1
|
Liu Z, Pan C, Huang H. The role of axon guidance molecules in the pathogenesis of epilepsy. Neural Regen Res 2025; 20:1244-1257. [PMID: 39075893 PMCID: PMC11624883 DOI: 10.4103/nrr.nrr-d-23-01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 07/31/2024] Open
Abstract
Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Chunhua Pan
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
2
|
Khan A, Sharma P, Dahiya S, Sharma B. Plexins: Navigating through the neural regulation and brain pathology. Neurosci Biobehav Rev 2025; 169:105999. [PMID: 39756719 DOI: 10.1016/j.neubiorev.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Plexins are a family of transmembrane receptors known for their diverse roles in neural development, axon guidance, neuronal migration, synaptogenesis, and circuit formation. Semaphorins are a class of secreted and membrane proteins that act as primary ligands for plexin receptors. Semaphorins play a crucial role in central nervous system (CNS) development by regulating processes such as axonal growth, neuronal positioning, and synaptic connectivity. Various types of semaphorins like sema3A, sema4A, sema4C, sema4D, and many more have a crucial role in developing brain diseases. Likewise, various evidence suggests that plexin receptors are of four types: plexin A, plexin B, plexin C, and plexin D. Plexins have emerged as crucial regulators of neurogenesis and neuronal development and connectivity. When bound to semaphorins, these receptors trigger two major networking cascades, namely Rho and Ras GTPase networks. Dysregulation of plexin networking has been implicated in a myriad of brain disorders, including autism spectrum disorder (ASD), Schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD), and many more. This review synthesizes findings from molecular, cellular, and animal model studies to elucidate the mechanisms by which plexins contribute to the pathogenesis of various brain diseases.
Collapse
Affiliation(s)
- Ariba Khan
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, 201306 Uttar Pradesh, India.
| | - Sarthak Dahiya
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| |
Collapse
|
3
|
Chen T, Li S, Wang L. Semaphorins in tumor microenvironment: Biological mechanisms and therapeutic progress. Int Immunopharmacol 2024; 132:112035. [PMID: 38603857 DOI: 10.1016/j.intimp.2024.112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Hallmark features of the tumor microenvironment include immune cells, stromal cells, blood vessels, and extracellular matrix (ECM), providing a conducive environment for the growth and survival of tumors. Recent advances in the understanding of cancer biology have highlighted the functional role of semaphorins (SEMAs). SEMAs are a large and diverse family of widely expressed secreted and membrane-binding proteins, which were initially implicated in axon guidance and neural development. However, it is now clear that they are widely expressed beyond the nervous system and participate in regulating immune responses and cancer progression. In fact, accumulating evidence disclosed that different SEMAs can either stimulate or restrict tumor progression, some of which act as important regulators of tumor angiogenesis. Conversely, limited information is known about the functional relevance of SEMA signals in TME. In this setting, we systematically elaborate the role SEMAs and their major receptors played in characterized components of TME. Furthermore, we provide a convergent view of current SEMAs pharmacological progress in clinical treatment and also put forward their potential application value and clinical prospects in the future.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Shazhou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Lufang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
4
|
Liu D, Duan L, Cyster JG. Chemo- and mechanosensing by dendritic cells facilitate antigen surveillance in the spleen. Immunol Rev 2022; 306:25-42. [PMID: 35147233 PMCID: PMC8852366 DOI: 10.1111/imr.13055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/30/2022]
Abstract
Spleen dendritic cells (DC) are critical for initiation of adaptive immune responses against blood-borne invaders. Key to DC function is their positioning at sites of pathogen entry, and their abilities to selectively capture foreign antigens and promptly engage T cells. Focusing on conventional DC2 (cDC2), we discuss the contribution of chemoattractant receptors (EBI2 or GPR183, S1PR1, and CCR7) and integrins to cDC2 positioning and function. We give particular attention to a newly identified role in cDC2 for adhesion G-protein coupled receptor E5 (Adgre5 or CD97) and its ligand CD55, detailing how this mechanosensing system contributes to splenic cDC2 positioning and homeostasis. Additional roles of CD97 in the immune system are reviewed. The ability of cDC2 to be activated by circulating missing self-CD47 cells and to integrate multiple red blood cell (RBC)-derived inputs is discussed. Finally, we describe the process of activated cDC2 migration to engage and prime helper T cells. Throughout the review, we consider the insights into cDC function in the spleen that have emerged from imaging studies.
Collapse
Affiliation(s)
- Dan Liu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Lihui Duan
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
5
|
Carulli D, de Winter F, Verhaagen J. Semaphorins in Adult Nervous System Plasticity and Disease. Front Synaptic Neurosci 2021; 13:672891. [PMID: 34045951 PMCID: PMC8148045 DOI: 10.3389/fnsyn.2021.672891] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neurogenesis. This evidence points to a role of Semaphorins in the regulation of adult neuronal plasticity. In this review, we address the distribution of Semaphorins in the adult nervous system and we discuss their function in physiological and pathological processes.
Collapse
Affiliation(s)
- Daniela Carulli
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Neuroscience Rita Levi-Montalcini and Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
6
|
Abstract
The brain is our most complex organ. During development, neurons extend axons, which may grow over long distances along well-defined pathways to connect to distant targets. Our current understanding of axon pathfinding is largely based on chemical signaling by attractive and repulsive guidance cues. These cues instruct motile growth cones, the leading tips of growing axons, where to turn and where to stop. However, it is not chemical signals that cause motion-motion is driven by forces. Yet our current understanding of the mechanical regulation of axon growth is very limited. In this review, I discuss the origin of the cellular forces controlling axon growth and pathfinding, and how mechanical signals encountered by growing axons may be integrated with chemical signals. This mechanochemical cross talk is an important but often overlooked aspect of cell motility that has major implications for many physiological and pathological processes involving neuronal growth.
Collapse
Affiliation(s)
- Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
7
|
Guajardo R, Luginbuhl DJ, Han S, Luo L, Li J. Functional divergence of Plexin B structural motifs in distinct steps of Drosophila olfactory circuit assembly. eLife 2019; 8:48594. [PMID: 31225795 PMCID: PMC6597256 DOI: 10.7554/elife.48594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Plexins exhibit multitudinous, evolutionarily conserved functions in neural development. How Plexins employ their diverse structural motifs in vivo to perform distinct roles is unclear. We previously reported that Plexin B (PlexB) controls multiple steps during the assembly of the Drosophila olfactory circuit (Li et al., 2018b). Here, we systematically mutagenized structural motifs of PlexB and examined the function of these variants in these multiple steps: axon fasciculation, trajectory choice, and synaptic partner selection. We found that the extracellular Sema domain is essential for all three steps, the catalytic site of the intracellular RapGAP is engaged in none, and the intracellular GTPase-binding motifs are essential for trajectory choice and synaptic partner selection, but are dispensable for fasciculation. Moreover, extracellular PlexB cleavage serves as a regulatory mechanism of PlexB signaling. Thus, the divergent roles of PlexB motifs in distinct steps of neural development contribute to its functional versatility in neural circuit assembly.
Collapse
Affiliation(s)
- Ricardo Guajardo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Shuo Han
- Department of Chemistry, Stanford University, Stanford, United States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
8
|
Ye X, Qiu Y, Gao Y, Wan D, Zhu H. A Subtle Network Mediating Axon Guidance: Intrinsic Dynamic Structure of Growth Cone, Attractive and Repulsive Molecular Cues, and the Intermediate Role of Signaling Pathways. Neural Plast 2019; 2019:1719829. [PMID: 31097955 PMCID: PMC6487106 DOI: 10.1155/2019/1719829] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 01/01/2023] Open
Abstract
A fundamental feature of both early nervous system development and axon regeneration is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. In the navigation process where the nerves grow toward their targets, the growth cones, which locate at the tips of axons, sense the environment surrounding them, including varies of attractive or repulsive molecular cues, then make directional decisions to adjust their navigation journey. The turning ability of a growth cone largely depends on its highly dynamic skeleton, where actin filaments and microtubules play a very important role in its motility. In this review, we summarize some possible mechanisms underlying growth cone motility, relevant molecular cues, and signaling pathways in axon guidance of previous studies and discuss some questions regarding directions for further studies.
Collapse
Affiliation(s)
- Xiyue Ye
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yan Qiu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yuqing Gao
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Dong Wan
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| |
Collapse
|
9
|
Niftullayev S, Lamarche-Vane N. Regulators of Rho GTPases in the Nervous System: Molecular Implication in Axon Guidance and Neurological Disorders. Int J Mol Sci 2019; 20:E1497. [PMID: 30934641 PMCID: PMC6471118 DOI: 10.3390/ijms20061497] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
One of the fundamental steps during development of the nervous system is the formation of proper connections between neurons and their target cells-a process called neural wiring, failure of which causes neurological disorders ranging from autism to Down's syndrome. Axons navigate through the complex environment of a developing embryo toward their targets, which can be far away from their cell bodies. Successful implementation of neuronal wiring, which is crucial for fulfillment of all behavioral functions, is achieved through an intimate interplay between axon guidance and neural activity. In this review, our focus will be on axon pathfinding and the implication of some of its downstream molecular components in neurological disorders. More precisely, we will talk about axon guidance and the molecules implicated in this process. After, we will briefly review the Rho family of small GTPases, their regulators, and their involvement in downstream signaling pathways of the axon guidance cues/receptor complexes. We will then proceed to the final and main part of this review, where we will thoroughly comment on the implication of the regulators for Rho GTPases-GEFs (Guanine nucleotide Exchange Factors) and GAPs (GTPase-activating Proteins)-in neurological diseases and disorders.
Collapse
Affiliation(s)
- Sadig Niftullayev
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| |
Collapse
|
10
|
Li J, Guajardo R, Xu C, Wu B, Li H, Li T, Luginbuhl DJ, Xie X, Luo L. Stepwise wiring of the Drosophila olfactory map requires specific Plexin B levels. eLife 2018; 7:39088. [PMID: 30136927 PMCID: PMC6118820 DOI: 10.7554/elife.39088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/22/2018] [Indexed: 01/13/2023] Open
Abstract
The precise assembly of a neural circuit involves many consecutive steps. The conflict between a limited number of wiring molecules and the complexity of the neural network impels each molecule to execute multiple functions at different steps. Here, we examined the cell-type specific distribution of endogenous levels of axon guidance receptor Plexin B (PlexB) in the developing antennal lobe, the first olfactory processing center in Drosophila. We found that different classes of olfactory receptor neurons (ORNs) express PlexB at different levels in two wiring steps – axonal trajectory choice and subsequent target selection. In line with its temporally distinct patterns, the proper levels of PlexB control both steps in succession. Genetic interactions further revealed that the effect of high-level PlexB is antagonized by its canonical partner Sema2b. Thus, PlexB plays a multifaceted role in instructing the assembly of the Drosophila olfactory circuit through temporally-regulated expression patterns and expression level-dependent effects.
Collapse
Affiliation(s)
- Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Ricardo Guajardo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Chuanyun Xu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Bing Wu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Tongchao Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Xiaojun Xie
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
11
|
De novo assembly of a transcriptome for the cricket Gryllus bimaculatus prothoracic ganglion: An invertebrate model for investigating adult central nervous system compensatory plasticity. PLoS One 2018; 13:e0199070. [PMID: 29995882 PMCID: PMC6040699 DOI: 10.1371/journal.pone.0199070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/25/2018] [Indexed: 12/18/2022] Open
Abstract
The auditory system of the cricket, Gryllus bimaculatus, demonstrates an unusual amount of anatomical plasticity in response to injury, even in adults. Unilateral removal of the ear causes deafferented auditory neurons in the prothoracic ganglion to sprout dendrites across the midline, a boundary they typically respect, and become synaptically connected to the auditory afferents of the contralateral ear. The molecular basis of this sprouting and novel synaptogenesis in the adult is not understood. We hypothesize that well-conserved developmental guidance cues may recapitulate their guidance functions in the adult in order to facilitate this compensatory growth. As a first step in testing this hypothesis, we have generated a de novo assembly of a prothoracic ganglion transcriptome derived from control and deafferented adult individuals. We have mined this transcriptome for orthologues of guidance molecules from four well-conserved signaling families: Slit, Netrin, Ephrin, and Semaphorin. Here we report that transcripts encoding putative orthologues of most of the candidate developmental ligands and receptors from these signaling families were present in the assembly, indicating expression in the adult G. bimaculatus prothoracic ganglion.
Collapse
|
12
|
Grice SJ, Sleigh JN, Zameel Cader M. Plexin-Semaphorin Signaling Modifies Neuromuscular Defects in a Drosophila Model of Peripheral Neuropathy. Front Mol Neurosci 2018. [PMID: 29520219 PMCID: PMC5827687 DOI: 10.3389/fnmol.2018.00055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dominant mutations in GARS, encoding the ubiquitous enzyme glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and Charcot-Marie-Tooth disease type 2D (CMT2D). This genetic disorder exemplifies a recurring paradigm in neurodegeneration, in which mutations in essential genes cause selective degeneration of the nervous system. Recent evidence suggests that the mechanism underlying CMT2D involves extracellular neomorphic binding of mutant GlyRS to neuronally-expressed proteins. Consistent with this, our previous studies indicate a non-cell autonomous mechanism, whereby mutant GlyRS is secreted and interacts with the neuromuscular junction (NMJ). In this Drosophila model for CMT2D, we have previously shown that mutant gars expression decreases viability and larval motor function, and causes a concurrent build-up of mutant GlyRS at the larval neuromuscular presynapse. Here, we report additional phenotypes that closely mimic the axonal branching defects of Drosophila plexin transmembrane receptor mutants, implying interference of plexin signaling in gars mutants. Individual dosage reduction of two Drosophila Plexins, plexin A (plexA) and B (plexB) enhances and represses the viability and larval motor defects caused by mutant GlyRS, respectively. However, we find plexB levels, but not plexA levels, modify mutant GlyRS association with the presynaptic membrane. Furthermore, increasing availability of the plexB ligand, Semaphorin-2a (Sema2a), alleviates the pathology and the build-up of mutant GlyRS, suggesting competition for plexB binding may be occurring between these two ligands. This toxic gain-of-function and subversion of neurodevelopmental processes indicate that signaling pathways governing axonal guidance could be integral to neuropathology and may underlie the non-cell autonomous CMT2D mechanism.
Collapse
Affiliation(s)
- Stuart J Grice
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - M Zameel Cader
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Abstract
The Drosophila motor system starts to assemble during embryonic development. It is composed of 30 muscles per abdominal hemisegment and 36 motor neurons assembling into nerve branches to exit the CNS, navigate within the muscle field and finally establish specific connections with their target muscles. Several families of guidance molecules that play a role controlling this process as well as transcriptional regulators that program the behavior of specific motor neuron have been identified. In this review we summarize the role of both groups of molecules in the motor system as well as their relationship where known. It is apparent that partially redundant guidance protein families and membrane molecules with different functional output direct guidance decisions cooperatively. Some distinct transcriptional regulators seem to control guidance of specific nerve branches globally directing the expression of groups of pathfinding molecules in all motor neurons within the same motor branch.
Collapse
|
14
|
Umeda K, Tanaka S, Ihara F, Yamagishi J, Suzuki Y, Nishikawa Y. Transcriptional profiling of Toll-like receptor 2-deficient primary murine brain cells during Toxoplasma gondii infection. PLoS One 2017; 12:e0187703. [PMID: 29136637 PMCID: PMC5685635 DOI: 10.1371/journal.pone.0187703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Toxoplasma gondii is capable of persisting in the brain, although it is efficiently eliminated by cellular immune responses in most other sites. While Toll-like receptor 2 (TLR2) reportedly plays important roles in protective immunity against the parasite, the relationship between neurological disorders induced by T. gondii infection and TLR2 function in the brain remains controversial with many unknowns. In this study, primary cultured astrocytes, microglia, neurons, and peritoneal macrophages obtained from wild-type and TLR2-deficient mice were exposed to T. gondii tachyzoites. To characterize TLR2-dependent functional pathways activated in response to T. gondii infection, gene expression of different cell types was profiled by RNA sequencing. RESULTS During T. gondii infection, a total of 611, 777, 385, and 1105 genes were upregulated in astrocytes, microglia, neurons, and macrophages, respectively, while 163, 1207, 158, and 1274 genes were downregulated, respectively, in a TLR2-dependent manner. Overrepresented Gene Ontology (GO) terms for TLR2-dependently upregulated genes were associated with immune and stress responses in astrocytes, immune responses and developmental processes in microglia, metabolic processes and immune responses in neurons, and metabolic processes and gene expression in macrophages. Overrepresented GO terms for downregulated genes included ion transport and behavior in astrocytes, cell cycle and cell division in microglia, metabolic processes in neurons, and response to stimulus, signaling and cell motility in macrophages. CONCLUSIONS To our knowledge, this is the first transcriptomic study of TLR2 function across different cell types during T. gondii infection. Results of RNA-sequencing demonstrated roles for TLR2 varied by cell type during T. gondii infection. Our findings facilitate understanding of the detailed relationship between TLR2 and T. gondii infection, and elucidate mechanisms underlying neurological changes during infection.
Collapse
Affiliation(s)
- Kousuke Umeda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Sachi Tanaka
- Division of Animal Science, Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano, Japan
| | - Fumiaki Ihara
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
15
|
A thirty-year quest for a role of R-Ras in cancer: from an oncogene to a multitasking GTPase. Cancer Lett 2017; 403:59-65. [DOI: 10.1016/j.canlet.2017.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/28/2017] [Accepted: 06/03/2017] [Indexed: 12/30/2022]
|
16
|
In Vivo Calcium Signaling during Synaptic Refinement at the Drosophila Neuromuscular Junction. J Neurosci 2017; 37:5511-5526. [PMID: 28476946 DOI: 10.1523/jneurosci.2922-16.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
Abstract
Neural activity plays a key role in pruning aberrant synapses in various neural systems, including the mammalian cortex, where low-frequency (0.01 Hz) calcium oscillations refine topographic maps. However, the activity-dependent molecular mechanisms remain incompletely understood. Activity-dependent pruning also occurs at embryonic Drosophila neuromuscular junctions (NMJs), where low-frequency Ca2+ oscillations are required for synaptic refinement and the response to the muscle-derived chemorepellant Sema2a. We examined embryonic growth cone filopodia in vivo to directly observe their exploration and to analyze the episodic Ca2+ oscillations involved in refinement. Motoneuron filopodia repeatedly contacted off-target muscle fibers over several hours during late embryogenesis, with episodic Ca2+ signals present in both motile filopodia as well as in later-stabilized synaptic boutons. The Ca2+ transients matured over several hours into regular low-frequency (0.03 Hz) oscillations. In vivo imaging of intact embryos of both sexes revealed that the formation of ectopic filopodia is increased in Sema2a heterozygotes. We provide genetic evidence suggesting a complex presynaptic Ca2+-dependent signaling network underlying refinement that involves the phosphatases calcineurin and protein phosphatase-1, as well the serine/threonine kinases CaMKII and PKA. Significantly, this network influenced the neuron's response to the muscle's Sema2a chemorepellant, critical for the removal of off-target contacts.SIGNIFICANCE STATEMENT To address the question of how synaptic connectivity is established during development, we examined the behavior of growth cone filopodia during the exploration of both correct and off-target muscle fibers in Drosophila embryos. We demonstrate that filopodia repeatedly contact off-target muscles over several hours, until they ultimately retract. We show that intracellular signals are observed in motile and stabilized "ectopic" contacts. Several genetic experiments provide insight in the molecular pathway underlying network refinement, which includes oscillatory calcium signals via voltage-gated calcium channels as a key component. Calcium orchestrates the activity of several kinases and phosphatases, which interact in a coordinated fashion to regulate chemorepulsion exerted by the muscle.
Collapse
|
17
|
Yang DS, Roh S, Jeong S. The axon guidance function of Rap1 small GTPase is independent of PlexA RasGAP activity in Drosophila. Dev Biol 2016; 418:258-67. [DOI: 10.1016/j.ydbio.2016.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/25/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022]
|
18
|
Roh S, Yang D, Jeong S. Differential ligand regulation of PlexB signaling in motor neuron axon guidance in
Drosophila. Int J Dev Neurosci 2016; 55:34-40. [DOI: 10.1016/j.ijdevneu.2016.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022] Open
Affiliation(s)
- Seyun Roh
- Department of Molecular BiologyChonbuk National UniversityJeonjuJeollabukdo54896Republic of Korea
| | - Da‐som Yang
- Department of Molecular BiologyChonbuk National UniversityJeonjuJeollabukdo54896Republic of Korea
| | - Sangyun Jeong
- Department of Molecular BiologyChonbuk National UniversityJeonjuJeollabukdo54896Republic of Korea
| |
Collapse
|
19
|
Zwarts L, Goossens T, Clements J, Kang YY, Callaerts P. Axon Branch-Specific Semaphorin-1a Signaling in Drosophila Mushroom Body Development. Front Cell Neurosci 2016; 10:210. [PMID: 27656129 PMCID: PMC5011136 DOI: 10.3389/fncel.2016.00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022] Open
Abstract
Correct wiring of the mushroom body (MB) neuropil in the Drosophila brain involves appropriate positioning of different axonal lobes, as well as the sister branches that develop from individual axons. This positioning requires the integration of various guidance cues provided by different cell types, which help the axons find their final positions within the neuropil. Semaphorins are well-known for their conserved roles in neuronal development and axon guidance. We investigated the role of Sema-1a in MB development more closely. We show that Sema-1a is expressed in the MBs as well as surrounding structures, including the glial transient interhemispheric fibrous ring, throughout development. By loss- and gain-of-function experiments, we show that the MB axons display lobe and sister branch-specific Sema-1a signaling, which controls different aspects of axon outgrowth and guidance. Furthermore, we demonstrate that these effects are modulated by the integration of MB intrinsic and extrinsic Sema-1a signaling pathways involving PlexA and PlexB. Finally, we also show a role for neuronal- glial interaction in Sema-1a dependent β-lobe outgrowth.
Collapse
Affiliation(s)
- Liesbeth Zwarts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, LeuvenBelgium; Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, LeuvenBelgium
| | - Tim Goossens
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, LeuvenBelgium; Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, LeuvenBelgium
| | - Jason Clements
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, LeuvenBelgium; Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, LeuvenBelgium
| | - Yuan Y Kang
- Department of Biology and Biochemistry, University of Houston, Houston, TX USA
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, LeuvenBelgium; Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, LeuvenBelgium
| |
Collapse
|
20
|
Grintsevich EE, Yesilyurt HG, Rich SK, Hung RJ, Terman JR, Reisler E. F-actin dismantling through a redox-driven synergy between Mical and cofilin. Nat Cell Biol 2016; 18:876-85. [PMID: 27454820 PMCID: PMC4966907 DOI: 10.1038/ncb3390] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/21/2016] [Indexed: 02/06/2023]
Abstract
Numerous cellular functions depend on actin filament (F-actin) disassembly. The
best-characterized disassembly proteins, the ADF/cofilins/twinstar, sever filaments and
recycle monomers to promote actin assembly. Cofilin is also a relatively weak actin
disassembler, posing questions about mechanisms of cellular F-actin destabilization. Here
we uncover a key link to targeted F-actin disassembly by finding that F-actin is
efficiently dismantled through a post-translational-mediated synergism between cofilin and
the actin-oxidizing enzyme Mical. We find that Mical-mediated oxidation of actin improves
cofilin binding to filaments, where their combined effect dramatically accelerates F-actin
disassembly compared to either effector alone. This synergism is also necessary and
sufficient for F-actin disassembly in vivo, magnifying the effects of
both Mical and cofilin on cellular remodeling, axon guidance, and Semaphorin/Plexin
repulsion. Mical and cofilin, therefore, form a Redox-dependent synergistic pair that
promotes F-actin instability by rapidly dismantling F-actin and generating
post-translationally modified actin that has altered assembly properties.
Collapse
Affiliation(s)
- Elena E Grintsevich
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, USA
| | - Hunkar Gizem Yesilyurt
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shannon K Rich
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ruei-Jiun Hung
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, USA.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
21
|
Abstract
Secreted class 3 semaphorins (Sema3), which signal through holoreceptor complexes that are formed by different subunits, such as neuropilins (Nrps), proteoglycans, and plexins, were initially characterized as fundamental regulators of axon guidance during embryogenesis. Subsequently, Sema3A, Sema3C, Sema3D, and Sema3E were discovered to play crucial roles in cardiovascular development, mainly acting through Nrp1 and Plexin D1, which funnels the signal of multiple Sema3 in vascular endothelial cells. Mechanistically, Sema3 proteins control cardiovascular patterning through the enzymatic GTPase-activating-protein activity of the cytodomain of Plexin D1, which negatively regulates the function of Rap1, a small GTPase that is well-known for its ability to drive vascular morphogenesis and to elicit the conformational activation of integrin adhesion receptors.
Collapse
Affiliation(s)
- Donatella Valdembri
- a Department of Oncology , University of Torino School of Medicine , Candiolo, Torino , Italy.,b Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy
| | - Donatella Regano
- c Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy.,d Department of Science and Drug Technology , University of Torino , Candiolo, Torino , Italy
| | - Federica Maione
- c Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy.,d Department of Science and Drug Technology , University of Torino , Candiolo, Torino , Italy
| | - Enrico Giraudo
- c Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy.,d Department of Science and Drug Technology , University of Torino , Candiolo, Torino , Italy
| | - Guido Serini
- a Department of Oncology , University of Torino School of Medicine , Candiolo, Torino , Italy.,b Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy
| |
Collapse
|
22
|
Vonhoff F, Keshishian H. Cyclic nucleotide signaling is required during synaptic refinement at the Drosophila neuromuscular junction. Dev Neurobiol 2016; 77:39-60. [PMID: 27281494 DOI: 10.1002/dneu.22407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/01/2023]
Abstract
The removal of miswired synapses is a fundamental prerequisite for normal circuit development, leading to clinical problems when aberrant. However, the underlying activity-dependent molecular mechanisms involved in synaptic pruning remain incompletely resolved. Here the dynamic properties of intracellular calcium oscillations and a role for cAMP signaling during synaptic refinement in intact Drosophila embryos were examined using optogenetic tools. We provide In vivo evidence at the single gene level that the calcium-dependent adenylyl cyclase rutabaga, the phosphodiesterase dunce, the kinase PKA, and Protein Phosphatase 1 (PP1) all operate within a functional signaling pathway to modulate Sema2a-dependent chemorepulsion. It was found that presynaptic cAMP levels were required to be dynamically maintained at an optimal level to suppress connectivity defects. It was also proposed that PP1 may serve as a molecular link between cAMP signaling and CaMKII in the pathway underlying refinement. The results introduced an in vivo model where presynaptic cAMP levels, downstream of electrical activity and calcium influx, act via PKA and PP1 to modulate the neuron's response to chemorepulsion involved in the withdrawal of off-target synaptic contacts. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 39-60, 2017.
Collapse
Affiliation(s)
- Fernando Vonhoff
- Molecular, Cellular, and Developmental Biology Department, Yale University, POB 208103, New Haven, Connecticut, 06520
| | - Haig Keshishian
- Molecular, Cellular, and Developmental Biology Department, Yale University, POB 208103, New Haven, Connecticut, 06520
| |
Collapse
|
23
|
Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016; 532:195-200. [PMID: 27027288 DOI: 10.1038/nature17623] [Citation(s) in RCA: 1293] [Impact Index Per Article: 143.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/26/2016] [Indexed: 12/20/2022]
Abstract
Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration.
Collapse
|
24
|
Meltzer S, Yadav S, Lee J, Soba P, Younger SH, Jin P, Zhang W, Parrish J, Jan LY, Jan YN. Epidermis-Derived Semaphorin Promotes Dendrite Self-Avoidance by Regulating Dendrite-Substrate Adhesion in Drosophila Sensory Neurons. Neuron 2016; 89:741-55. [PMID: 26853303 PMCID: PMC4760923 DOI: 10.1016/j.neuron.2016.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/27/2015] [Accepted: 01/11/2016] [Indexed: 01/15/2023]
Abstract
Precise patterning of dendritic arbors is critical for the wiring and function of neural circuits. Dendrite-extracellular matrix (ECM) adhesion ensures that the dendrites of Drosophila dendritic arborization (da) sensory neurons are properly restricted in a 2D space, and thereby facilitates contact-mediated dendritic self-avoidance and tiling. However, the mechanisms regulating dendrite-ECM adhesion in vivo are poorly understood. Here, we show that mutations in the semaphorin ligand sema-2b lead to a dramatic increase in self-crossing of dendrites due to defects in dendrite-ECM adhesion, resulting in a failure to confine dendrites to a 2D plane. Furthermore, we find that Sema-2b is secreted from the epidermis and signals through the Plexin B receptor in neighboring neurons. Importantly, we find that Sema-2b/PlexB genetically and physically interacts with TORC2 complex, Tricornered (Trc) kinase, and integrins. These results reveal a novel role for semaphorins in dendrite patterning and illustrate how epidermal-derived cues regulate neural circuit assembly.
Collapse
Affiliation(s)
- Shan Meltzer
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Smita Yadav
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiae Lee
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Peter Soba
- Center for Molecular Neurobiology (ZMNH), University of Hamburg Medical School, Falkenried 94, 20251 Hamburg, Germany
| | - Susan H Younger
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peng Jin
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Wei Zhang
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jay Parrish
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
25
|
Long H, Yoshikawa S, Thomas JB. Equivalent Activities of Repulsive Axon Guidance Receptors. J Neurosci 2016; 36:1140-50. [PMID: 26818503 PMCID: PMC4728722 DOI: 10.1523/jneurosci.3406-15.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/12/2015] [Accepted: 12/07/2015] [Indexed: 01/31/2023] Open
Abstract
Receptors on the growth cone at the leading edge of elongating axons play critical guidance roles by recognizing cues via their extracellular domains and transducing signals via their intracellular domains, resulting in changes in direction of growth. An important concept to have emerged in the axon guidance field is the importance of repulsion as a major guidance mechanism. Given the number and variety of different repulsive receptors, it is generally thought that there are likely to be qualitative differences in the signals they transduce. However, the nature of these possible differences is unknown. By creating chimeras using the extracellular and intracellular domains of three different Drosophila repulsive receptors, Unc5, Roundabout (Robo), and Derailed (Drl) and expressing them in defined cells within the embryonic nervous system, we examined the responses elicited by their intracellular domains systematically. Surprisingly, we found no qualitative differences in growth cone response or axon growth, suggesting that, despite their highly diverged sequences, each intracellular domain elicits repulsion via a common pathway. In terms of the signaling pathway(s) used by the repulsive receptors, mutations in the guanine nucleotide exchange factor Trio strongly enhance the repulsive activity of all three intracellular domains, suggesting that repulsion by Unc5, Robo, and Drl, and perhaps repulsion in general, involves Trio activity. SIGNIFICANCE STATEMENT A prevailing concept that has emerged in the axon guidance field is the importance of repulsion as a guidance mechanism for steering axons to their appropriate targets. Given the number and variety of different repulsive receptors, it is generally thought that there are differences in the signals that they transduce. However, this has never been tested directly. We have used the advanced genetics of Drosophila to compare directly the outputs of different repulsive receptors. Surprisingly, we found no qualitative differences in receptor-mediated repulsion, suggesting that, despite their highly diverged domain structure, each receptor couples to a common repulsive pathway. We went on to show that this common pathway involves Trio, a guanine nucleotide exchange factor known to promote cytoskeletal remodeling.
Collapse
Affiliation(s)
- Hong Long
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Shingo Yoshikawa
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - John B Thomas
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
26
|
Pan X, Chang X, Leung C, Zhou Z, Cao F, Xie W, Jia Z. PAK1 regulates cortical development via promoting neuronal migration and progenitor cell proliferation. Mol Brain 2015; 8:36. [PMID: 26043730 PMCID: PMC4456803 DOI: 10.1186/s13041-015-0124-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/12/2015] [Indexed: 11/17/2022] Open
Abstract
Background p21-activated kinase 1 (PAK1) is a serine/threonine kinase known to be activated by the Rho family small GTPases and to play a key role in cytoskeletal reorganization, spine morphology and synaptic plasticity. PAK1 is also implicated in a number of neurodevelopmental and neurodegenerative diseases, including autism, intellectual disability and Alzheimer’s disease. However, the role of PAK1 in early brain development remains unknown. Results In this study, we employed genetic manipulations to investigate the role of PAK1 in the cerebral cortical development in mice. We showed that compared to the wild type littermates, PAK1 knockout mice have a reduction in the number of pyramidal neurons in several layers of the cerebral cortex, which is associated with a smaller pool of neural progenitor cells and impaired neuronal migration. Conclusion These results suggest that PAK1 regulates cortical development by promoting the proliferation of neural progenitor cells and facilitating the migration of these neurons to specific regions of the cortex.
Collapse
Affiliation(s)
- Xingxiu Pan
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, 2 Sipailou Road, 210096, Nanjing, China.
| | - Xinxia Chang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, 2 Sipailou Road, 210096, Nanjing, China.
| | - Celeste Leung
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., M5G 1X8, Toronto, Ontario, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Zikai Zhou
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, 2 Sipailou Road, 210096, Nanjing, China.
| | - Feng Cao
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, 2 Sipailou Road, 210096, Nanjing, China. .,Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., M5G 1X8, Toronto, Ontario, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, 2 Sipailou Road, 210096, Nanjing, China.
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., M5G 1X8, Toronto, Ontario, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
27
|
Takeuchi S, Katoh H, Negishi M. Eph/ephrin reverse signalling induces axonal retraction through RhoA/ROCK pathway. J Biochem 2015; 158:245-52. [PMID: 25922200 DOI: 10.1093/jb/mvv042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/26/2015] [Indexed: 01/09/2023] Open
Abstract
Eph/ephrin signalling plays essential roles in various tissue developments, such as axon guidance, angiogenesis and tissue separation. Interaction between Ephs and ephrins upon cell-cell contact results in forward (towards Eph-expressing cells) and reverse (towards ephrin-expressing cells) signalling. Although the molecular mechanisms downstream of Eph/ephrin forward signalling have been extensively studied, the functions and intracellular molecular mechanisms of Eph/ephrin reverse signalling are not fully understood. Rho GTPases are key regulators of the actin cytoskeleton to regulate cell morphology. In this study, we revealed that stimulation with the extracellular domain of EphB2 to activate Eph/ephrin reverse signalling induced axonal retraction in hippocampal neurons. The reduction of axonal length and branching by Eph/ephrin reverse signalling was blocked by inhibition of RhoA or Rho-associated coiled-coil-containing protein kinase (ROCK). These results suggest that Eph/ephrin reverse signalling negatively regulates axonal outgrowth and branching through RhoA/ROCK pathway in hippocampal neurons.
Collapse
Affiliation(s)
- Shingo Takeuchi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hironori Katoh
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Manabu Negishi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
28
|
Pascoe HG, Wang Y, Zhang X. Structural mechanisms of plexin signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:161-8. [PMID: 25824683 DOI: 10.1016/j.pbiomolbio.2015.03.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/20/2015] [Accepted: 03/20/2015] [Indexed: 02/03/2023]
Abstract
Signaling through plexin, the major cell surface receptor for semaphorin, plays critical roles in regulating processes such as neuronal axon guidance, angiogenesis and immune response. Plexin is normally kept inactive in the absence of semaphorin. Upon binding of semaphorin to the extracellular region, plexin is activated and transduces signal to the inside of the cell through its cytoplasmic region. The GTPase Activating Protein (GAP) domain in the plexin cytoplasmic region mediates the major intracellular signaling pathway. The substrate specificity and regulation mechanisms of the GAP domain have only been revealed recently. Many intracellular proteins serve as either upstream regulators or downstream transducers by directly interacting with plexin. The mechanisms of action for some of these proteins also start to emerge from recent studies. We review here these advances in the mechanistic understanding of plexin intracellular signaling from a structural perspective.
Collapse
Affiliation(s)
- Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat Commun 2015; 6:6385. [PMID: 25721933 PMCID: PMC4351556 DOI: 10.1038/ncomms7385] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/26/2015] [Indexed: 11/08/2022] Open
Abstract
Reproductive competence in mammals depends on the projection of gonadotropin-releasing hormone (GnRH) neurons to the hypothalamic median eminence (ME) and the timely release of GnRH into the hypothalamic-pituitary-gonadal axis. In adult rodents, GnRH neurons and the specialized glial cells named tanycytes periodically undergo cytoskeletal plasticity. However, the mechanisms that regulate this plasticity are still largely unknown. We demonstrate that Semaphorin7A, expressed by tanycytes, plays a dual role, inducing the retraction of GnRH terminals and promoting their ensheathment by tanycytic end feet via the receptors PlexinC1 and Itgb1, respectively. Moreover, Semaphorin7A expression is regulated during the oestrous cycle by the fluctuating levels of gonadal steroids. Genetic invalidation of Semaphorin7A receptors in mice induces neuronal and glial rearrangements in the ME and abolishes normal oestrous cyclicity and fertility. These results show a role for Semaphorin7A signalling in mediating periodic neuroglial remodelling in the adult ME during the ovarian cycle.
Collapse
|
30
|
Treps L, Le Guelte A, Gavard J. Emerging roles of Semaphorins in the regulation of epithelial and endothelial junctions. Tissue Barriers 2014; 1:e23272. [PMID: 24665374 PMCID: PMC3879177 DOI: 10.4161/tisb.23272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 12/13/2022] Open
Abstract
Tissue barriers maintain homeostasis, protect underlying tissues, are remodeled during organogenesis and injury and limit aberrant proliferation and dissemination. In this context, endothelial and epithelial intercellular junctions are the primary targets of various cues. This cellular adaptation requires plasticity and dynamics of adhesion molecules and the associated cytoskeleton, as well as the adhesive-linked signaling platforms. It is therefore not surprising that the guidance molecules from the Semaphorin family arise as novel modifiers of epithelia and endothelia in development and diseases. This review will focus on the actions of Semaphorins, and their cognate receptors, Plexins and Neuropilins, on epithelial and endothelial barrier properties.
Collapse
Affiliation(s)
- Lucas Treps
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| | - Armelle Le Guelte
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| | - Julie Gavard
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| |
Collapse
|
31
|
Abstract
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
32
|
Chen HM, Lin YW, Wang JL, Kong X, Hong J, Fang JY. Identification of Potential Target Genes of Butyrate in Dimethylhydrazine-Induced Colorectal Cancer in Mice. Nutr Cancer 2013; 65:1171-83. [DOI: 10.1080/01635581.2013.828087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Wang Y, Pascoe HG, Brautigam CA, He H, Zhang X. Structural basis for activation and non-canonical catalysis of the Rap GTPase activating protein domain of plexin. eLife 2013; 2:e01279. [PMID: 24137545 PMCID: PMC3787391 DOI: 10.7554/elife.01279] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/22/2013] [Indexed: 12/14/2022] Open
Abstract
Plexins are cell surface receptors that bind semaphorins and transduce signals for regulating neuronal axon guidance and other processes. Plexin signaling depends on their cytoplasmic GTPase activating protein (GAP) domain, which specifically inactivates the Ras homolog Rap through an ill-defined non-canonical catalytic mechanism. The plexin GAP is activated by semaphorin-induced dimerization, the structural basis for which remained unknown. Here we present the crystal structures of the active dimer of zebrafish PlexinC1 cytoplasmic region in the apo state and in complex with Rap. The structures show that the dimerization induces a large-scale conformational change in plexin, which opens the GAP active site to allow Rap binding. Plexin stabilizes the switch II region of Rap in an unprecedented conformation, bringing Gln63 in Rap into the active site for catalyzing GTP hydrolysis. The structures also explain the unique Rap-specificity of plexins. Mutational analyses support that these mechanisms underlie plexin activation and signaling. DOI:http://dx.doi.org/10.7554/eLife.01279.001.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Huawei He
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
34
|
Emerson MM, Long JB, Van Vactor D. Drosophila semaphorin2b is required for the axon guidance of a subset of embryonic neurons. Dev Dyn 2013; 242:861-73. [PMID: 23606306 PMCID: PMC3739952 DOI: 10.1002/dvdy.23979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 12/26/2022] Open
Abstract
Background: The process of axon guidance is important in establishing functional neural circuits. The differential expression of cell-autonomous axon guidance factors is crucial for allowing axons of different neurons to take unique trajectories in response to spatially and temporally restricted cell non-autonomous axon guidance factors. A key motivation in the field is to provide adequate explanations for axon behavior with respect to the differential expression of these factors. Results: We report the characterization of a predicted secreted semaphorin family member, semaphorin2b (Sema-2b) in Drosophila embryonic axon guidance. Misexpression of Sema-2b in neurons causes highly penetrant axon guidance phenotypes in specific longitudinal and motoneuron pathways; however, expression of Sema-2b in muscles traversed by these motoneurons has no effect on axon guidance. In Sema-2b loss-of-function embryos, specific motoneuron and interneuron axon pathways display guidance defects. Specific visualization of the neurons that normally express Sema-2b reveals that this neuronal cohort is strongly affected by Sema-2b loss-of-function alleles. Conclusions: While secreted semaphorins have been implicated as cell non-autonomous chemorepellants in a variety of contexts, here we report previously undescribed Sema-2b loss-of-function and misexpression phenotypes that are consistent with a cell-autonomous role for Sema-2b. Developmental Dynamics 242:861–873, 2013. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mark M Emerson
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
35
|
Anesthetics interfere with axon guidance in developing mouse neocortical neurons in vitro via a γ-aminobutyric acid type A receptor mechanism. Anesthesiology 2013; 118:825-33. [PMID: 23364597 DOI: 10.1097/aln.0b013e318287b850] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The finding that exposure to general anesthetics (GAs) in childhood may increase rates of learning disabilities has raised a concern that anesthetics may interfere with brain development. The generation of neuronal circuits, a complex process in which axons follow guidance cues to dendritic targets, is an unexplored potential target for this type of toxicity. METHODS GA exposures were conducted in developing neocortical neurons in culture and in early postnatal neocortical slices overlaid with fluorescently labeled neurons. Axon targeting, growth cone collapse, and axon branching were measured using quantitative fluorescence microscopy. RESULTS Isoflurane exposure causes errors in Semaphorin-3A-dependent axon targeting (n = 77 axons) and a disruption of the response of axonal growth cones to Semaphorin-3A (n = 2,358 growth cones). This effect occurs at clinically relevant anesthetic doses of numerous GAs with allosteric activity at γ-aminobutyric acid type A receptors, and it was reproduced with a selective agonist. Isoflurane also inhibits growth cone collapse induced by Netrin-1, but does not interfere branch induction by Netrin-1. Insensitivity to guidance cues caused by isoflurane is seen acutely in growth cones in dissociated culture, and errors in axon targeting in brain slice culture occur at the earliest point at which correct targeting is observed in controls. CONCLUSIONS These results demonstrate a generalized inhibitory effect of GAs on repulsive growth cone guidance in the developing neocortex that may occur via a γ-aminobutyric acid type A receptor mechanism. The finding that GAs interfere with axon guidance, and thus potentially with circuit formation, represents a novel form of anesthesia neurotoxicity in brain development.
Collapse
|
36
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
37
|
Abstract
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
38
|
Semaphorin 4D/Plexin-B1-mediated M-Ras GAP activity regulates actin-based dendrite remodeling through Lamellipodin. J Neurosci 2012; 32:8293-305. [PMID: 22699910 DOI: 10.1523/jneurosci.0799-12.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Semaphorins have been identified as repulsive guidance molecules in the developing nervous system. We recently reported that the semaphorin 4D (Sema4D) receptor Plexin-B1 induces repulsion in axon and dendrites by functioning as a GTPase-activating protein (GAP) for R-Ras and M-Ras, respectively. In axons, Sema4D stimulation induces growth cone collapse, and downregulation of R-Ras activity by Plexin-B1-mediated GAP activity is required for the action. Axonal R-Ras GAP activity downregulates phosphatidylinositol 3-kinase signaling pathway, and thereby induces inactivation of a microtubule assembly promoter protein, CRMP-2. However, in contrast to the well studied roles of semaphorins and plexins in axonal guidance, signaling molecules linking M-Ras GAP to dendritic cytoskeleton remain obscure. Here we identified an Ena/VASP ligand, Lamellipodin (Lpd), as a novel effector of M-Ras in dendrites. Lpd was expressed in F-actin-rich distal dendritic processes and was required for both basal and M-Ras-mediated dendrite development. Subcellular fractionation showed M-Ras-dependent membrane translocation of Lpd, which was suppressed by Sema4D. Furthermore, the Ena/VASP-binding region within Lpd was required for dendrite development, and its membrane targeting was sufficient to overcome the Sema4D-mediated reduction of dendritic outgrowth and disappearance of F-actin from distal dendrites. Furthermore, in utero electroporation experiments also indicated that regulation of the M-Ras-Lpd system by the GAP activity of Plexin is involved in the normal development of cortical dendrites in vivo. Overall, our study sheds light on how repulsive guidance molecules regulate actin cytoskeleton in dendrites, revealing a novel mechanism that the M-Ras-Lpd system regulates actin-based dendrite remodeling by Sema/Plexin in rats or mice of either sex.
Collapse
|
39
|
Yang T, Terman JR. 14-3-3ε couples protein kinase A to semaphorin signaling and silences plexin RasGAP-mediated axonal repulsion. Neuron 2012; 74:108-21. [PMID: 22500634 DOI: 10.1016/j.neuron.2011.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2011] [Indexed: 10/28/2022]
Abstract
The biochemical means through which multiple signaling pathways are integrated in navigating axons is poorly understood. Semaphorins are among the largest families of axon guidance cues and utilize Plexin (Plex) receptors to exert repulsive effects on axon extension. However, Semaphorin repulsion can be silenced by other distinct cues and signaling cascades, raising questions of the logic underlying these events. We now uncover a simple biochemical switch that controls Semaphorin/Plexin repulsive guidance. Plexins are Ras/Rap family GTPase activating proteins (GAPs) and we find that the PlexA GAP domain is phosphorylated by the cAMP-dependent protein kinase (PKA). This PlexA phosphorylation generates a specific binding site for 14-3-3ε, a phospho-binding protein that we find to be necessary for axon guidance. These PKA-mediated Plexin-14-3-3ε interactions prevent PlexA from interacting with its Ras family GTPase substrate and antagonize Semaphorin repulsion. Our results indicate that these interactions switch repulsion to adhesion and identify a point of convergence for multiple guidance molecules.
Collapse
Affiliation(s)
- Taehong Yang
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
40
|
Wang Y, He H, Srivastava N, Vikarunnessa S, Chen YB, Jiang J, Cowan CW, Zhang X. Plexins are GTPase-activating proteins for Rap and are activated by induced dimerization. Sci Signal 2012; 5:ra6. [PMID: 22253263 DOI: 10.1126/scisignal.2002636] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plexins are cell surface receptors that bind to semaphorins and transduce signals that regulate neuronal development, immune responses, and other processes. Signaling through plexins has been proposed to rely on specific guanosine triphosphatase (GTPase)-activating protein (GAP) activity for R-Ras and M-Ras. Activation of this GAP activity of plexins appears to require simultaneous binding of semaphorin to the plexin extracellular domain and of the Rho GTPases Rac1 or Rnd1 to the cytoplasmic region. However, GAP activity of plexins has eluded detection in several recent studies. We show that the purified cytoplasmic region of plexin uses a noncanonical catalytic mechanism to act as a GAP for Rap, but not for R-Ras or M-Ras. The RapGAP activity of plexins was autoinhibited and was activated by induced dimerization. Biochemical and crystallographic analyses demonstrated that binding of Rho GTPases did not directly contribute to activation of plexin RapGAP activity. Semaphorin stimulated the RapGAP activity of full-length plexin in cells, which was required for plexin-mediated neuronal growth cone collapse. Together, these findings define a pathway for plexin signaling and provide insights into the mechanism for semaphorin-induced activation of plexins.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75063, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sousa-Neves R, Schinaman JM. A novel genetic tool for clonal analysis of fourth chromosome mutations. Fly (Austin) 2012; 6:49-56. [PMID: 22198523 DOI: 10.4161/fly.18415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The fourth chromosome of Drosophila remains one of the most intractable regions of the fly genome to genetic analysis. The main difficulty posed to the genetic analyses of mutations on this chromosome arises from the fact that it does not undergo meiotic recombination, which makes recombination mapping impossible, and also prevents clonal analysis of mutations, a technique which relies on recombination to introduce the prerequisite recessive markers and FLP-recombinase recognition targets (FRT). Here we introduce a method that overcomes these limitations and allows for the generation of single Minute haplo-4 clones of any fourth chromosome mutant gene in tissues of developing and adult flies.
Collapse
Affiliation(s)
- Rui Sousa-Neves
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
| | | |
Collapse
|
42
|
Perälä N, Sariola H, Immonen T. More than nervous: the emerging roles of plexins. Differentiation 2011; 83:77-91. [PMID: 22099179 DOI: 10.1016/j.diff.2011.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/27/2011] [Accepted: 08/04/2011] [Indexed: 12/30/2022]
Abstract
Plexins are the receptors for semaphorins, a large family of axon guidance cues. Accordingly, the role of plexins in the development of the nervous system was the first to be acknowledged. However, the expression of plexins is not restricted to neuronal cells, and recent research has been increasingly focused on the roles of plexin-semaphorin signalling outside of the nervous system. During embryogenesis, plexins regulate the development of many organs, including the cardiovascular system, skeleton and kidney. They have also been shown to be involved in immune system functions and tumour progression. Analyses of the plexin signalling in different tissues and cell types have provided new insight to the versatility of plexin interactions with semaphorins and other cell-surface receptors. In this review we try to summarise the current understanding of the roles of plexins in non-neural development and immunity.
Collapse
Affiliation(s)
- Nina Perälä
- Institute of Biomedicine/Biochemistry and Developmental Biology, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
43
|
Roney KE, O'Connor BP, Wen H, Holl EK, Guthrie EH, Davis BK, Jones SW, Jha S, Sharek L, Garcia-Mata R, Bear JE, Ting JPY. Plexin-B2 negatively regulates macrophage motility, Rac, and Cdc42 activation. PLoS One 2011; 6:e24795. [PMID: 21966369 PMCID: PMC3179467 DOI: 10.1371/journal.pone.0024795] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 08/22/2011] [Indexed: 11/18/2022] Open
Abstract
Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2−/− macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2−/− macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing.
Collapse
Affiliation(s)
- Kelly E. Roney
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brian P. O'Connor
- Integrated Department of Immunology, Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Haitao Wen
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eda K. Holl
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth H. Guthrie
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Beckley K. Davis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephen W. Jones
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sushmita Jha
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lisa Sharek
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rafael Garcia-Mata
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - James E. Bear
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integrated Department of Immunology, Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Jenny P.-Y. Ting
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
44
|
Bell CH, Aricescu AR, Jones EY, Siebold C. A dual binding mode for RhoGTPases in plexin signalling. PLoS Biol 2011; 9:e1001134. [PMID: 21912513 PMCID: PMC3166162 DOI: 10.1371/journal.pbio.1001134] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022] Open
Abstract
Plexins are cell surface receptors for the semaphorin family of cell guidance cues. The cytoplasmic region comprises a Ras GTPase-activating protein (GAP) domain and a RhoGTPase binding domain. Concomitant binding of extracellular semaphorin and intracellular RhoGTPase triggers GAP activity and signal transduction. The mechanism of this intricate regulation remains elusive. We present two crystal structures of the human Plexin-B1 cytoplasmic region in complex with a constitutively active RhoGTPase, Rac1. The structure of truncated Plexin-B1-Rac1 complex provides no mechanism for coupling RhoGTPase and Ras binding sites. On inclusion of the juxtamembrane helix, a trimeric structure of Plexin-B1-Rac1 complexes is stabilised by a second, novel, RhoGTPase binding site adjacent to the Ras site. Site-directed mutagenesis combined with cellular and biophysical assays demonstrate that this new binding site is essential for signalling. Our findings are consistent with a model in which extracellular and intracellular plexin clustering events combine into a single signalling output.
Collapse
Affiliation(s)
- Christian H. Bell
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - A. Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Hung RJ, Terman JR. Extracellular inhibitors, repellents, and semaphorin/plexin/MICAL-mediated actin filament disassembly. Cytoskeleton (Hoboken) 2011; 68:415-33. [PMID: 21800438 PMCID: PMC3612987 DOI: 10.1002/cm.20527] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023]
Abstract
Multiple extracellular signals have been identified that regulate actin dynamics within motile cells, but how these instructive cues present on the cell surface exert their precise effects on the internal actin cytoskeleton is still poorly understood. One particularly interesting class of these cues is a group of extracellular proteins that negatively alter the movement of cells and their processes. Over the years, these types of events have been described using a variety of terms and herein we provide an overview of inhibitory/repulsive cellular phenomena and highlight the largest known protein family of repulsive extracellular cues, the Semaphorins. Specifically, the Semaphorins (Semas) utilize Plexin cell-surface receptors to dramatically collapse the actin cytoskeleton and we summarize what is known of the direct molecular and biochemical mechanisms of Sema-triggered actin filament (F-actin) disassembly. We also discuss new observations from our lab that reveal that the multidomain oxidoreductase (Redox) enzyme Molecule Interacting with CasL (MICAL), an important mediator of Sema/Plexin repulsion, is a novel F-actin disassembly factor. Our results indicate that MICAL triggers Sema/Plexin-mediated reorganization of the F-actin cytoskeleton and suggest a role for specific Redox signaling events in regulating actin dynamics.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Departments of Neuroscience and Pharmacology, and Neuroscience Graduate Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R. Terman
- Departments of Neuroscience and Pharmacology, and Neuroscience Graduate Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
46
|
Wu Z, Sweeney LB, Ayoob JC, Chak K, Andreone BJ, Ohyama T, Kerr R, Luo L, Zlatic M, Kolodkin AL. A combinatorial semaphorin code instructs the initial steps of sensory circuit assembly in the Drosophila CNS. Neuron 2011; 70:281-98. [PMID: 21521614 DOI: 10.1016/j.neuron.2011.02.050] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2011] [Indexed: 01/19/2023]
Abstract
Longitudinal axon fascicles within the Drosophila embryonic CNS provide connections between body segments and are required for coordinated neural signaling along the anterior-posterior axis. We show here that establishment of select CNS longitudinal tracts and formation of precise mechanosensory afferent innervation to the same CNS region are coordinately regulated by the secreted semaphorins Sema-2a and Sema-2b. Both Sema-2a and Sema-2b utilize the same neuronal receptor, plexin B (PlexB), but serve distinct guidance functions. Localized Sema-2b attraction promotes the initial assembly of a subset of CNS longitudinal projections and subsequent targeting of chordotonal sensory afferent axons to these same longitudinal connectives, whereas broader Sema-2a repulsion serves to prevent aberrant innervation. In the absence of Sema-2b or PlexB, chordotonal afferent connectivity within the CNS is severely disrupted, resulting in specific larval behavioral deficits. These results reveal that distinct semaphorin-mediated guidance functions converge at PlexB and are critical for functional neural circuit assembly.
Collapse
Affiliation(s)
- Zhuhao Wu
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Semaphorin 5A and plexin-B3 regulate human glioma cell motility and morphology through Rac1 and the actin cytoskeleton. Oncogene 2011; 31:595-610. [PMID: 21706053 DOI: 10.1038/onc.2011.256] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Semaphorins are implicated in glioma progression, although little is known about the underlying mechanisms. We have reported plexin-B3 expression in human gliomas, which upon stimulation by Sema5A causes significant inhibition of cell migration and invasion. The concomitant inactivation of Rac1 is of mechanistic importance because forced expression of constitutively active Rac1 abolishes these inhibitory effects. Furthermore, Sema5A induces prominent cell collapse and ramification of processes reminiscent of astrocytic morphology, which temporally associate with extensive disassembly of actin stress fibers and disruption of focal adhesions, followed by accumulation of actin patches in protrusions. Mechanistically, Sema5A induces transient protein kinase C (PKC) phosphorylation of fascin-1, which can reduce its actin-binding/bundling activities and temporally parallels its translocation from cell body to extending processes. PKC inhibition or fascin-1 knockdown is sufficient to abrogate Sema5A-induced morphological differentiation, whereas the process is hastened by forced expression of fascin-1. Intriguingly, Sema5A induces re-expression of glial fibrillary acidic protein (GFAP), which when silenced restricts differentiation of glioma cells to bipolar instead of multipolar morphology. Therefore, we hypothesize complementary functions of fascin-1 and GFAP in the early and late phases of Sema5A-induced astrocytic differentiation of gliomas, respectively. In summary, Sema5A and plexin-B3 impede motility but promote differentiation of human gliomas. These effects are plausibly compromised in high-grade human astrocytomas in which Sema5A expression is markedly reduced, hence leading to infiltrative and anaplastic characteristics. This is evident by increased invasiveness of glioma cells when endogenous Sema5A is silenced. Therefore, Sema5A and plexin-B3 represent potential novel targets in counteracting glioma progression.
Collapse
|
48
|
Song JK, Giniger E. Noncanonical Notch function in motor axon guidance is mediated by Rac GTPase and the GEF1 domain of Trio. Dev Dyn 2011; 240:324-32. [PMID: 21246649 DOI: 10.1002/dvdy.22525] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The receptor Notch interacts with the Abl tyrosine kinase signaling pathway to control axon growth and guidance in Drosophila motor neurons. In part, this is mediated by binding to Trio, a guanine nucleotide exchange factor (GEF) for Rho GTPases. We show here that one of the two GEF domains of Trio, the Rac-specific GEF1, is essential for Trio-dependent motor axon guidance and for the genetic suppression of Notch function in motor axon patterning, but the Rho-specific GEF2 domain is not. Consistent with this, we show that Rac, and not Rho1 or Cdc42, interacts genetically with Notch in a manner indistinguishable from that of bona fide Abl signaling components. We infer, therefore, that Rac is a key component of Abl signaling in Drosophila motor axons, and specifically that it is the crucial Rho GTPase in "noncanonical" Notch/Abl signaling.
Collapse
Affiliation(s)
- Jeong K Song
- Axon Guidance and Neural Connectivity Unit, Basic Neuroscience Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
49
|
Neufeld SQ, Hibbert AD, Chen BE. Opposing roles of PlexinA and PlexinB in axonal branch and varicosity formation. Mol Brain 2011; 4:15. [PMID: 21489263 PMCID: PMC3094289 DOI: 10.1186/1756-6606-4-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/13/2011] [Indexed: 01/01/2023] Open
Abstract
Establishing precise synaptic connectivity during development is crucial for neural circuit function. However, very few molecules have been identified that are involved in determining where and how many synapses form. The Plexin cell-surface molecules are a conserved family of axon guidance receptors that mediate axon fasciculation and repulsion during neural development, and later in development PlexinA receptors are involved in eliminating axonal branches and synapse numbers. Here we investigate the roles of PlexinA and PlexinB receptors in axonal branch and varicosity formation in Drosophila. We knocked down PlexinA or PlexinB expression using RNAi in identified mechanosensory neurons and analyzed axonal branching patterns and varicosity formations. Reducing PlexinA expression increased the axonal arbor complexity by increasing the number of branches and varicosities along the axon. In contrast, knocking down PlexinB expression decreased morphological complexity by decreasing the number of branches and the overall size of the axonal arbor, but did not reduce the number of varicosities. Our results demonstrate opposing roles for PlexinA and PlexinB in local wiring within a target region, where PlexinA functions to suppress excessive axonal branches and synapses and PlexinB facilitates axonal growth.
Collapse
Affiliation(s)
- Shay Q Neufeld
- Research Institute of the McGill University Health Centre, Centre for Research in Neuroscience, Montréal, Québec, Canada
| | | | | |
Collapse
|
50
|
Second messengers and membrane trafficking direct and organize growth cone steering. Nat Rev Neurosci 2011; 12:191-203. [PMID: 21386859 DOI: 10.1038/nrn2996] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graded distributions of extracellular cues guide developing axons toward their targets. A network of second messengers - Ca(2+) and cyclic nucleotides - shapes cue-derived information into either attractive or repulsive signals that steer growth cones bidirectionally. Emerging evidence suggests that such guidance signals create a localized imbalance between exocytosis and endocytosis, which in turn redirects membrane, adhesion and cytoskeletal components asymmetrically across the growth cone to bias the direction of axon extension. These recent advances allow us to propose a unifying model of how the growth cone translates shallow gradients of environmental information into polarized activity of the steering machinery for axon guidance.
Collapse
|