EV, Krause S, Krause Y, Frolov R, Vähäsöyrinki MT, Weckström M. Elementary and macroscopic light-induced currents and their Ca(2+)-dependence in the photoreceptors of Periplaneta americana. Front Physiol 2014; 5:153. [PMID: 24795648 PMCID: PMC4001075 DOI: 10.3389/fphys.2014.00153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 03/31/2014] [Indexed: 11/13/2022] Open
Abstract
In a microvillar photoreceptor, absorption of an incident photon initiates a phototransduction reaction that generates a depolarizing light-induced current (LIC) in the microvillus. Although in-depth knowledge about these processes in photoreceptors of the fruitfly Drosophila is available, not much is known about their nature in other insect species. Here, we present description of some basic properties of both elementary and macroscopic LICs and their Ca(2+)-dependence in the photoreceptors of a dark-active species, the cockroach Periplaneta americana. Cockroach photoreceptors respond to single photon absorptions by generating quantum bumps with about 5-fold larger amplitudes than in Drosophila. At the macroscopic current level, cockroach photoreceptors responded to light with variable sensitivity and current waveform. This variability could be partially attributed to differences in whole-cell capacitance. Transient LICs, both elementary and macroscopic, showed only moderate dependence on extracellular Ca(2+). However, with long light pulses, response inactivation was largely abolished and the overall size of LICs increased when extracellular Ca(2+) was omitted. Finally, by determining relative ionic permeabilities from reversals of LICs, we demonstrate that when compared to Drosophila, cockroach light-gated channels are only moderately Ca(2+)-selective.
Collapse
Affiliation(s)
| | | | | | | | | | - Matti Weckström
- Division of Biophysics, Department of Physics, University of OuluOulu, Finland
| |
Collapse
|
34
|
Abstract
The Drosophila "transient receptor potential" channel is the prototypical TRP channel, belonging to and defining the TRPC subfamily. Together with a second TRPC channel, trp-like (TRPL), TRP mediates the transducer current in the fly's photoreceptors. TRP and TRPL are also implicated in olfaction and Malpighian tubule function. In photoreceptors, TRP and TRPL are localised in the ~30,000 packed microvilli that form the photosensitive "rhabdomere"-a light-guiding rod, housing rhodopsin and the rest of the phototransduction machinery. TRP (but not TRPL) is assembled into multimolecular signalling complexes by a PDZ-domain scaffolding protein (INAD). TRPL (but not TRP) undergoes light-regulated translocation between cell body and rhabdomere. TRP and TRPL are also found in photoreceptor synapses where they may play a role in synaptic transmission. Like other TRPC channels, TRP and TRPL are activated by a G protein-coupled phospholipase C (PLCβ4) cascade. Although still debated, recent evidence indicates the channels can be activated by a combination of PIP2 depletion and protons released by the PLC reaction. PIP2 depletion may act mechanically as membrane area is reduced by cleavage of PIP2's bulky inositol headgroup. TRP, which dominates the light-sensitive current, is Ca(2+) selective (P Ca:P Cs >50:1), whilst TRPL has a modest Ca(2+) permeability (P Ca:P Cs ~5:1). Ca(2+) influx via the channels has profound positive and negative feedback roles, required for the rapid response kinetics, with Ca(2+) rapidly facilitating TRP (but not TRPL) and also inhibiting both channels. In trp mutants, stimulation by light results in rapid depletion of microvillar PIP2 due to lack of Ca(2+) influx required to inhibit PLC. This accounts for the "transient receptor potential" phenotype that gives the family its name and, over a period of days, leads to light-dependent retinal degeneration. Gain-of-function trp mutants with uncontrolled Ca(2+) influx also undergo retinal degeneration due to Ca(2+) cytotoxicity. In vertebrate retina, mice knockout studies suggest that TRPC6 and TRPC7 mediate a PLCβ4-activated transducer current in intrinsically photosensitive retinal ganglion cells, expressing melanopsin. TRPA1 has been implicated as a "photo-sensing" TRP channel in human melanocytes and light-sensitive neurons in the body wall of Drosophila.
Collapse
|
35
|
Katz B, Oberacker T, Richter D, Tzadok H, Peters M, Minke B, Huber A. Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo. J Cell Sci 2013; 126:3121-33. [PMID: 23687378 DOI: 10.1242/jcs.123505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Family members of the cationic transient receptor potential (TRP) channels serve as sensors and transducers of environmental stimuli. The ability of different TRP channel isoforms of specific subfamilies to form heteromultimers and the structural requirements for channel assembly are still unresolved. Although heteromultimerization of different mammalian TRP channels within single subfamilies has been described, even within a subfamily (such as TRPC) not all members co-assemble with each other. In Drosophila photoreceptors two TRPC channels, TRP and TRP-like protein (TRPL) are expressed together in photoreceptors where they generate the light-induced current. The formation of functional TRP-TRPL heteromultimers in cell culture and in vitro has been reported. However, functional in vivo assays have shown that each channel functions independently of the other. Therefore, the issue of whether TRP and TRPL form heteromultimers in vivo is still unclear. In the present study we investigated the ability of TRP and TRPL to form heteromultimers, and the structural requirements for channel assembly, by studying assembly of GFP-tagged TRP and TRPL channels and chimeric TRP and TRPL channels, in vivo. Interaction studies of tagged and native channels as well as native and chimeric TRP-TRPL channels using co-immunoprecipitation, immunocytochemistry and electrophysiology, critically tested the ability of TRP and TRPL to interact. We found that TRP and TRPL assemble exclusively as homomultimeric channels in their native environment. The above analyses revealed that the transmembrane regions of TRP and TRPL do not determine assemble specificity of these channels. However, the C-terminal regions of both TRP and TRPL predominantly specify the assembly of homomeric TRP and TRPL channels.
Collapse
Affiliation(s)
- Ben Katz
- Department of Medical Neurobiology, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
36
|
Chu B, Postma M, Hardie R. Fractional Ca(2+) currents through TRP and TRPL channels in Drosophila photoreceptors. Biophys J 2013; 104:1905-16. [PMID: 23663833 PMCID: PMC3647204 DOI: 10.1016/j.bpj.2013.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/05/2013] [Accepted: 03/25/2013] [Indexed: 01/29/2023] Open
Abstract
Light responses in Drosophila photoreceptors are mediated by two Ca(2+) permeable cation channels, transient receptor potential (TRP) and TRP-like (TRPL). Although Ca(2+) influx via these channels is critical for amplification, inactivation, and light adaptation, the fractional contribution of Ca(2+) to the currents (Pf) has not been measured. We describe a slow (τ ∼ 350 ms) tail current in voltage-clamped light responses and show that it is mediated by electrogenic Na(+)/Ca(2+) exchange. Assuming a 3Na:1Ca stoichiometry, we derive empirical estimates of Pf by comparing the charge integrals of the exchanger and light-induced currents. For TRPL channels, Pf was ∼17% as predicted by Goldman-Hodgkin-Katz (GHK) theory. Pf for TRP (29%) and wild-type flies (26%) was higher, but lower than the GHK prediction (45% and 42%). As predicted by GHK theory, Pf for both channels increased with extracellular [Ca(2+)], and was largely independent of voltage between -100 and -30 mV. A model incorporating intra- and extracellular geometry, ion permeation, diffusion, extrusion, and buffering suggested that the deviation from GHK predictions was largely accounted for by extracellular ionic depletion during the light-induced currents, and the time course of the Na(+)/Ca(2+) exchange current could be used to obtain estimates of cellular Ca(2+) buffering capacities.
Collapse
Affiliation(s)
- Brian Chu
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | - Marten Postma
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Roger C. Hardie
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| |
Collapse
|
37
|
Cerny AC, Oberacker T, Pfannstiel J, Weigold S, Will C, Huber A. Mutation of light-dependent phosphorylation sites of the Drosophila transient receptor potential-like (TRPL) ion channel affects its subcellular localization and stability. J Biol Chem 2013; 288:15600-13. [PMID: 23592784 DOI: 10.1074/jbc.m112.426981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila phototransduction cascade terminates in the opening of the ion channel transient receptor potential (TRP) and TRP-like (TRPL). Contrary to TRP, TRPL undergoes light-dependent subcellular trafficking between rhabdomeric photoreceptor membranes and an intracellular storage compartment, resulting in long term light adaptation. Here, we identified in vivo phosphorylation sites of TRPL that affect TRPL stability and localization. Quantitative mass spectrometry revealed a light-dependent change in the TRPL phosphorylation pattern. Mutation of eight C-terminal phosphorylation sites neither affected multimerization of the channels nor the electrophysiological response of flies expressing the mutated channels. However, these mutations resulted in mislocalization and enhanced degradation of TRPL after prolonged dark-adaptation. Mutation of subsets of the eight C-terminal phosphorylation sites also led to a reduction of TRPL content and partial mislocalization in the dark. This suggests that a light-dependent switch in the phosphorylation pattern of the TRPL channel mediates stable expression of TRPL in the rhabdomeres upon prolonged dark-adaptation.
Collapse
Affiliation(s)
- Alexander C Cerny
- Department of Biosensorics, Institute of Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Burg ED, Langan ST, Nash HA. Drosophila social clustering is disrupted by anesthetics and in narrow abdomen ion channel mutants. GENES BRAIN AND BEHAVIOR 2013; 12:338-47. [PMID: 23398613 DOI: 10.1111/gbb.12025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/06/2012] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
Members of many species tend to congregate, a behavioral strategy known as local enhancement. Selective advantages of local enhancement range from efficient use of resources to defense from predators. While previous studies have examined many types of social behavior in fruit flies, few have specifically investigated local enhancement. Resource-independent local enhancement (RILE) has recently been described in the fruit fly using a measure called social space index (SSI), although the neural mechanisms remain unknown. Here, we analyze RILE of Drosophila under conditions that allow us to elucidate its neural mechanisms. We have investigated the effects of general volatile anesthetics, compounds that compromise higher order functioning of the type typically required for responding to social cues. We exposed Canton-S flies to non-immobilizing concentrations of halothane and found that flies had a significantly decreased SSI compared with flies tested in air. Narrow abdomen (na) mutants, which display altered responses to anesthetics in numerous behavioral assays, also have a significantly reduced SSI, an effect that was fully reversed by restoring expression of na by driving a UAS-NA rescue construct with NA-GAL4. We found that na expression in cholinergic neurons fully rescued the behavioral defect, whereas expression of na in glutamatergic neurons did so only partially. Our results also suggest a role for na expression in the mushroom bodies (MBs), as suppressing na expression in the MBs of NA-GAL4 rescue flies diminishes SSI. Our data indicate that RILE, a simple behavioral strategy, requires complex neural processing.
Collapse
Affiliation(s)
- E D Burg
- Section on Neural Function, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
39
|
Sengupta S, Barber TR, Xia H, Ready DF, Hardie RC. Depletion of PtdIns(4,5)P₂ underlies retinal degeneration in Drosophila trp mutants. J Cell Sci 2013; 126:1247-59. [PMID: 23378018 DOI: 10.1242/jcs.120592] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The prototypical transient receptor potential (TRP) channel is the major light-sensitive, and Ca(2+)-permeable channel in the microvillar photoreceptors of Drosophila. TRP channels are activated following hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P₂] by the key effector enzyme phospholipase C (PLC). Mutants lacking TRP channels undergo light-dependent retinal degeneration, as a consequence of the reduced Ca(2+) influx. It has been proposed that degeneration is caused by defects in the Ca(2+)-dependent visual pigment cycle, which result in accumulation of toxic phosphorylated metarhodopsin-arrestin complexes (MPP-Arr2). Here we show that two interventions, which prevent accumulation of MPP-Arr2, namely rearing under red light or eliminating the C-terminal rhodopsin phosphorylation sites, failed to rescue degeneration in trp mutants. Instead, degeneration in trp mutants reared under red light was rescued by mutation of PLC. Degeneration correlated closely with the light-induced depletion of PtdIns(4,5)P₂ that occurs in trp mutants due to failure of Ca(2+)-dependent inhibition of PLC. Severe retinal degeneration was also induced in the dark in otherwise wild-type flies by overexpression of a bacterial PtdInsPn phosphatase (SigD) to deplete PtdIns(4,5)P₂. In degenerating trp photoreceptors, phosphorylated Moesin, a PtdIns(4,5)P₂-regulated membrane-cytoskeleton linker essential for normal microvillar morphology, was found to delocalize from the rhabdomere and there was extensive microvillar actin depolymerisation. The results suggest that compromised light-induced Ca(2+) influx, due to loss of TRP channels, leads to PtdIns(4,5)P₂ depletion, resulting in dephosphorylation of Moesin, actin depolymerisation and disintegration of photoreceptor structure.
Collapse
Affiliation(s)
- Sukanya Sengupta
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | | | | | | | | |
Collapse
|
40
|
Chu B, Liu CH, Sengupta S, Gupta A, Raghu P, Hardie RC. Common mechanisms regulating dark noise and quantum bump amplification in Drosophila photoreceptors. J Neurophysiol 2013; 109:2044-55. [PMID: 23365183 DOI: 10.1152/jn.00001.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Absolute visual thresholds are limited by "dark noise," which in Drosophila photoreceptors is dominated by brief (∼10 ms), small (∼2 pA) inward current events, occurring at ∼2/s, believed to reflect spontaneous G protein activations. These dark events were increased in rate and amplitude by a point mutation in myosin III (NINAC), which disrupts its interaction with the scaffolding protein, INAD. This phenotype mimics that previously described in null mutants of ninaC (no inactivation no afterpotential; encoding myosin III) and an associated protein, retinophilin (rtp). Dark noise was similarly increased in heterozygote mutants of diacylglycerol kinase (rdgA/+). Dark noise in ninaC, rtp, and rdgA/+ mutants was greatly suppressed by mutations of the Gq α-subunit (Gαq) and the major light-sensitive channel (trp) but not rhodopsin. ninaC, rtp, and rdgA/+ mutations also all facilitated residual light responses in Gαq and PLC hypomorphs. Raising cytosolic Ca(2+) in the submicromolar range increased dark noise, facilitated activation of transient receptor potential (TRP) channels by exogenous agonist, and again facilitated light responses in Gαq hypomorphs. Our results indicate that RTP, NINAC, INAD, and diacylglycerol kinase, together with a Ca(2+)-dependent threshold, share common roles in suppressing dark noise and regulating quantum bump generation; consequently, most spontaneous G protein activations fail to generate dark events under normal conditions. By contrast, quantum bump generation is reliable but delayed until sufficient G proteins and PLC are activated to overcome threshold, thereby ensuring generation of full-size bumps with high quantum efficiency.
Collapse
Affiliation(s)
- Brian Chu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
Badsha F, Kain P, Prabhakar S, Sundaram S, Padinjat R, Rodrigues V, Hasan G. Mutants in Drosophila TRPC channels reduce olfactory sensitivity to carbon dioxide. PLoS One 2012; 7:e49848. [PMID: 23185459 PMCID: PMC3501451 DOI: 10.1371/journal.pone.0049848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 10/14/2012] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Members of the canonical Transient Receptor Potential (TRPC) class of cationic channels function downstream of Gαq and PLCβ in Drosophila photoreceptors for transducing visual stimuli. Gαq has recently been implicated in olfactory sensing of carbon dioxide (CO(2)) and other odorants. Here we investigated the role of PLCβ and TRPC channels for sensing CO(2) in Drosophila. METHODOLOGY/PRINCIPAL FINDINGS Through behavioral assays it was demonstrated that Drosophila mutants for plc21c, trp and trpl have a reduced sensitivity for CO(2). Immuno-histochemical staining for TRP, TRPL and TRPγ indicates that all three channels are expressed in Drosophila antennae including the sensory neurons that express CO(2) receptors. Electrophysiological recordings obtained from the antennae of protein null alleles of TRP (trp(343)) and TRPL (trpl(302)), showed that the sensory response to multiple concentrations of CO(2) was reduced. However, trpl(302); trp(343) double mutants still have a residual response to CO(2). Down-regulation of TRPC channels specifically in CO(2) sensing olfactory neurons reduced the response to CO(2) and this reduction was obtained even upon down-regulation of the TRPCs in adult olfactory sensory neurons. Thus the reduced response to CO(2) obtained from the antennae of TRPC RNAi strains is not due to a developmental defect. CONCLUSION These observations show that reduction in TRPC channel function significantly reduces the sensitivity of the olfactory response to CO(2) concentrations of 5% or less in adult Drosophila. It is possible that the CO(2) receptors Gr63a and Gr21a activate the TRPC channels through Gαq and PLC21C.
Collapse
Affiliation(s)
- Farhath Badsha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Pinky Kain
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Sunil Prabhakar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | | | - Raghu Padinjat
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Veronica Rodrigues
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| |
Collapse
|
42
|
|
43
|
Astorga G, Härtel S, Sanhueza M, Bacigalupo J. TRP, TRPL and cacophony channels mediate Ca2+ influx and exocytosis in photoreceptors axons in Drosophila. PLoS One 2012; 7:e44182. [PMID: 22952921 PMCID: PMC3432082 DOI: 10.1371/journal.pone.0044182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/02/2012] [Indexed: 01/17/2023] Open
Abstract
In Drosophila photoreceptors Ca(2+)-permeable channels TRP and TRPL are the targets of phototransduction, occurring in photosensitive microvilli and mediated by a phospholipase C (PLC) pathway. Using a novel Drosophila brain slice preparation, we studied the distribution and physiological properties of TRP and TRPL in the lamina of the visual system. Immunohistochemical images revealed considerable expression in photoreceptors axons at the lamina. Other phototransduction proteins are also present, mainly PLC and protein kinase C, while rhodopsin is absent. The voltage-dependent Ca(2+) channel cacophony is also present there. Measurements in the lamina with the Ca(2+) fluorescent protein G-CaMP ectopically expressed in photoreceptors, revealed depolarization-induced Ca(2+) increments mediated by cacophony. Additional Ca(2+) influx depends on TRP and TRPL, apparently functioning as store-operated channels. Single synaptic boutons resolved in the lamina by FM4-64 fluorescence revealed that vesicle exocytosis depends on cacophony, TRP and TRPL. In the PLC mutant norpA bouton labeling was also impaired, implicating an additional modulation by this enzyme. Internal Ca(2+) also contributes to exocytosis, since this process was reduced after Ca(2+)-store depletion. Therefore, several Ca(2+) pathways participate in photoreceptor neurotransmitter release: one is activated by depolarization and involves cacophony; this is complemented by internal Ca(2+) release and the activation of TRP and TRPL coupled to Ca(2+) depletion of internal reservoirs. PLC may regulate the last two processes. TRP and TRPL would participate in two different functions in distant cellular regions, where they are opened by different mechanisms. This work sheds new light on the mechanism of neurotransmitter release in tonic synapses of non-spiking neurons.
Collapse
Affiliation(s)
- Guadalupe Astorga
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
- Millennium Institute for Cell Dynamics and Biotechnology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Steffen Härtel
- Laboratory for Scientific Image Analysis, (SCIAN-Lab), Biomedical Neuroscience Institute (BNI), ICBM, Program of Anatomy and Developmental Biology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Magdalena Sanhueza
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
- Millennium Institute for Cell Dynamics and Biotechnology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Juan Bacigalupo
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
- Millennium Institute for Cell Dynamics and Biotechnology, Faculty of Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
44
|
Pulido C, Malagón G, Ferrer C, Chen JK, Angueyra JM, Nasi E, Gomez MDP. The light-sensitive conductance of melanopsin-expressing Joseph and Hesse cells in amphioxus. ACTA ACUST UNITED AC 2012; 139:19-30. [PMID: 22200946 PMCID: PMC3250099 DOI: 10.1085/jgp.201110717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two types of microvillar photoreceptors in the neural tube of amphioxus, an early chordate, sense light via melanopsin, the same photopigment as in “circadian” light detectors of higher vertebrates. Because in amphioxus melanopsin activates a Gq/phospholipase C cascade, like phototransduction in arthropods and mollusks, possible commonalities in the photoconductance were investigated. Unlike other microvillar photoreceptors, reversal of the photocurrent can only be attained upon replacement of extracellular Na+. In addition to Na+, Ca2+ is also permeant, as indicated by the fact that (a) in normal ionic conditions the photocurrent remains inward at Vm > ENa; (b) in Na-free solution a small residual inward photocurrent persists at Vm near resting level, provided that Ca is present; and (c) Vrev exhibits a modest shift with [Ca]o manipulations. The unusual reversal is accounted for by an uncommonly low permeability of the light-dependent channels to K+, as [K]o only marginally affects the photocurrent amplitude and its reversal. Lanthanum and ruthenium red (RuR), two TRP channel antagonists, reversibly suppress the response to photostimulation of moderate intensity; therefore, the melanopsin-initiated cascade may recruit ion channels of the same family as those of rhabdomeric photoreceptors. With brighter lights, blockage declines, so that both La3+ and RuR induce a right shift in the sensitivity curve without a reduction of its asymptote. Nonetheless, an effect on the transduction cascade, rather than the channels, was ruled out on the basis of the voltage dependency of the blockade and the lack of effects of intracellular application of the same substances. The mechanisms of action of these antagonists thus entail a state-dependent blockade, with a higher affinity for the channel in the closed conformation. Collectively, the results indicate a kinship of the light-sensitive channels of amphioxus with those of invertebrate rhabdomeric visual cells and support the representation of this lineage of photoreceptors among chordates.
Collapse
Affiliation(s)
- Camila Pulido
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá
| | | | | | | | | | | | | |
Collapse
|
45
|
Raghu P, Yadav S, Mallampati NBN. Lipid signaling in Drosophila photoreceptors. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1154-65. [PMID: 22487656 DOI: 10.1016/j.bbalip.2012.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 11/19/2022]
Abstract
Drosophila photoreceptors are sensory neurons whose primary function is the transduction of photons into an electrical signal for forward transmission to the brain. Photoreceptors are polarized cells whose apical domain is organized into finger like projections of plasma membrane, microvilli that contain the molecular machinery required for sensory transduction. The development of this apical domain requires intense polarized membrane transport during development and it is maintained by post developmental membrane turnover. Sensory transduction in these cells involves a high rate of G-protein coupled phosphatidylinositol 4,5 bisphosphate [PI(4,5)P(2)] hydrolysis ending with the activation of ion channels that are members of the TRP superfamily. Defects in this lipid-signaling cascade often result in retinal degeneration, which is a consequence of the loss of apical membrane homeostasis. In this review we discuss the various membrane transport challenges of photoreceptors and their regulation by ongoing lipid signaling cascades in these cells. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Padinjat Raghu
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Banglore 560065, India.
| | | | | |
Collapse
|
46
|
Kim E, Shino S, Yoon J, Leung HT. In search of proteins that are important for synaptic functions in Drosophila visual system. J Neurogenet 2012; 26:151-7. [PMID: 22283835 DOI: 10.3109/01677063.2011.648290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This is the second of two reviews that include some of the studies we, members of the Pak laboratory and collaborators, did from 2000 to 2010 on the mutants that affect synaptic transmission in the Drosophila visual system. Of the five mutants we discuss, two turned out to also play roles in the larval neuromuscular junction. This review complements the one on phototransduction to give a fairly complete account of what we focused on during the 10-year period, although we also did some studies on photoreceptor degeneration in the early part of the decade. Besides showing the power of using a genetic approach to the study of synaptic transmission, the review contains some unexpected results that illustrate the serendipitous nature of research.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
47
|
Pak WL, Leung HT. Genetic Approaches to Visual Transduction in Drosophila melanogaster. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Chorna T, Hasan G. The genetics of calcium signaling in Drosophila melanogaster. Biochim Biophys Acta Gen Subj 2011; 1820:1269-82. [PMID: 22100727 DOI: 10.1016/j.bbagen.2011.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND Genetic screens for behavioral and physiological defects in Drosophila melanogaster, helped identify several components of calcium signaling of which some, like the Trps, were novel. For genes initially identified in vertebrates, reverse genetic methods have allowed functional studies at the cellular and systemic levels. SCOPE OF REVIEW The aim of this review is to explain how various genetic methods available in Drosophila have been used to place different arms of Ca2+ signaling in the context of organismal development, physiology and behavior. MAJOR CONCLUSION Mutants generated in genes encoding a range of Ca2+ transport systems, binding proteins and enzymes affect multiple aspects of neuronal and muscle physiology. Some also affect the maintenance of ionic balance and excretion from malpighian tubules and innate immune responses in macrophages. Aspects of neuronal physiology affected include synaptic growth and plasticity, sensory transduction, flight circuit development and function. Genetic interaction screens have shown that mechanisms of maintaining Ca2+ homeostasis in Drosophila are cell specific and require a synergistic interplay between different intracellular and plasma membrane Ca2+ signaling molecules. GENERAL SIGNIFICANCE Insights gained through genetic studies of conserved Ca2+ signaling pathways have helped understand multiple aspects of fly physiology. The similarities between mutant phenotypes of Ca2+ signaling genes in Drosophila with certain human disease conditions, especially where homologous genes are causative factors, are likely to aid in the discovery of underlying disease mechanisms and help develop novel therapeutic strategies. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Tetyana Chorna
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | |
Collapse
|
49
|
Hardie RC. Phototransduction mechanisms in Drosophila microvillar photoreceptors. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/wmts.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Richter D, Katz B, Oberacker T, Tzarfaty V, Belusic G, Minke B, Huber A. Translocation of the Drosophila transient receptor potential-like (TRPL) channel requires both the N- and C-terminal regions together with sustained Ca2+ entry. J Biol Chem 2011; 286:34234-43. [PMID: 21816824 PMCID: PMC3190804 DOI: 10.1074/jbc.m111.278564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 07/29/2011] [Indexed: 11/06/2022] Open
Abstract
In Drosophila photoreceptors the transient receptor potential-like (TRPL), but not the TRP channels undergo light-dependent translocation between the rhabdomere and cell body. Here we studied which of the TRPL channel segments are essential for translocation and why the TRP channels are required for inducing TRPL translocation. We generated transgenic flies expressing chimeric TRP and TRPL proteins that formed functional light-activated channels. Translocation was induced only in chimera containing both the N- and C-terminal segments of TRPL. Using an inactive trp mutation and overexpressing the Na(+)/Ca(2+) exchanger revealed that the essential function of the TRP channels in TRPL translocation is to enhance Ca(2+)-influx. These results indicate that motifs present at both the N and C termini as well as sustained Ca(2+) entry are required for proper channel translocation.
Collapse
Affiliation(s)
- David Richter
- From the Department of Biosensorics, Institute of Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ben Katz
- the Department of Medical Neurobiology and The Kühne Minerva Center for Studies of Visual Transduction, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel, and
| | - Tina Oberacker
- From the Department of Biosensorics, Institute of Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Vered Tzarfaty
- the Department of Medical Neurobiology and The Kühne Minerva Center for Studies of Visual Transduction, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel, and
| | - Gregor Belusic
- the Department of Biology, Biotechnical Faculty, University of Ljubljana 1000, Slovenia
| | - Baruch Minke
- the Department of Medical Neurobiology and The Kühne Minerva Center for Studies of Visual Transduction, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel, and
| | - Armin Huber
- From the Department of Biosensorics, Institute of Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|