1
|
Bankoti K, Generotti C, Hwa T, Wang L, O'Malley BW, Li D. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:209-236. [PMID: 33850952 PMCID: PMC8010215 DOI: 10.1016/j.omtm.2021.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing attention and effort focused on treating the root cause of sensorineural hearing loss rather than managing associated secondary characteristic features. With recent substantial advances in understanding sensorineural hearing-loss mechanisms, gene delivery has emerged as a promising strategy for the biological treatment of hearing loss associated with genetic dysfunction. There are several successful and promising proof-of-principle examples of transgene deliveries in animal models; however, there remains substantial further progress to be made in these avenues before realizing their clinical application in humans. Herein, we review different aspects of development, ongoing preclinical studies, and challenges to the clinical transition of transgene delivery of the inner ear toward the restoration of lost auditory and vestibular function.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Generotti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany Hwa
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Wang
- Department of Medicine, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bert W O'Malley
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daqing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Ohlemiller KK, Kiener AL, Gagnon PM. QTL Mapping of Endocochlear Potential Differences between C57BL/6J and BALB/cJ mice. J Assoc Res Otolaryngol 2016; 17:173-94. [PMID: 26980469 DOI: 10.1007/s10162-016-0558-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
We reported earlier that the endocochlear potential (EP) differs between C57BL/6J (B6) and BALB/cJ (BALB) mice, being lower in BALBs by about 10 mV (Ohlemiller et al. Hear Res 220: 10-26, 2006). This difference corresponds to strain differences with respect to the density of marginal cells in cochlear stria vascularis. After about 1 year of age, BALB mice also tend toward EP reduction that correlates with further marginal cell loss. We therefore suggested that early sub-clinical features of the BALB stria vascularis may predispose these mice to a condition modeling Schuknecht's strial presbycusis. We further reported (Ohlemiller et al. J Assoc Res Otolaryngol 12: 45-58, 2011) that the acute effects of a 2-h 110 dB SPL noise exposure differ between B6 and BALB mice, such that the EP remains unchanged in B6 mice, but is reduced by 40-50 mV in BALBs. In about 25 % of BALBs, the EP does not completely recover, so that permanent EP reduction may contribute to noise-induced permanent threshold shifts in BALBs. To identify genes and alleles that may promote natural EP variation as well as noise-related EP reduction in BALB mice, we have mapped related quantitative trait loci (QTLs) using 12 recombinant inbred (RI) strains formed from B6 and BALB (CxB1-CxB12). EP and strial marginal cell density were measured in B6 mice, BALB mice, their F1 hybrids, and RI mice without noise exposure, and 1-3 h after broadband noise (4-45 kHz, 110 dB SPL, 2 h). For unexposed mice, the strain distribution patterns for EP and marginal cell density were used to generate preliminary QTL maps for both EP and marginal cell density. Six QTL regions were at least statistically suggestive, including a significant QTL for marginal cell density on chromosome 12 that overlapped a weak QTL for EP variation. This region, termed Maced (Marginal cell density QTL) supports the notion of marginal cell density as a genetically influenced contributor to natural EP variation. Candidate genes for Maced notably include Foxg1, Foxa1, Akap6, Nkx2-1, and Pax9. Noise exposure produced significant EP reductions in two RI strains as well as significant EP increases in two RI strains. QTL mapping of the EP in noise-exposed RI mice yielded four suggestive regions. Two of these overlapped with QTL regions we previously identified for noise-related EP reduction in CBA/J mice (Ohlemiller et al. Hear Res 260: 47-53, 2010) on chromosomes 5 and 18 (Nirep). The present map may narrow the Nirep interval to a ~10-Mb region of proximal Chr. 18 that includes Zeb1, Arhgap12, Mpp7, and Gjd4. This study marks the first exploration of natural gene variants that modulate the EP. Their orthologs may underlie some human hearing loss that originates in the lateral wall.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO, 63110, USA.
| | - Anna L Kiener
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH, USA
| | - Patricia M Gagnon
- Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO, 63110, USA
| |
Collapse
|
3
|
Chun JY, Shin SK, Min KT, Cho W, Kim J, Kim SO, Hong SP. Performance evaluation of the TheraTyper-GJB2 assay for detection of GJB2 gene mutations. J Mol Diagn 2014; 16:573-583. [PMID: 24998936 DOI: 10.1016/j.jmoldx.2014.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 01/01/2023] Open
Abstract
Mutations in the GJB2 gene are the most common cause of congenital hearing loss in many populations. This study describes the development of a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based minisequencing assay, TheraTyper-GJB2, for the detection of c.35delG, c.167delT, and c.235delC mutations in the GJB2 gene. This assay was evaluated for analytic performance, including detection limit, interference, cross-reactivity, and precision, using GJB2 reference standards prepared by site-directed mutagenesis of a molecular clone. The detection limit was as low as 0.040 ng of human genomic DNA per PCR. No cross-reactivity with bacteria and viruses and no negative effects of increased levels of various potential interfering substances was observed. A precision test involving repetitive analysis of 2400 replicates showed 99.9% agreement (2397 of 2,400) with 99.8% (95% CI, 99.7%-99.8%) sensitivity and 100.0% (95% CI, 99.3%-100.0%) specificity. TheraTyper-GJB2 and direct sequencing assays showed 100% concordance for detecting mutations in 1,113 clinical specimens. Overall, TheraTyper-GJB2 showed comparable performance for detecting GJB2 mutations in reference and clinical samples with that of direct sequencing, and easier interpretation of results for analysis of a large quantity of samples. Therefore, the TheraTyper-GJB2 assay will be practically useful for the diagnosis of GJB2 mutations associated with congenital hearing loss with faster, cheaper, more reliable, and high-throughput capability.
Collapse
Affiliation(s)
- Ji-Yong Chun
- Research and Development Center, GeneMatrix, Inc., Seongnam, South Korea
| | - Soo-Kyung Shin
- Research and Development Center, GeneMatrix, Inc., Seongnam, South Korea
| | - Kyung Tae Min
- Research and Development Center, GeneMatrix, Inc., Seongnam, South Korea
| | - Woojae Cho
- Research and Development Center, GeneMatrix, Inc., Seongnam, South Korea
| | - Jaeil Kim
- Research and Development Center, GeneMatrix, Inc., Seongnam, South Korea
| | - Soo-Ok Kim
- Research and Development Center, GeneMatrix, Inc., Seongnam, South Korea
| | - Sun Pyo Hong
- Research and Development Center, GeneMatrix, Inc., Seongnam, South Korea.
| |
Collapse
|
4
|
Groh D, Seeman P, Jilek M, Popelář J, Kabelka Z, Syka J. Hearing function in heterozygous carriers of a pathogenic GJB2 gene mutation. Physiol Res 2013; 62:323-30. [PMID: 23489192 DOI: 10.33549/physiolres.932475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The most frequent hereditary hearing loss is caused by mutations in the GJB2 gene coding for the gap junction beta 2 protein Connexin 26 (Cx26). In contrast to many studies performed in patients with bi-allelic mutations, audiometric studies on heterozygotes are sparse and often contradictory. To evaluate hearing function in heterozygous carriers of the GJB2 c.35delG mutation, audiometry over the extended frequency range and the recording of otoacoustic emissions (OAEs), i.e., transient-evoked OAEs (TEOAEs) and distortion product OAEs (DPOAEs), were performed in a group of parents and grandparents of deaf children homozygous for the GJB2 c.35delG mutation. The comparison of audiograms between control and heterozygous subjects was enabled using audiogram normalization for age and sex. Hearing loss, estimated with this procedure, was found to be significantly larger in GJB2 c.35delG heterozygous females in comparison with controls for the frequencies of 8-16 kHz; the deterioration of hearing in heterozygous men in comparison with controls was not statistically significant. A comparison of TEOAE responses and DPOAE levels between GJB2 c.35delG heterozygotes and controls did not reveal any significant differences. The results prove the importance of using audiometry over the extended frequency range and audiogram normalization for age and sex to detect minor hearing impairments, even in a relatively small group of subjects of different ages.
Collapse
Affiliation(s)
- D Groh
- Department of ENT, Charles University in Prague, Second Faculty of Medicine, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
5
|
Carlsson PI, Karltorp E, Carlsson-Hansén E, Åhlman H, Möller C, Vondöbeln U. GJB2 (Connexin 26) gene mutations among hearing-impaired persons in a Swedish cohort. Acta Otolaryngol 2012; 132:1301-5. [PMID: 23039283 DOI: 10.3109/00016489.2012.701018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION The most common mutation in the Swedish population was Connexin 26 (C×26) 35delG, which indicates that the percentage of Swedish persons with C×26 mutations and polymorphisms in the GJB2 gene among non-syndromic hearing-impaired (HI) persons is comparable to the rest of Europe. The results strongly support a Swedish policy to offer all children with diagnosed hearing impairment genetic tests for the C×26 35delG mutation. OBJECTIVES The aim of the present study was to search for mutations in the GBJ2 gene among Swedish persons with non-syndromic hearing impairment to further clarify how common these mutations are in Sweden, one of the northernmost countries in Europe. METHODS Seventy-nine patients with non-syndromic hearing impairment participated in the study. For 87% of the participants, a pure tone audiogram showed a severe or profound hearing impairment. Dried blood spots on filter paper, taken at 3-5 days of age in the Swedish nationwide neonatal screening programme for congenital disorders and saved in a biobank, were used for the molecular genetic analyses. RESULTS The total number of subjects with one or two pathologic mutations or a mutation of unknown consequence found in the GJB2 gene was 28 of 79 (35%). Nineteen (19) persons (24%) were homozygotes for the 35delG mutation.
Collapse
Affiliation(s)
- Per-Inge Carlsson
- Department of Otorhinolaryngology, Central Hospital, Karlstad, Sweden.
| | | | | | | | | | | |
Collapse
|
6
|
Teek R, Kruustük K, Zordania R, Joost K, Reimand T, Möls T, Oitmaa E, Kahre T, Tõnisson N, Ounap K. Prevalence of c.35delG and p.M34T mutations in the GJB2 gene in Estonia. Int J Pediatr Otorhinolaryngol 2010; 74:1007-12. [PMID: 20708129 DOI: 10.1016/j.ijporl.2010.05.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/18/2010] [Accepted: 05/23/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the prevalence of c.35delG and p.M34T mutations in the GJB2 gene among children with early onset hearing loss and within a general population of Estonia. METHODS Using an arrayed primer extension assay, we screened 233 probands with early childhood onset hearing loss for 107 different mutations in the GJB2 gene. We then looked for the two most common mutations, c.35delG and p.M34T, in a population of 998 consecutively born Estonian neonates to determine the frequency of these mutations in the general population. RESULTS In 115 (49%) of the patients with early onset hearing loss, we found a mutation in at least one allele of the GJB2 gene. Seventy-three (31%) were homozygous for the c.35delG mutation, seven (3%) were homozygous for the p.M34T mutation, and five (2%) had c35delG/p.M34T compound heterozygosity. Other six identified mutations in GJB2 gene occurred rarely. Among the 998 anonymous newborn samples, we detected 45 who were heterozygous for c.35delG, 2 individuals homozygous for c.35delG, and 58 who were heterozygous for p.M34T. Additionally, we detected two c.35delG/p.M34T compound heterozygotes. CONCLUSION The most common GJB2 gene mutations in Estonian children with early onset hearing loss were c.35delG and p.M34T, with c.35delG accounting for 75% of GJB2 alleles. The carrier frequency for c.35delG and p.M34T in a general population of Estonia was 1 in 22 and 1 in 17, respectively, and was higher than in most other countries.
Collapse
Affiliation(s)
- Rita Teek
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Terrinoni A, Codispoti A, Serra V, Bruno E, Didona B, Paradisi M, Nisticò S, Campione E, Napolitano B, Diluvio L, Melino G. Connexin 26 (GJB2) mutations as a cause of the KID syndrome with hearing loss. Biochem Biophys Res Commun 2010; 395:25-30. [PMID: 20307501 DOI: 10.1016/j.bbrc.2010.03.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
KID syndrome (MIM 148210) is an ectodermal dysplasia characterized by the occurrence of localized erythematous scaly skin lesions, keratitis and severe bilateral sensorineural deafness. KID syndrome is inherited as an autosomic dominant disease, due to mutations in the gene encoding gap junction protein GJB2 (connexin 26, Cx26). Cx26 is a component of gap junction channels in the epidermis and in the stria vascularis of the cochlea. These channels play a role in the coordinated exchange of molecules and ions occurring in a wide spectrum of cellular activities. In this paper we describe two patients with Cx26 mutations cause cell death by the alteration of protein trafficking, membrane localization and probably interfering with intracellular ion concentrations. We discuss the pathogenesis of both the hearing and skin phenotypes.
Collapse
Affiliation(s)
- Alessandro Terrinoni
- Biochemistry Laboratory, IDI-IRCCS, C/O Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Connexin 26 (GJB2) mutations, causing KID Syndrome, are associated with cell death due to calcium gating deregulation. Biochem Biophys Res Commun 2010; 394:909-14. [PMID: 20230788 DOI: 10.1016/j.bbrc.2010.03.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 01/31/2023]
Abstract
The autosomic dominant KID Syndrome (MIM 148210), due to mutations in GJB2 (connexin 26, Cx26), is an ectodermal dysplasia with erythematous scaly skin lesions, keratitis and severe bilateral sensorineural deafness. The Cx26 protein is a component of gap junction channels in epithelia, including the cochlea, which coordinates the exchange of molecules and ions. Here, we demonstrate that different Cx26 mutants (Cx26D50N and Cx26G11E) cause cell death in vitro by the alteration of intra-cellular calcium concentrations. These results help to explain the pathogenesis of both the hearing and skin phenotypes, since calcium is also a potent regulator of the epidermal differentiation process.
Collapse
|
9
|
Batissoco AC, Auricchio MTBM, Kimura L, Tabith-Junior A, Mingroni-Netto RC. A novel missense mutation p.L76P in the GJB2 gene causing nonsyndromic recessive deafness in a Brazilian family. Braz J Med Biol Res 2009; 42:168-71. [PMID: 19274344 DOI: 10.1590/s0100-879x2009000200004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 01/19/2009] [Indexed: 11/21/2022] Open
Abstract
Mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of nonsyndromic recessive hearing loss in many countries. We report here on a novel point mutation in GJB2, p.L76P (c.227C>T), in compound heterozygosity with a c.35delG mutation, in two Brazilian sibs, one presenting mild and the other profound nonsyndromic neurosensorial hearing impairment. Their father, who carried a wild-type allele and a p.L76P mutation, had normal hearing. The mutation leads to the substitution of leucine (L) by proline (P) at residue 76, an evolutionarily conserved position in Cx26 as well as in other connexins. This mutation is predicted to affect the first extracellular domain (EC1) or the second transmembrane domain (TM2). EC1 is important for connexon-connexon interaction and for the control of channel voltage gating. The segregation of the c.227C>T (p.L76P) mutation together with c.35delG in this family indicates a recessive mode of inheritance. The association between the p.L76P mutation and hearing impairment is further supported by its absence in a normal hearing control group of 100 individuals, 50 European-Brazilians and 50 African-Brazilians.
Collapse
Affiliation(s)
- A C Batissoco
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | |
Collapse
|
10
|
Carlsson P, Borg E, Grip L, Dahl N, Bondeson M. Variability in noise susceptibility in a Swedish population: the role of 35delG mutation in the connexin 26 (GJB2) gene. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/16513860410035854] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Carlsson PI, Fransen E, Stenberg E, Bondeson ML. The influence of genetic factors, smoking and cardiovascular diseases on human noise susceptibility. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/16513860701194683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Holt JR, Stauffer EA, Abraham D, Géléoc GSG. Dominant-negative inhibition of M-like potassium conductances in hair cells of the mouse inner ear. J Neurosci 2007; 27:8940-51. [PMID: 17699675 PMCID: PMC2647843 DOI: 10.1523/jneurosci.2085-07.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensory hair cells of the inner ear express multiple physiologically defined conductances, including mechanotransduction, Ca(2+), Na(+), and several distinct K(+) conductances, all of which are critical for normal hearing and balance function. Yet, the molecular underpinnings and their specific contributions to sensory signaling in the inner ear remain obscure. We sought to identify hair-cell conductances mediated by KCNQ4, which, when mutated, causes the dominant progressive hearing loss DFNA2. We used the dominant-negative pore mutation G285S and packaged the coding sequence of KCNQ4 into adenoviral vectors. We transfected auditory and vestibular hair cells of organotypic cultures generated from the postnatal mouse inner ear. Cochlear outer hair cells and vestibular type I cells that expressed the transfection marker, green fluorescent protein, and the dominant-negative KCNQ4 construct lacked the M-like conductances that typify nontransfected control hair cells. As such, we conclude that the M-like conductances in mouse auditory and vestibular hair cells can include KCNQ4 subunits and may also include KCNQ4 coassembly partners. To examine the function of M-like conductances in hair cells, we recorded from cells transfected with mutant KCNQ4 and injected transduction current waveforms in current-clamp mode. Because the M-like conductances were active at rest, they contributed to the very low potassium-selective input resistance, which in turn hyperpolarized the resting potential and significantly attenuated the amplitude of the receptor potential. Modulation of M-like conductances may allow hair cells the ability to control the amplitude of their response to sensory stimuli.
Collapse
Affiliation(s)
- Jeffrey R Holt
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
13
|
Gabashvili IS, Sokolowski BHA, Morton CC, Giersch ABS. Ion channel gene expression in the inner ear. J Assoc Res Otolaryngol 2007; 8:305-28. [PMID: 17541769 PMCID: PMC2538437 DOI: 10.1007/s10162-007-0082-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 04/23/2007] [Indexed: 12/13/2022] Open
Abstract
The ion channel genome is still being defined despite numerous publications on the subject. The ion channel transcriptome is even more difficult to assess. Using high-throughput computational tools, we surveyed all available inner ear cDNA libraries to identify genes coding for ion channels. We mapped over 100,000 expressed sequence tags (ESTs) derived from human cochlea, mouse organ of Corti, mouse and zebrafish inner ear, and rat vestibular end organs to Homo sapiens, Mus musculus, Danio rerio, and Rattus norvegicus genomes. A survey of EST data alone reveals that at least a third of the ion channel genome is expressed in the inner ear, with highest expression occurring in hair cell-enriched mouse organ of Corti and rat vestibule. Our data and comparisons with other experimental techniques that measure gene expression show that every method has its limitations and does not per se provide a complete coverage of the inner ear ion channelome. In addition, the data show that most genes produce alternative transcripts with the same spectrum across multiple organisms, no ion channel gene variants are unique to the inner ear, and many splice variants have yet to be annotated. Our high-throughput approach offers a qualitative computational and experimental analysis of ion channel genes in inner ear cDNA collections. A lack of data and incomplete gene annotations prevent both rigorous statistical analyses and comparisons of entire ion channelomes derived from different tissues and organisms.
Collapse
|
14
|
Kesser BW, Hashisaki GT, Fletcher K, Eppard H, Holt JR. An in vitro model system to study gene therapy in the human inner ear. Gene Ther 2007; 14:1121-31. [PMID: 17568767 PMCID: PMC2742230 DOI: 10.1038/sj.gt.3302980] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The confined fluid-filled labyrinth of the human inner ear presents an opportunity for introduction of gene therapy reagents designed to treat hearing and balance dysfunction. Here we present a novel model system derived from the sensory epithelia of human vestibular organs and show that the tissue can survive up to 5 days in vitro. We generated organotypic cultures from 26 human sensory epithelia excised at the time of labyrinthectomy for intractable Meniere's disease or vestibular schwannoma. We applied multiply deleted adenoviral vectors at titers between 10(5) and 10(8) viral particles/ml directly to the cultures for 4-24 h and examined the tissue 12-96 h post-transfection. We noted robust expression of the exogenous transgene, green fluorescent protein (GFP), in hair cells and supporting cells suggesting both were targets of adenoviral transfection. We also transfected cultures with a vector that carried the genes for GFP and KCNQ4, a potassium channel subunit that causes dominant-progressive hearing loss when mutated. We noted a positive correlation between GFP fluorescence and KCNQ4 immunolocalization. We conclude that our in vitro model system presents a novel and effective experimental paradigm for evaluation of gene therapy reagents designed to restore cellular function in patients who suffer from inner ear disorders.
Collapse
Affiliation(s)
- BW Kesser
- Department of Otolaryngology – Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - GT Hashisaki
- Department of Otolaryngology – Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - K Fletcher
- Department of Otolaryngology – Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - H Eppard
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - JR Holt
- Department of Otolaryngology – Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
15
|
Esmaeili M, Bonyadi M, Nejadkazem M. Common mutation analysis of GJB2 and GJB6 genes in affected families with autosomal recessive non-syndromic hearing loss from Iran: simultaneous detection of two common mutations (35delG/del(GJB6-D13S1830)) in the DFNB1-related deafness. Int J Pediatr Otorhinolaryngol 2007; 71:869-73. [PMID: 17368814 DOI: 10.1016/j.ijporl.2007.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Revised: 02/05/2007] [Accepted: 02/17/2007] [Indexed: 11/28/2022]
Abstract
OBJECTIVE DFNB1 locus has been reported as a major cause of autosomal recessive non-syndromic hearing loss (ARNSHL) worldwide. 35delG and del(GJB6-D13S1830) are thought to be two common mutations in this locus among Caucasians. The aim of this study is to determine the significance of these two mutations in aetiology of ARNSHL in Iran. METHODS One hundred and thirty-three unrelated patients with ARNSHL were tested by using multiplex allele-specific PCR assay after validation by positive control samples. RESULTS The frequency of 35delG was about 18.5%, however, del(GJB6-D13S1830) was not found in the studied patients. Parental consanguinity was observed in 50% of 35delG-mutated families. CONCLUSIONS Our results support founder effect regarding these mutations.
Collapse
Affiliation(s)
- Mohsen Esmaeili
- Genetic Lab. Drug Applied Research Center, Biotechnology Research Center, Tabriz University of Medical Sciences, University Ave., Tabriz, Iran
| | | | | |
Collapse
|
16
|
Abstract
Non-syndromic deafness is a paradigm of genetic heterogeneity with 85 loci and 39 nuclear disease genes reported so far. Autosomal-recessive genes are responsible for about 80% of the cases of hereditary non-syndromic deafness of pre-lingual onset with 23 different genes identified to date. In the present article, we review these 23 genes, their function, and their contribution to genetic deafness in different populations. The wide range of functions of these DFNB genes reflects the heterogeneity of the genes involved in hearing and hearing loss. Several of these genes are involved in both recessive and dominant deafness, or in both non-syndromic and syndromic deafness. Mutations in the GJB2 gene encoding connexin 26 are responsible for as much as 50% of pre-lingual, recessive deafness. By contrast, mutations in most of the other DFNB genes have so far been detected in only a small number of families, and their contribution to deafness on a population scale might therefore be limited. Identification of all genes involved in hereditary hearing loss will help in our understanding of the basic mechanisms underlying normal hearing, in early diagnosis and therapy.
Collapse
Affiliation(s)
- M B Petersen
- Department of Genetics, Institute of Child Health, Aghia Sophia Children's Hospital, Athens, Greece.
| | | |
Collapse
|
17
|
Géléoc GSG, Risner JR, Holt JR. Developmental acquisition of voltage-dependent conductances and sensory signaling in hair cells of the embryonic mouse inner ear. J Neurosci 2005; 24:11148-59. [PMID: 15590931 PMCID: PMC2638092 DOI: 10.1523/jneurosci.2662-04.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
How and when sensory hair cells acquire the remarkable ability to detect and transmit mechanical information carried by sound and head movements has not been illuminated. Previously, we defined the onset of mechanotransduction in embryonic hair cells of mouse vestibular organs to be at approximately embryonic day 16 (E16). Here we examine the functional maturation of hair cells in intact sensory epithelia excised from the inner ears of embryonic mice. Hair cells were studied at stages between E14 and postnatal day 2 using the whole-cell, tight-seal recording technique. We tracked the developmental acquisition of four voltage-dependent conductances. We found a delayed rectifier potassium conductance that appeared as early as E14 and grew in amplitude over the subsequent prenatal week. Interestingly, we also found a low-voltage-activated potassium conductance present at E18, approximately 1 week earlier than reported previously. An inward rectifier conductance appeared at approximately E15 and doubled in size over the next few days. We also noted transient expression of a voltage-gated sodium conductance that peaked between E16 and E18 and then declined to near zero at birth. We propose that hair cells undergo a stereotyped developmental pattern of ion channel acquisition and that the precise pattern may underlie other developmental processes such as synaptogenesis and functional differentiation into type I and type II hair cells. In addition, we find that the developmental acquisition of basolateral conductances shapes the hair cell receptor potential and therefore comprises an important step in the signal cascade from mechanotransduction to neurotransmission.
Collapse
Affiliation(s)
- Gwenaëlle S G Géléoc
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22932, USA
| | | | | |
Collapse
|
18
|
Gamper N, Stockand JD, Shapiro MS. The use of Chinese hamster ovary (CHO) cells in the study of ion channels. J Pharmacol Toxicol Methods 2005; 51:177-85. [PMID: 15862463 DOI: 10.1016/j.vascn.2004.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2004] [Indexed: 11/27/2022]
Abstract
The line of epithelial-like Chinese hamster ovary (CHO) cells was initiated by T.T. Puck in 1957. Since then, CHO cells have become a widely used mammalian expression system in industry and science. This paper discusses the different features of CHO cell physiology as well as the specific aspects of using these cells for ion channel studies; among the discussed features are the culturing and transfection of CHO cells, details of electrophysiological recordings from them and applications for the study of ion channel physiology and pharmacology. Examples of successful reconstitution of mammalian ion channels in CHO cells discussed in the paper include reconstitution of KCNQ channel regulation by muscarinic acetylcholine receptors and the study of the amiloride-sensitivity of epithelial sodium channels (ENaC).
Collapse
Affiliation(s)
- Nikita Gamper
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio TX 78229, USA
| | | | | |
Collapse
|
19
|
Shi GZ, Gong LX, Xu XH, Nie WY, Lin Q, Qi YS. GJB2 gene mutations in newborns with non-syndromic hearing impairment in Northern China. Hear Res 2004; 197:19-23. [PMID: 15504600 DOI: 10.1016/j.heares.2004.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 06/29/2004] [Indexed: 11/18/2022]
Abstract
Mutations in GJB2 account for the majority of recessive forms of prelingual hearing loss. However, in most previous studies it was not possible to distinguish between congenital (present at birth) and non-congenital prelingual hearing loss. In the present study, the frequency of GJB2 alleles in 20 newborns with bilateral severe-to-profound non-syndromic hearing impairment (NSHI) who were found at birth through newborn hearing screening and clinical examination is reported. PCR was used to amplify the coding region of GJB2 gene followed by sequencing analyses. Fifty volunteers with normal hearing were included as controls. Results showed that three cases were 235delC/235delC homozygotes; one was 235delC/605ins46 compound heterozygotes, 605ins46 mutation was a novel mutation reported in the Chinese population; another was 235delC/299-300delAT compound heterozygotes. 25% (5/20) of the deafness in newborns studied was caused by GJB2 gene mutations. The frequency of 235delC allele carrier in patients and in control group was 22.5% and 1%, respectively. One case was identified as being a 235delC heterozygote without other mutations detected. Besides, multiple polymorphisms such as V27I, V37I, E114G, T123N were also detected. In conclusion, GJB2 analysis is an important test that identifies a major cause of newborns with bilateral severe-to-profound NSHI screened by universal newborn hearing screening in Northern China. The most common pathologic mutation of GJB2 in studied cases was 235delC. Molecular analysis and genetic counseling will be extremely important for congenital deafness present at birth.
Collapse
Affiliation(s)
- Gui-zhi Shi
- Department of Forensic Medicine, Medical College of Shantou University, 22 Xinling Road, Shantou 515031, Guangdong, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
20
|
Primignani P, Castorina P, Sironi F, Curcio C, Ambrosetti U, Coviello DA. A novel dominant missense mutation--D179N--in the GJB2 gene (Connexin 26) associated with non-syndromic hearing loss. Clin Genet 2003; 63:516-21. [PMID: 12786758 DOI: 10.1034/j.1399-0004.2003.00079.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mutations of the GJB2 gene, encoding Connexin 26, are the most common cause of hereditary congenital hearing loss in many countries, and account for up to 50% of cases of autosomal-recessive non-syndromic deafness. By contrast, only a few GJB2 mutations have been reported to cause an autosomal-dominant form of non-syndromic deafness. We report on a family from southern Italy in whom dominant, non-syndromic, post-lingual hearing loss is associated with a novel missense mutation in the GJB2 gene. Direct sequencing of the gene showed a heterozygous G-->A transition at nucleotide 535, resulting in an aspartic acid to asparagine amino acid substitution at codon 179 (D179N). This mutation occurred in the second extracellular domain (EC2), which would seem to be very important for connexon-connexon interaction.
Collapse
Affiliation(s)
- P Primignani
- Dipartimento di Medicina di Laboratorio-Laboratorio di Genetica Medica, A.O. Istituti Clinici di Perfezionamento, Milan, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
We studied regulation by c-Src tyrosine kinase (Src) of KCNQ1-5 channels heterologously expressed in Chinese hamster ovary (CHO) cells and of native M current in rat sympathetic neurons. Using whole-cell patch clamp, we found that Src modulates currents from KCNQ3, KCNQ4, and KCNQ5 homomultimers, KCNQ2/3 heteromultimers and native M current, but not currents from KCNQ1 or KCNQ2 homomultimers. Src overexpression had two effects: a decrease of current amplitude (4- to 15-fold for cloned channels and approximately 3-fold for M current) and a slowing of activation kinetics by 2-fold. Both Src actions were mostly reversed by bath application of the Src inhibitors erbstatin (20 microm) and PP2 (200 nm), and mimicked by the tyrosine phosphatase inhibitor sodium vanadate (100 microm). Immunoprecipitation and immunoblot analysis showed Src-dependent phosphotyrosine signals associated with KCNQ3, KCNQ4, and KCNQ5 but not with KCNQ1 or KCNQ2 that may be tyrosine phosphorylation of the channel subunits. Expression of a dominant negative Src that cannot phosphorylate substrates had no effect on the current and did not induce phosphotyrosine signals associated with KCNQ3-5 subunits, further indicating that Src actions on KCNQ currents are mediated by tyrosine phosphorylation. Immunostaining and confocal analysis showed no effect of Src overexpression on the abundance of KCNQ3 protein in CHO cells. Finally, experiments using cloned KCNQ2/3 channels, Src and M(1) muscarinic receptors, and sympathetic neurons demonstrated that the actions on KCNQ channels by Src and by muscarinic agonists use distinct mechanisms.
Collapse
|
22
|
Pampanos A, Economides J, Iliadou V, Neou P, Leotsakos P, Voyiatzis N, Eleftheriades N, Tsakanikos M, Antoniadi T, Hatzaki A, Konstantopoulou I, Yannoukakos D, Gronskov K, Brondum-Nielsen K, Grigoriadou M, Gyftodimou J, Iliades T, Skevas A, Petersen MB. Prevalence of GJB2 mutations in prelingual deafness in the Greek population. Int J Pediatr Otorhinolaryngol 2002; 65:101-8. [PMID: 12176179 DOI: 10.1016/s0165-5876(02)00177-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Mutations in the gene encoding the gap junction protein connexin 26 (GJB2) have been shown as a major contributor to prelingual, sensorineural, nonsyndromic, recessive deafness. One specific mutation, 35delG, has accounted for the majority of the mutations detected in the GJB2 gene in Caucasian populations. The aim of our study was to determine the prevalence and spectrum of GJB2 mutations in prelingual deafness in the Greek population. METHODS In a collaboration with the major referral centers for childhood deafness in Greece, patients were examined by an extensive questionnaire to exclude syndromic forms and environmental causes of deafness and by allele-specific polymerase chain reaction (PCR) for the detection of the 35delG mutation. Patients heterozygous for the 35delG mutation were further analyzed by direct genomic sequencing of the coding region of the GJB2 gene. RESULTS The 35delG mutation was found in 42.2% of the chromosomes in 45 familial cases of prelingual, nonsyndromic deafness (18 homozygotes and 2 heterozygotes) and in 30.6% of the chromosomes in 165 sporadic cases (45 homozygotes and 11 heterozygotes). Direct genomic sequencing in heterozygous patients revealed the L90P (2 alleles), W24X (2 alleles), R184P (2 alleles), and 291insA (1 allele) mutations. CONCLUSION Mutations in the GJB2 gene are responsible for about one third of prelingual, sensorineural, nonsyndromic deafness in the Greek population, and allele-specific PCR is an easy screening method for the common 35delG mutation.
Collapse
Affiliation(s)
- Andreas Pampanos
- Department of Genetics, Institute of Child Health, Aghia Sophia Children's Hospital, GR-11527 Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
OBJECTIVES/HYPOTHESIS The gene of the gap junction protein connexin 26 (Cx26) was found to be the main causative gene of autosomal recessive nonsyndromic hearing loss (DFNB1). Although 35delG has been known as the major mutation in Western countries, 235delC was reported to be a specific form of mutation in Asian populations. The objective of the study was to identify how 235delC and E114G changes found in the Korean population affected the function of using molecular biological techniques. METHODS Genes containing 235delC and E114G were cloned into the pcDNA3 vector, and HeLa cells were transfected with the recombinant DNA samples by the liposome complex method. The expression and subcellular localization of Cx26 were determined, using antibodies against amino acid sequences in the intracellular loop (IL) and N-terminal (NT) portions of Cx26. To analyze functions of the as a gap junction channel, we examined Lucifer yellow dye transfer between cells with a scrape-loaded technique. Wild-type (WT) with normal hearing was used as a positive control, and mock transfected cells were used as a negative control. RESULTS Immunocytochemical analysis showed that cells transfected with E114G and WT gave characteristic punctate patterns of reaction in the cell membrane with both antibodies. However, 235delC cells were not stained with anti-IL antibody but stained slightly just around the nucleus only with anti-NT antibody. In a functional study of, transfer of Lucifer yellow into contiguous cells was detected in both WT and E114G, but no transfer activity was observed in 235delC. CONCLUSIONS The 235delC mutation showed a loss of targeting activity to the cell membrane and severe deterioration of gap junction activity. For the E114G, we did not find any difference from WT transfected cells.
Collapse
Affiliation(s)
- Yun Hoon Choung
- Department of Otolaryngology, University School of Medicine, Suwon, Korea
| | | | | |
Collapse
|
24
|
Abstract
Non-syndromic deafness is a paradigm of genetic heterogeneity. More than 70 loci have been mapped, and 25 of the nuclear genes responsible for non-syndromic deafness have been identified. Autosomal-dominant genes are responsible for about 20% of the cases of hereditary non-syndromic deafness, with 16 different genes identified to date. In the present article we review these 16 genes, their function and their contribution to deafness in different populations. The complexity is underlined by the fact that several of the genes are involved in both dominant and recessive non-syndromic deafness or in both non-syndromic and syndromic deafness. Mutations in eight of the genes have so far been detected in only single dominant deafness families, and their contribution to deafness on a population base might therefore be limited, or is currently unknown. Identification of all genes involved in hereditary hearing loss will help in the understanding of the basic mechanisms underlying normal hearing, will facilitate early diagnosis and intervention and might offer opportunities for rational therapy.
Collapse
Affiliation(s)
- M B Petersen
- Department of Genetics, Institute of Child Health, Aghia Sophia Children's Hospital, GR-11527 Athens, Greece.
| |
Collapse
|
25
|
Harris KC, Erbe CB, Firszt JB, Flanary VA, Wackym PA. A novel connexin 26 compound heterozygous mutation results in deafness. Laryngoscope 2002; 112:1159-62. [PMID: 12169891 DOI: 10.1097/00005537-200207000-00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Mutations of the gap junction beta 2 (GJB2) gene coding for the protein connexin 26 account for up to 50% of nonsyndromic sensorineural hearing loss (NSHL), with specific mutations associated with distinct ethnic groups. A biracial family with nonsyndromic sensorineural deafness consistent with autosomal recessive inheritance was examined for connexin 26 (Cx26) mutations. STUDY DESIGN Prospective observational study. METHODS A family consisting of a Caucasian mother and a Chinese father with two of six children affected by NSHL was examined for Cx26 mutations. Peripheral blood lymphocyte DNA was used to amplify by polymerase chain reaction the Cx26 coding region, followed by mutation detection enhancement gel screening and complete sequencing. Phenotypic characterization using audiometric testing was completed for all children and both parents. RESULTS The two affected children were found to be compound heterozygotes for Cx26 mutations, displaying a previously unreported combination of 35delG and 235delC. The parents were each unaffected heterozygotes consistent with their ethnic heritage, specifically, the Caucasian mother a 35delG heterozygote and the Chinese father a 235delC heterozygote. CONCLUSIONS Connexin 26 mutations account for a significant proportion of NSHL worldwide, with specific mutations linked to distinct ethnic groups. Genetic analysis of a biracial family with NSHL revealed a novel 35delG/235delC compound heterozygous state in phenotypically affected children. These results highlight the usefulness of Cx26 mutation screening for genetic counseling and suggest that the 235delC mutation is present in China as it is in Japan and Korea.
Collapse
Affiliation(s)
- Kevin C Harris
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, U.S.A
| | | | | | | | | |
Collapse
|
26
|
Karschin C, Wischmeyer E, Preisig-Müller R, Rajan S, Derst C, Grzeschik KH, Daut J, Karschin A. Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K(+) channel subunit, TASK-5, associated with the central auditory nervous system. Mol Cell Neurosci 2001; 18:632-48. [PMID: 11749039 DOI: 10.1006/mcne.2001.1045] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TWIK-related acid-sensitive K(+) (TASK) channels contribute to setting the resting potential of mammalian neurons and have recently been defined as molecular targets for extracellular protons and volatile anesthetics. We have isolated a novel member of this subfamily, hTASK-5, from a human genomic library and mapped it to chromosomal region 20q12-20q13. hTASK-5 did not functionally express in Xenopus oocytes, whereas chimeric TASK-5/TASK-3 constructs containing the region between M1 and M3 of TASK-3 produced K(+) selective currents. To better correlate TASK subunits with native K(+) currents in neurons the precise cellular distribution of all TASK family members was elucidated in rat brain. A comprehensive in situ hybridization analysis revealed that both TASK-1 and TASK-3 transcripts are most strongly expressed in many neurons likely to be cholinergic, serotonergic, or noradrenergic. In contrast, TASK-5 expression is found in olfactory bulb mitral cells and Purkinje cells, but predominantly associated with the central auditory pathway. Thus, TASK-5 K(+) channels, possibly in conjunction with auxiliary proteins, may play a role in the transmission of temporal information in the auditory system.
Collapse
Affiliation(s)
- C Karschin
- Department of Molecular Neurobiology of Signal Transduction, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Yoshida N, Liberman MC, Brown MC, Sewell WF. Fast, but not slow, effects of olivocochlear activation are resistant to apamin. J Neurophysiol 2001; 85:84-8. [PMID: 11152708 DOI: 10.1152/jn.2001.85.1.84] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Olivocochlear (OC) efferent suppression of auditory-nerve responses comprises a fast effect lasting tens of milliseconds and a slow effect building and decaying over tens of seconds. Both fast and slow effects are mediated by activation of the same alpha 9 nicotinic receptor. We have hypothesized that fast effects are generated at the OC synapse, but that slow effects reflect activation of calcium-activated potassium (K(Ca)) channels by calcium release from the subsurface cisternae on the basolateral wall of the hair cells. We measured in vivo effects of apamin, a blocker of small-conductance (SK) K(Ca) channels, and charybdotoxin, a blocker of large-conductance K(Ca) channels, perfused through scala tympani, on fast and slow effects evoked by electrical stimulation of the OC bundle in anesthetized guinea pigs. Apamin selectively and reversibly reduced slow-effect amplitude without altering fast effects or baseline amplitude of the auditory-nerve response, but only when perfused at concentrations of 100 microM. In contrast, the effects of charybdotoxin were noted at 30 nM, but were not specific, reducing both afferent and efferent responses. The very high concentrations of apamin needed to block efferent effects contrasts with the high sensitivity of isolated hair cells to apamin's block of acetylcholine's effects. The results suggest that in vivo fast OC effects are dominated by a conductance that is not apamin sensitive.
Collapse
Affiliation(s)
- N Yoshida
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
28
|
Bom SJ, Kunst HP, Huygen PL, Cremers FP, Cremers CW. Non-syndromal autosomal dominant hearing impairment: ongoing phenotypical characterization of genotypes. BRITISH JOURNAL OF AUDIOLOGY 1999; 33:335-48. [PMID: 10890148 DOI: 10.3109/03005369909090117] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review is concerned with the present state of phenotypical characterization of known genotypes of non-syndromal autosomal dominant hearing impairment. A brief outline of history and context of phenotyping and genotyping of hearing impairment is given with particular reference to the most recent developments in this field, followed by descriptions of DFNA1, DFNA2, DFNA5, DFNA6/14, DFNA8/12, DFNA9, DFNA 13, DFNA17 and DFNA21. Phenotyping those known genotypes may support the ongoing search for mutations in the corresponding gene and enhance genetic counselling. It is recommended that sufficient attention is given to a detailed description of the phenotype in each (newly) described hereditary hearing impairment disorder.
Collapse
Affiliation(s)
- S J Bom
- Department of Otorhinolaryngology, University Hospital Nijmegen, Netherlands
| | | | | | | | | |
Collapse
|
29
|
Abstract
Recent advancements have been made in understanding, diagnosing, and treating deafness. In particular, much has been learned from the discovery of a small fraction of the genes responsible for deafness. This understanding will doubtless increase as additional genes are cloned and their functions elucidated. Trailing close behind these achievements will be more clinical advancements facilitating diagnosis of the etiologies of deafness. Integrating these genetic and clinical perspectives is critical to the development of better treatments and interventional strategies for deafness and its associated difficulties. Although opinions toward these advancements are likely to vary between the hearing population and the Deaf community, a growing understanding of the hearing process and how genetic variations result in deafness is ultimately likely to offer benefits to both groups.
Collapse
Affiliation(s)
- H L Rehm
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
30
|
Abstract
The superfamily of voltage-activated potassium channels may express structurally and functionally diverse voltage-activated potassium channels in the nervous system. The roles of some voltage-activated potassium channel types, e.g. rapidly inactivating (transiently active type) channels and muscarine sensitive muscarine sensitive channels, are beginning to be understood. They may significantly influence dendritic action-potential back-propagation, signal to noise ratios in presynaptic excitability or the responsiveness of a neuron to synaptic input. Inherited disorders related to changes in excitability (episodic ataxia, epilepsy, heart arrhythmia) or to defects in sensory perception (hearing loss) have been associated with mutations in a few voltage-activated potassium channel genes. Most likely, more voltage-activated potassium channel genes will be linked to related disorders in the near future.
Collapse
Affiliation(s)
- O Pongs
- ZMNH, Institut für Neurale Signalverarbeitung, Hamburg, Germany.
| |
Collapse
|
31
|
|