1
|
Shi Y, Eskew RT. S cone increments and decrements: Nearly-linear perceptual scales and variable noise. Vision Res 2025; 231:108613. [PMID: 40311392 DOI: 10.1016/j.visres.2025.108613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Two psychophysical experiments investigated perceptual differences between increases and decreases in stimulation of the short-wavelength (S) cone photoreceptors. In Experiment 1, observers' suprathreshold perceptual scale responses to S cone stimulation were estimated using the Maximum Likelihood Difference Scaling (MLDS) procedure. In Experiment 2, observers' pedestal discrimination thresholds were measured with a two alternative forced choice (2AFC) method. Both experiments were performed using incremental (S+) and decremental (S-) contrasts separately. Substantial asymmetry between S+ and S- was found in pedestal discrimination thresholds, but not in S+ and S- perceptual scales: perceived S cone contrast was nearly linear with S cone contrast for both polarities. To reconcile perceptual scales and thresholds, a model is proposed in which the noise in the S cone pathway is assumed to be proportional to the square root of stimulus contrast. The model works well for both the perceptual scales and forced-choice discrimination, indicating that S+ and S- signals are processed in an asymmetrical way, likely due to the physiological differences between S ON and S OFF pathways.
Collapse
Affiliation(s)
- Yangyi Shi
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Rhea T Eskew
- Department of Psychology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Song J, Brown JM. The influence of "advancing" and "receding" colors on figure-ground perception under monocular and binocular viewing. Atten Percept Psychophys 2024; 86:2707-2720. [PMID: 39349921 DOI: 10.3758/s13414-024-02956-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 12/18/2024]
Abstract
Research on figure-ground perception has consistently found that red images are more likely to be perceived as figure/nearer, yet the mechanisms behind this are not completely clear. The primary theories have pointed to optical chromatic aberrations or cortical mechanisms, such as the antagonistic interactions of the magno-/parvocellular (M/P) systems. Our study explored this color-biased figure-ground perception by examining the duration for which a region was perceived as figure under both binocular and monocular conditions, using all combinations of red, blue, green, and gray. In Experiment 1, we used figure-ground ambiguous Maltese crosses, composed of left- and right-tilting sectors of equal area. In Experiment 2, the crosses were figure-ground biased with size and orientation cues. Here, small sectors of cardinal orientations, likely perceived as figure, were contrasted with larger, obliquely oriented sectors, likely perceived as ground. Under monocular conditions, the results aligned with chromatic aberration predictions: red advanced and blue receded, regardless of size and orientation. However, under binocular conditions, the advancing effect of red continued, but the receding effect of blue was generally not observed. Notably, blue, along with red and green, was more frequently perceived as figure compared to gray. The results under binocular viewing are in line with the expectations of the antagonistic M/P system interactions theory, likely due to the collective input from both eyes, facilitating the anticipated effects. Our findings suggest that color-biased figure-ground perception may arise from the synergistic effect of antagonistic M/P system interactions and other optical and cortical mechanisms, together compensating for chromatic aberrations.
Collapse
Affiliation(s)
- Jaeseon Song
- Department of Psychology, University of Georgia, Athens, GA, 30602, USA.
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA.
| | - James M Brown
- Department of Psychology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
3
|
Liu ML, Liu YP, Guo XX, Wu ZY, Zhang XT, Roe AW, Hu JM. Orientation selectivity mapping in the visual cortex. Prog Neurobiol 2024; 240:102656. [PMID: 39009108 DOI: 10.1016/j.pneurobio.2024.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
The orientation map is one of the most well-studied functional maps of the visual cortex. However, results from the literature are of different qualities. Clear boundaries among different orientation domains and blurred uncertain distinctions were shown in different studies. These unclear imaging results will lead to an inaccuracy in depicting cortical structures, and the lack of consideration in experimental design will also lead to biased depictions of the cortical features. How we accurately define orientation domains will impact the entire field of research. In this study, we test how spatial frequency (SF), stimulus size, location, chromatic, and data processing methods affect the orientation functional maps (including a large area of dorsal V4, and parts of dorsal V1) acquired by intrinsic signal optical imaging. Our results indicate that, for large imaging fields, large grating stimuli with mixed SF components should be considered to acquire the orientation map. A diffusion model image enhancement based on the difference map could further improve the map quality. In addition, the similar outcomes of achromatic and chromatic gratings indicate two alternative types of afferents from LGN, pooling in V1 to generate cue-invariant orientation selectivity.
Collapse
Affiliation(s)
- Mei-Lan Liu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Yi-Peng Liu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Xin-Xia Guo
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Zhi-Yi Wu
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310010, China
| | - Xiao-Tong Zhang
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China; College of Electrical Engineering, Zhejiang University, Hangzhou 310000, China
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China; The State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China.
| | - Jia-Ming Hu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China.
| |
Collapse
|
4
|
Lowndes R, Aveyard R, Welbourne LE, Wade A, Morland AB. In primary visual cortex fMRI responses to chromatic and achromatic stimuli are interdependent and predict contrast detection thresholds. Vision Res 2024; 218:108398. [PMID: 38552557 DOI: 10.1016/j.visres.2024.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Chromatic and achromatic signals in primary visual cortex have historically been considered independent of each other but have since shown evidence of interdependence. Here, we investigated the combination of two components of a stimulus; an achromatic dynamically changing check background and a chromatic (L-M or S cone) target grating. We found that combinations of chromatic and achromatic signals in primary visual cortex were interdependent, with the dynamic range of responses to chromatic contrast decreasing as achromatic contrast increased. A contrast detection threshold study also revealed interdependence of background and target, with increasing chromatic contrast detection thresholds as achromatic background contrast increased. A model that incorporated a normalising effect of achromatic contrast on chromatic responses, but not vice versa, best predicted our V1 data as well as behavioural thresholds. Further along the visual hierarchy, the dynamic range of chromatic responses was maintained when compared to achromatic responses, which became increasingly compressive.
Collapse
Affiliation(s)
- Rebecca Lowndes
- Department of Psychology, University of York, United Kingdom; York Neuroimaging Centre, University of York, United Kingdom.
| | - Richard Aveyard
- York Neuroimaging Centre, University of York, United Kingdom
| | - Lauren E Welbourne
- Department of Psychology, University of York, United Kingdom; York Neuroimaging Centre, University of York, United Kingdom
| | - Alex Wade
- Department of Psychology, University of York, United Kingdom; York Neuroimaging Centre, University of York, United Kingdom; York Biomedical Research Institute, University of York, United Kingdom
| | - Antony B Morland
- Department of Psychology, University of York, United Kingdom; York Neuroimaging Centre, University of York, United Kingdom; York Biomedical Research Institute, University of York, United Kingdom
| |
Collapse
|
5
|
Mizoguchi K, Sato M, Saito R, Koshikuni M, Sakakibara M, Manabe R, Harada Y, Uchikawa T, Ansai S, Kamei Y, Naruse K, Fukamachi S. Behavioral photosensitivity of multi-color-blind medaka: enhanced response under ultraviolet light in the absence of short-wavelength-sensitive opsins. BMC Neurosci 2023; 24:67. [PMID: 38097940 PMCID: PMC10722765 DOI: 10.1186/s12868-023-00835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The behavioral photosensitivity of animals could be quantified via the optomotor response (OMR), for example, and the luminous efficiency function (the range of visible light) should largely rely on the repertoire and expression of light-absorbing proteins in the retina, i.e., the opsins. In fact, the OMR under red light was suppressed in medaka lacking the red (long-wavelength sensitive [LWS]) opsin. RESULTS We investigated the ultraviolet (UV)- or blue-light sensitivity of medaka lacking the violet (short-wavelength sensitive 1 [SWS1]) and blue (SWS2) opsins. The sws1/sws2 double or sws1/sws2/lws triple mutants were as viable as the wild type. The remaining green (rhodopsin 2 [RH2]) or red opsins were not upregulated. Interestingly, the OMR of the double or triple mutants was equivalent or even increased under UV or blue light (λ = 350, 365, or 450 nm), which demonstrated that the rotating stripes (i.e., changes in luminance) could fully be recognized under UV light using RH2 alone. The OMR test using dichromatic stripes projected onto an RGB display consistently showed that the presence or absence of SWS1 and SWS2 did not affect the equiluminant conditions. CONCLUSIONS RH2 and LWS, but not SWS1 and SWS2, should predominantly contribute to the postreceptoral processes leading to the OMR or, possibly, to luminance detection in general, as the medium-wavelength-sensitive and LWS cones, but not the SWS cones, are responsible for luminance detection in humans.
Collapse
Affiliation(s)
- Kiyono Mizoguchi
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Mayu Sato
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Rina Saito
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Mayu Koshikuni
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Mana Sakakibara
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Ran Manabe
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Yumi Harada
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Tamaki Uchikawa
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Satoshi Ansai
- Laboratory of Bioresources, National Institute for Basic Biology, Aichi, 444-8585, Japan
- Graduate School of Life Sciences, Tohoku University, Miyagi, 980-8577, Japan
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Aichi, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Aichi, 444-8585, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Aichi, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Aichi, 444-8585, Japan
| | - Shoji Fukamachi
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan.
| |
Collapse
|
6
|
Martin PR. The Verriest Lecture: Pathways to color in the eye and brain. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:V1-V10. [PMID: 37133001 DOI: 10.1364/josaa.480106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In common with the majority of New World monkeys, marmosets show polymorphic color vision by allelic variation of X-chromosome genes encoding opsin pigments in the medium/long wavelength range. Male marmosets are thus obligate dichromats ("red-green color blind"), whereas females carrying distinct alleles on X chromosomes show one of three trichromatic phenotypes. Marmosets thus represent a "natural knock-out" system enabling comparison of red-green color vision in dichromatic and trichromatic visual systems. Further, study of short-wave (blue) cone pathways in marmosets has provided insights into primitive visual pathways for depth perception and attention. These investigations represent a parallel line to clinical research on color vision defects that was pioneered in studies by Guy Verreist, whom we honor in this eponymous lecture.
Collapse
|
7
|
Arruda JE, McInnis MC, Steele J. Standardization and Validation of the Flash Visual Evoked Potential-P2 Conversion Scores in the Diagnosis of Amnestic Mild Cognitive Impairment and Alzheimer's Dementia. Clin EEG Neurosci 2023; 54:61-72. [PMID: 34994216 DOI: 10.1177/15500594211069727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Amnestic mild cognitive impairment (aMCI), which is characterized by normal daily activity, but a significant decline in episodic memory, is now widely accepted as a risk factor for the development of Alzheimer's dementia (AD). Research suggests that many of the same neuropathological changes associated with AD also occur in patients diagnosed with aMCI. A recent review of the literature revealed that the latency of the flash visual-evoked potential-P2 (FVEP-P2) may possess pathognomonic information that may assist in the early detection of aMCI. While standards exist for the recording of FVEP-P2, individual clinics often use recording parameters that may differ, resulting in latencies that may not generalize beyond the clinic that produced them. The present article illustrates the process by which the FVEP-P2 latency can be standardized across clinics using FVEP-P2 Conversion Scores. We then demonstrate the diagnostic accuracy of the newly developed scores. Method: In the present investigation, we used the previously unpublished data containing the FVEP-P2 latencies of 45 AD and 60 controls. Result: We were able to demonstrate the process by which individual clinics may first standardize FVEP-P2 latencies and then examine patient performance using FVEP-P2 Conversion Scores, providing clinicians with a richer context from which to examine the patient performance. Conclusion: Consistent with the findings of previous research, the findings of the present investigation support the use of the FVEP-P2 Conversion Scores in the diagnosis of AD. Future directions, including the modification of recording parameters associated with the FVEP-P2, are also discussed.
Collapse
Affiliation(s)
- James E Arruda
- 6491University of West Florida, 11000 University Parkway, Pensacola, Florida, USA
| | - Madison C McInnis
- 115599Florida Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Jessica Steele
- 6491University of West Florida, 11000 University Parkway, Pensacola, Florida, USA
| |
Collapse
|
8
|
The effect of wavelength on the variability of the flash visual evoked potential P2: A potential biomarker for mild cognitive impairment and Alzheimer's dementia. Int J Psychophysiol 2021; 164:23-29. [PMID: 33610644 DOI: 10.1016/j.ijpsycho.2021.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/20/2022]
Abstract
As the number of individuals diagnosed with amnestic mild cognitive impairment (aMCI) and Alzheimer's dementia (AD) increases, a need exists for early detection and treatment of the disorders. A recent review of the literature conducted by Arruda et al. (2020) revealed that the latency of the flash visual-evoked potential-P2 (FVEP-P2) may possess pathognomic information that may assist in the early detection and treatment of each disease. Unfortunately, while group differences in latency are robust, the ability to discriminate between individuals remains difficult due to the natural variability associated with the FVEP-P2 latency. In the current investigation, we examine the role of wavelength of light in the production of the FVEP-P2, with the goal of reducing the variability associated with the FVEP-P2 latency and improving the diagnostic accuracy of the FVEP-P2 evaluation. METHOD Twenty-four healthy individuals (11 males and 13 females), ages 18 to 36 years (M = 25.00, SD = 5.60), participated in this investigation. Each participant experienced five blocks of 100 strobe flashes (or trials) under two different light conditions (blue filtered light and polychromatic white light) with their eyes closed. The FVEP-P2 associated with each trial was identified and the latency and amplitude of each component was calculated. RESULT The results of several repeated measures analysis of variance revealed no statistically significant differences in intra- and inter-individual variability associated with the P2 latency or amplitude. However, there was a significant difference in the amplitude of the P2 produced by the two lights, with blue filtered light producing significantly lower amplitudes than the polychromatic white light. CONCLUSION The results of the present investigation suggest that while imperfect, the current practice of employing polychromatic white light in the production of the FVEP-P2 remains the gold standard and that additional methods of reducing the natural variability of the P2 need to be developed if the FVEP-P2 latency is to be used as a biomarker.
Collapse
|
9
|
Liu Y, Li M, Zhang X, Lu Y, Gong H, Yin J, Chen Z, Qian L, Yang Y, Andolina IM, Shipp S, Mcloughlin N, Tang S, Wang W. Hierarchical Representation for Chromatic Processing across Macaque V1, V2, and V4. Neuron 2020; 108:538-550.e5. [PMID: 32853551 DOI: 10.1016/j.neuron.2020.07.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/09/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022]
Abstract
The perception of color is an internal label for the inferred spectral reflectance of visible surfaces. To study how spectral representation is transformed through modular subsystems of successive cortical areas, we undertook simultaneous optical imaging of intrinsic signals in macaque V1, V2, and V4, supplemented by higher-resolution electrophysiology and two-photon imaging in awake macaques. We find a progressive evolution in the scale and precision of chromotopic maps, expressed by a uniform blob-like architecture of hue responses within each area. Two-photon imaging reveals enhanced hue-specific cell clustering in V2 compared with V1. A phenomenon of endspectral (red and blue) responses that is clear in V1, recedes in V2, and is virtually absent in V4. The increase in mid- and extra-spectral hue representations through V2 and V4 reflects the nature of hierarchical processing as higher areas read out locations in chromatic space from progressive integration of signals relayed by V1.
Collapse
Affiliation(s)
- Ye Liu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xian Zhang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yiliang Lu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Hongliang Gong
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiapeng Yin
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Zheyuan Chen
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Liling Qian
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Yupeng Yang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Ian Max Andolina
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Stewart Shipp
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Niall Mcloughlin
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine, and Health Science, University of Manchester, Manchester M13 9PL, UK
| | - Shiming Tang
- Peking University School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; IDG/McGovern Institute for Brain Research at Peking University, Beijing 100871, China.
| | - Wei Wang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
When figure-ground segregation fails: Exploring antagonistic interactions in figure-ground perception. Atten Percept Psychophys 2020; 82:3618-3635. [PMID: 32686064 DOI: 10.3758/s13414-020-02097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Perceptual fading of an artificial scotoma can be viewed as a failure of figure-ground segregation, providing a useful tool for investigating possible mechanisms and processes involved in figure-ground perception. Weisstein's antagonistic magnocellular/parvocellular stream figure-ground model proposes P stream activity encodes figure, and M stream activity encodes background. Where a boundary separates two regions, the region that is perceived as figure or ground is determined by the outcome of antagonism between M and P activity within each region and across the boundary between them. The region with the relatively stronger P "figure signal" is perceived as figure, and the region with the relatively stronger M "ground signal" is perceived as ground. From this perspective, fading occurs when the figure signal is overwhelmed by the ground signal. Strengthening the figure signal or weakening the ground signal should make the figure more resistant to fading. Based on research showing that red light suppresses M activity and short wavelength sensitive S-cones provide minimal input to M cells, we used red and blue light to reduce M activity in both figure and ground. The time to fade from stimulus onset until the figure completely disappeared was measured. Every combination of gray, green, red, and blue as figure and/or ground was tested. Compared with gray and green light, fade times were greatest when red or blue light either strengthened the figure signal by reducing M activity in the figure, or weakened the ground signal by reducing M activity in ground. The results support a dynamic antagonistic relationship between M and P activity contributing to figure-ground perception as envisioned in Weisstein's model.
Collapse
|
11
|
Neuronavigated TMS of early visual cortex eliminates unconscious processing of chromatic stimuli. Neuropsychologia 2020; 136:107266. [DOI: 10.1016/j.neuropsychologia.2019.107266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
|
12
|
Kaestner M, Maloney RT, Wailes-Newson KH, Bloj M, Harris JM, Morland AB, Wade AR. Asymmetries between achromatic and chromatic extraction of 3D motion signals. Proc Natl Acad Sci U S A 2019; 116:13631-13640. [PMID: 31209058 PMCID: PMC6612918 DOI: 10.1073/pnas.1817202116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Motion in depth (MID) can be cued by high-resolution changes in binocular disparity over time (CD), and low-resolution interocular velocity differences (IOVD). Computational differences between these two mechanisms suggest that they may be implemented in visual pathways with different spatial and temporal resolutions. Here, we used fMRI to examine how achromatic and S-cone signals contribute to human MID perception. Both CD and IOVD stimuli evoked responses in a widespread network that included early visual areas, parts of the dorsal and ventral streams, and motion-selective area hMT+. Crucially, however, we measured an interaction between MID type and chromaticity. fMRI CD responses were largely driven by achromatic stimuli, but IOVD responses were better driven by isoluminant S-cone inputs. In our psychophysical experiments, when S-cone and achromatic stimuli were matched for perceived contrast, participants were equally sensitive to the MID in achromatic and S-cone IOVD stimuli. In comparison, they were relatively insensitive to S-cone CD. These findings provide evidence that MID mechanisms asymmetrically draw on information in precortical pathways. An early opponent motion signal optimally conveyed by the S-cone pathway may provide a substantial contribution to the IOVD mechanism.
Collapse
Affiliation(s)
- Milena Kaestner
- Department of Psychology, University of York, YO10 5DD York, United Kingdom;
- York Neuroimaging Centre, University of York, YO10 5DD York, United Kingdom
| | - Ryan T Maloney
- Department of Psychology, University of York, YO10 5DD York, United Kingdom
- York Neuroimaging Centre, University of York, YO10 5DD York, United Kingdom
| | - Kirstie H Wailes-Newson
- Department of Psychology, University of York, YO10 5DD York, United Kingdom
- York Neuroimaging Centre, University of York, YO10 5DD York, United Kingdom
| | - Marina Bloj
- School of Optometry and Vision Sciences, University of Bradford, BD7 1DP Bradford, United Kingdom
| | - Julie M Harris
- School of Psychology and Neuroscience, University of St. Andrews, KY16 9JP St. Andrews, United Kingdom
| | - Antony B Morland
- Department of Psychology, University of York, YO10 5DD York, United Kingdom
- York Neuroimaging Centre, University of York, YO10 5DD York, United Kingdom
- York Biomedical Research Institute, University of York, YO10 5DD York, United Kingdom
| | - Alex R Wade
- Department of Psychology, University of York, YO10 5DD York, United Kingdom
- York Neuroimaging Centre, University of York, YO10 5DD York, United Kingdom
- York Biomedical Research Institute, University of York, YO10 5DD York, United Kingdom
| |
Collapse
|
13
|
Ijekah R, Vanston JE, Crognale MA. Mechanisms contributing to increment threshold and decrement threshold spectral sensitivities. Vision Res 2019; 158:157-163. [PMID: 30885879 DOI: 10.1016/j.visres.2019.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 11/17/2022]
Abstract
The shape of the human spectral sensitivity function depends on how it is measured. In the increment threshold (IT) technique, sensitivity is typically measured as the inverse of threshold for detection of increments of monochromatic light presented for relatively long durations on achromatic pedestals. Spectral sensitivity functions derived from IT techniques have long been used to reveal contribution from opponent color channels. Although IT functions have been studied extensively, little attention has been given to functions derived from decrement thresholds (DT), partly due to technical challenges of producing appropriate stimuli. Comparison of IT and DT spectral sensitivities may be of interest because there are known asymmetries in the visual system between on- and off-pathways and between increment and decrement responses within these pathways. Consequently, spectral sensitivity functions obtained using DT measures may reveal a different complement of contributing mechanisms than those that produce IT functions. We report here that IT and DT derived spectral sensitivities were essentially identical over much of the visible spectrum. However, decrement sensitivity was slightly greater than increment sensitivity in the shorter wavelengths at modest light levels. This difference was not present at higher light levels, implicating rod pathways as a possible source of the difference. In sum, it appears that under conditions shown to reveal strong contribution from opponent mechanisms, decrement functions are either 1) determined by a similar complement of spectrally opponent mechanisms as those that define increment spectral sensitivities or 2) that the present conditions are insensitive to underlying asymmetries.
Collapse
|
14
|
Dore P, Dumani A, Wyatt G, Shepherd AJ. Links between global and local shape perception, coloured backgrounds, colour discrimination, and non-verbal IQ. Vision Res 2018. [PMID: 29530744 DOI: 10.1016/j.visres.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study explored associations between local and global shape perception on coloured backgrounds, colour discrimination, and non-verbal IQ (NVIQ). Five background colours were chosen for the local and global shape tasks that were tailored for the cone-opponent pathways early in the visual system (cardinal colour directions: L-M, loosely, reddish-greenish; and S-(L + M), or tritan colours, loosely, blueish-yellowish; where L, M and S refer to the long, middle and short wavelength sensitive cones). Participants also completed the Farnsworth-Munsell 100-hue test (FM100) to determine whether performance on the local and global shape tasks correlated with colour discrimination overall, or with performance on the L-M and tritan subsets of the FM100 test. Overall performance on the local and global shape tasks did correlate with scores on the FM100 tests, despite the colour of the background being irrelevant to the shape tasks. There were also significantly larger associations between scores for the L-M subset of the FM100 test, compared to the tritan subset, and accuracy on some of the shape tasks on the reddish, greenish and neutral backgrounds. Participants also completed the non-verbal components of the WAIS and the SPM+ version of Raven's progressive matrices, to determine whether performance on the FM100 test, and on the local and global shape tasks, correlated with NVIQ. FM100 scores correlated significantly with both WAIS and SPM+ scores. These results extend previous work that has indicated FM100 performance is not purely a measure of colour discrimination, but also involves aspects of each participant's NVIQ, such as the ability to attend to local and global aspects of the test, part-whole relationships, perceptual organisation and good visuomotor skills. Overall performance on the local and global shape tasks correlated only with the WAIS scores, not the SPM+. These results indicate that those aspects of NVIQ that engage spatial comprehension of local-global relationships and manual manipulation (WAIS), rather than more abstract reasoning (SPM+), are related to performance on the local and global shape tasks. Links are presented between various measures of NVIQ and performance on visual tasks, but they are currently seldom addressed in studies of either shape or colour perception. Further studies to explore these issues are recommended.
Collapse
Affiliation(s)
- Patricia Dore
- Department of Psychological Sciences, Birkbeck College, University of London, UK
| | - Ardian Dumani
- Department of Psychological Sciences, Birkbeck College, University of London, UK
| | - Geddes Wyatt
- Department of Psychological Sciences, Birkbeck College, University of London, UK
| | - Alex J Shepherd
- Department of Psychological Sciences, Birkbeck College, University of London, UK.
| |
Collapse
|
15
|
Bonfiglio L, Bocci T, Minichilli F, Crecchi A, Barloscio D, Spina DM, Rossi B, Sartucci F. Defective chromatic and achromatic visual pathways in developmental dyslexia: Cues for an integrated intervention programme. Restor Neurol Neurosci 2016; 35:11-24. [PMID: 27858722 DOI: 10.3233/rnn-160636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE As well as obtaining confirmation of the magnocellular system involvement in developmental dyslexia (DD); the aim was primarily to search for a possible involvement of the parvocellular system; and, furthermore, to complete the assessment of the visual chromatic axis by also analysing the koniocellular system. METHODS Visual evoked potentials (VEPs) in response to achromatic stimuli with low luminance contrast and low spatial frequency, and isoluminant red/green and blue/yellow stimuli with high spatial frequency were recorded in 10 dyslexic children and 10 age- and sex-matched, healthy subjects. RESULTS Dyslexic children showed delayed VEPs to both achromatic stimuli (magnocellular-dorsal stream) and isoluminant red/green and blue/yellow stimuli (parvocellular-ventral and koniocellular streams). To our knowledge, this is the first time that a dysfunction of colour vision has been brought to light in an objective way (i.e., by means of electrophysiological methods) in children with DD. CONCLUSION These results give rise to speculation concerning the need for a putative approach for promoting both learning how to read and/or improving existing reading skills of children with or at risk of DD. The working hypothesis would be to combine two integrated interventions in a single programme aimed at fostering the function of both the magnocellular and the parvocellular streams.
Collapse
Affiliation(s)
- Luca Bonfiglio
- Department of Translational Research on New Technologies in Medicine and Surgery, School of Physical Medicine and Rehabilitation, University of Pisa, Pisa, Italy
| | - Tommaso Bocci
- Department of Clinical and Experimental Medicine, Cisanello Neurology Unit, Pisa University Medical School, Pisa, Italy
| | - Fabrizio Minichilli
- Unit of Environmental Epidemiology, Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| | - Alessandra Crecchi
- Department of Translational Research on New Technologies in Medicine and Surgery, School of Physical Medicine and Rehabilitation, University of Pisa, Pisa, Italy
| | - Davide Barloscio
- Department of Clinical and Experimental Medicine, Cisanello Neurology Unit, Pisa University Medical School, Pisa, Italy
| | - Donata Maria Spina
- Children's Neuropsychiatric Medical Facility, Local Health Authority of Viareggio (USL 12), Lido di Camaiore (LU), Italy
| | - Bruno Rossi
- Department of Translational Research on New Technologies in Medicine and Surgery, School of Physical Medicine and Rehabilitation, University of Pisa, Pisa, Italy
| | - Ferdinando Sartucci
- Department of Clinical and Experimental Medicine, Cisanello Neurology Unit, Pisa University Medical School, Pisa, Italy
| |
Collapse
|
16
|
Abstract
Whether the visual brain uses a parallel or a serial, hierarchical, strategy to process visual signals, the end result appears to be that different attributes of the visual scene are perceived asynchronously--with colour leading form (orientation) by 40 ms and direction of motion by about 80 ms. Whatever the neural root of this asynchrony, it creates a problem that has not been properly addressed, namely how visual attributes that are perceived asynchronously over brief time windows after stimulus onset are bound together in the longer term to give us a unified experience of the visual world, in which all attributes are apparently seen in perfect registration. In this review, I suggest that there is no central neural clock in the (visual) brain that synchronizes the activity of different processing systems. More likely, activity in each of the parallel processing-perceptual systems of the visual brain is reset independently, making of the brain a massively asynchronous organ, just like the new generation of more efficient computers promise to be. Given the asynchronous operations of the brain, it is likely that the results of activities in the different processing-perceptual systems are not bound by physiological interactions between cells in the specialized visual areas, but post-perceptually, outside the visual brain.
Collapse
Affiliation(s)
- Semir Zeki
- Laboratory of Neurobiology, University College London, London WC1E 6BT, UK
| |
Collapse
|
17
|
FitzGibbon T, Eriköz B, Grünert U, Martin PR. Analysis of the lateral geniculate nucleus in dichromatic and trichromatic marmosets. J Comp Neurol 2015; 523:1948-66. [DOI: 10.1002/cne.23772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Thomas FitzGibbon
- School of Medical Sciences, University of Sydney; Sydney NSW 2006 Australia
| | - Bahar Eriköz
- Department of Optometry and Vision Sciences; University of Melbourne; Vic. 3053 Australia
| | - Ulrike Grünert
- School of Medical Sciences, University of Sydney; Sydney NSW 2006 Australia
- Save Sight Institute, University of Sydney; NSW 2000 Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney; 2000 Australia
| | - Paul R. Martin
- School of Medical Sciences, University of Sydney; Sydney NSW 2006 Australia
- Save Sight Institute, University of Sydney; NSW 2000 Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney; 2000 Australia
| |
Collapse
|
18
|
Abstract
Area V5 of the visual brain, first identified anatomically in 1969 as a separate visual area, is critical for the perception of visual motion. As one of the most intensively studied parts of the visual brain, it has yielded many insights into how the visual brain operates. Among these are: the diversity of signals that determine the functional capacities of a visual area; the relationship between single cell activity in a specialized visual area and perception of, and preference for, attributes of a visual stimulus; the multiple asynchronous inputs into, and outputs from, an area as well as the multiple operations that it undertakes asynchronously; the relationship between activity at given, specialized, areas of the visual brain and conscious awareness; and the mechanisms used to “bind” signals from one area with those from another, with a different specialization, to give us our unitary perception of the visual world. Hence V5 is, in a sense, a microcosm of the visual world and its study gives important insights into how the whole visual brain is organized—anatomically, functionally and perceptually.
Collapse
Affiliation(s)
- Semir Zeki
- Wellcome Laboratory of Neurobiology, Cell and Developmental Biology, University College London London, UK
| |
Collapse
|
19
|
Wang W, Shevell SK. Do S cones contribute to color-motion feature binding? JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2014; 31:A60-A64. [PMID: 24695203 DOI: 10.1364/josaa.31.000a60] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Wu et al. [Nature 429, 262 (2004)] describe a visual illusion in which color and motion are incorrectly bound: green dots moving downward and red dots moving upward are seen as green dots going up and red dots going down. The present study determined whether S cones contribute to color-motion feature-binding errors, in order to assess the neural representation of color at the level of binding. The specific experimental question is whether binding errors depend on S-cone responses from the objects perceived to have an illusory direction of motion. Alternatively, only L and M cones may determine the neural representation of color that regulates color-motion feature binding. In two experiments, the chromatic difference was manipulated between central objects, which induce color-motion binding errors, and peripheral objects, where color-motion binding errors occur. The chromaticity difference was varied along only the L/M-cone axis or only the S-cone axis. As in Wu et al. [Nature 429, 262 (2004)], color-motion binding was frequently observed in the periphery when there were no central versus peripheral chromatic differences. Further, the results showed that the frequency of color-motion binding errors in the periphery depended on the difference in S-cone excitation between center and periphery, thereby demonstrating that the neural representation of color at the level of feature binding depends on signals from not only L and M cones but also S cones.
Collapse
|
20
|
Miyagishima KJ, Grünert U, Li W. Processing of S-cone signals in the inner plexiform layer of the mammalian retina. Vis Neurosci 2014; 31:153-63. [PMID: 24016424 PMCID: PMC12044801 DOI: 10.1017/s0952523813000308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Color information is encoded by two parallel pathways in the mammalian retina. One pathway compares signals from long- and middle-wavelength sensitive cones and generates red-green opponency. The other compares signals from short- and middle-/long-wavelength sensitive cones and generates blue-green (yellow) opponency. Whereas both pathways operate in trichromatic primates (including humans), the fundamental, phylogenetically ancient color mechanism shared among most mammals is blue-green opponency. In this review, we summarize the current understanding of how signals from short-wavelength sensitive cones are processed in the primate and nonprimate mammalian retina, with a focus on the inner plexiform layer where bipolar, amacrine, and ganglion cell processes interact to facilitate the generation of blue-green opponency.
Collapse
Affiliation(s)
| | - Ulrike Grünert
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Wei Li
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
21
|
Distribution and specificity of S-cone (“blue cone”) signals in subcortical visual pathways. Vis Neurosci 2014; 31:177-87. [DOI: 10.1017/s0952523813000631] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractWe review here the distribution of S-cone signals and properties of S-cone recipient receptive fields in subcortical pathways. Nearly everything we know about S-cone signals in the subcortical visual system comes from the study of visual systems in cats and primates (monkeys); in this review, we concentrate on results from macaque and marmoset monkeys. We discuss segregation of S-cone recipient (blue-on and blue-off) receptive fields in the dorsal lateral geniculate nucleus and describe their receptive field properties. We treat in some detail the question of detecting weak S-cone signals as an introduction for newcomers to the field. Finally, we briefly consider the question on how S-cone signals are distributed among nongeniculate targets.
Collapse
|
22
|
Pomerleau VJ, Fortier-Gauthier U, Corriveau I, Dell'Acqua R, Jolicœur P. Colour-specific differences in attentional deployment for equiluminant pop-out colours: evidence from lateralised potentials. Int J Psychophysiol 2013; 91:194-205. [PMID: 24188915 DOI: 10.1016/j.ijpsycho.2013.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 10/20/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Abstract
We investigated how target colour affected behavioural and electrophysiological results in a visual search task. Perceptual and attentional mechanisms were tracked using the N2pc component of the event-related potential and other lateralised components. Four colours (red, green, blue, or yellow) were calibrated for each participant for luminance through heterochromatic flicker photometry and equated to the luminance of grey distracters. Each visual display contained 10 circles, 1 colored and 9 grey, each of which contained an oriented line segment. The task required deploying attention to the colored circle, which was either in the left or right visual hemifield. Three lateralised ERP components relative to the side of the lateral coloured circle were examined: a posterior contralateral positivity (Ppc) prior to N2pc, the N2pc, reflecting the deployment of visual spatial attention, and a temporal and contralateral positivity (Ptc) following N2pc. Red or blue stimuli, as compared to green or yellow, had an earlier N2pc. Both the Ppc and Ptc had higher amplitudes to red stimuli, suggesting particular selectivity for red. The results suggest that attention may be deployed to red and blue more quickly than to other colours and suggests special caution when designing ERP experiments involving stimuli in different colours, even when all colours are equiluminant.
Collapse
|
23
|
Abstract
Explanations for color phenomena are often sought in the retina, lateral geniculate nucleus, and V1, yet it is becoming increasingly clear that a complete account will take us further along the visual-processing pathway. Working out which areas are involved is not trivial. Responses to S-cone activation are often assumed to indicate that an area or neuron is involved in color perception. However, work tracing S-cone signals into extrastriate cortex has challenged this assumption: S-cone responses have been found in brain regions, such as the middle temporal (MT) motion area, not thought to play a major role in color perception. Here, we review the processing of S-cone signals across cortex and present original data on S-cone responses measured with fMRI in alert macaque, focusing on one area in which S-cone signals seem likely to contribute to color (V4/posterior inferior temporal cortex) and on one area in which S signals are unlikely to play a role in color (MT). We advance a hypothesis that the S-cone signals in color-computing areas are required to achieve a balanced neural representation of perceptual color space, whereas those in noncolor-areas provide a cue to illumination (not luminance) and confer sensitivity to the chromatic contrast generated by natural daylight (shadows, illuminated by ambient sky, surrounded by direct sunlight). This sensitivity would facilitate the extraction of shape-from-shadow signals to benefit global scene analysis and motion perception.
Collapse
|
24
|
Veilleux CC, Jacobs RL, Cummings ME, Louis EE, Bolnick DA. Opsin Genes and Visual Ecology in a Nocturnal Folivorous Lemur. INT J PRIMATOL 2013. [DOI: 10.1007/s10764-013-9708-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Abstract
The short-wavelength-sensitive (S) cones play an important role in color vision of primates, and may also contribute to the coding of other visual features, such as luminance and motion. The color signals carried by the S cones and other cone types are largely separated in the subcortical visual pathway. Studies on nonhuman primates or humans have suggested that these signals are combined in the striate cortex (V1) following a substantial amplification of the S-cone signals in the same area. In addition to reviewing these studies, this review describes the circuitry in V1 that may underlie the processing of the S-cone signals and the dynamics of this processing. It also relates the interaction between various cone signals in V1 to the results of some psychophysical and physiological studies on color perception, which leads to a discussion of a previous model, in which color perception is produced by a multistage processing of the cone signals. Finally, I discuss the processing of the S-cone signals in the extrastriate area V2.
Collapse
|
26
|
Nakano T, Higashida N, Kitazawa S. Facilitation of face recognition through the retino-tectal pathway. Neuropsychologia 2013; 51:2043-9. [DOI: 10.1016/j.neuropsychologia.2013.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/14/2013] [Accepted: 06/16/2013] [Indexed: 01/21/2023]
|
27
|
Veilleux CC, Louis EE, Bolnick DA. Nocturnal light environments influence color vision and signatures of selection on the OPN1SW opsin gene in nocturnal lemurs. Mol Biol Evol 2013; 30:1420-37. [PMID: 23519316 DOI: 10.1093/molbev/mst058] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although loss of short-wavelength-sensitive (SWS) cones and dichromatic color vision in mammals has traditionally been linked to a nocturnal lifestyle, recent studies have identified variation in selective pressure for the maintenance of the OPN1SW opsin gene (and thus, potentially dichromacy) among nocturnal mammalian lineages. These studies hypothesize that purifying selection to retain SWS cones may be associated with a selective advantage for nocturnal color vision under certain ecological conditions. In this study, we explore the effect of nocturnal light environment on OPN1SW opsin gene evolution in a diverse sample of nocturnal lemurs (106 individuals, 19 species, and 5 genera). Using both phylogenetic and population genetic approaches, we test whether species from closed canopy rainforests, which are impoverished in short-wavelength light, have experienced relaxed selection compared with species from open canopy forests. We identify clear signatures of differential selection on OPN1SW by habitat type. Our results suggest that open canopy species generally experience strong purifying selection to maintain SWS cones. In contrast, closed canopy species experience weaker purifying selection or a relaxation of selection on OPN1SW. We also found evidence of nonfunctional OPN1SW genes in all Phaner species and in Cheirogaleus medius, implying at least three independent losses of SWS cones in cheirogaleids. Our results suggest that the evolution of color vision in nocturnal lemurs has been influenced by nocturnal light environment.
Collapse
|
28
|
Lee BB. Visual pathways and psychophysical channels in the primate. J Physiol 2011; 589:41-7. [PMID: 20724364 PMCID: PMC3039258 DOI: 10.1113/jphysiol.2010.192658] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/16/2010] [Indexed: 11/08/2022] Open
Abstract
The main cell systems of the retina that provide input to the striate cortex are now well described, although certain aspects of their anatomy and physiology remain contentious. Under simple stimulus conditions and in a threshold context psychophysical performance can often be assigned to one or other of these systems, and an identification of psychophysical channels with afferent pathways is justifiable. However, results from psychophysical studies using more complex stimulus conditions are more difficult to relate to 'front end' channels, and it is more difficult to separate the physiological contributions of afferent pathways from those of cortical mechanisms, in particular the separation of dorsal and ventral streams.
Collapse
Affiliation(s)
- Barry B Lee
- SUNY Optometry, 33 W. 42nd St, New York, NY 10036, USA.
| |
Collapse
|
29
|
Abstract
The general principles of retinal organization are now well known. It may seem surprising that retinal organization in the primate, which has a complex visual behavioral repertoire, appears relatively simple. In this review, we primarily consider retinal structure and function in primate species. Photoreceptor distribution and connectivity are considered as are connectivity in the outer and inner retina. One key issue is the specificity of retinal connections; we suggest that the retina shows connectional specificity but this is seldom complete, and we consider here the functional consequences of imprecise wiring. Finally, we consider how retinal systems can be linked to psychophysical descriptions of different channels, chromatic and luminance, which are proposed to exist in the primate visual system.
Collapse
Affiliation(s)
- Barry B Lee
- SUNY College of Optometry, New York 10036, USA.
| | | | | |
Collapse
|
30
|
Field GD, Gauthier JL, Sher A, Greschner M, Machado T, Jepson LH, Shlens J, Gunning DE, Mathieson K, Dabrowski W, Paninski L, Litke AM, Chichilnisky E. Functional connectivity in the retina at the resolution of photoreceptors. Nature 2010; 467:673-7. [PMID: 20930838 PMCID: PMC2953734 DOI: 10.1038/nature09424] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 08/11/2010] [Indexed: 11/09/2022]
Abstract
To understand a neural circuit requires knowledge of its connectivity. Here we report measurements of functional connectivity between the input and ouput layers of the macaque retina at single-cell resolution and the implications of these for colour vision. Multi-electrode technology was used to record simultaneously from complete populations of the retinal ganglion cell types (midget, parasol and small bistratified) that transmit high-resolution visual signals to the brain. Fine-grained visual stimulation was used to identify the location, type and strength of the functional input of each cone photoreceptor to each ganglion cell. The populations of ON and OFF midget and parasol cells each sampled the complete population of long- and middle-wavelength-sensitive cones. However, only OFF midget cells frequently received strong input from short-wavelength-sensitive cones. ON and OFF midget cells showed a small non-random tendency to selectively sample from either long- or middle-wavelength-sensitive cones to a degree not explained by clumping in the cone mosaic. These measurements reveal computations in a neural circuit at the elementary resolution of individual neurons.
Collapse
Affiliation(s)
- Greg D. Field
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Jeffrey L. Gauthier
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA
| | - Martin Greschner
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Timothy Machado
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Lauren H. Jepson
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Jonathon Shlens
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | | | - Keith Mathieson
- Department of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - Wladyslaw Dabrowski
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 23 30-059, Krakow, Poland
| | - Liam Paninski
- Department of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, NY
| | - Alan M. Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA
| | - E.J. Chichilnisky
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| |
Collapse
|
31
|
Greschner M, Shlens J, Bakolitsa C, Field GD, Gauthier JL, Jepson LH, Sher A, Litke AM, Chichilnisky EJ. Correlated firing among major ganglion cell types in primate retina. J Physiol 2010; 589:75-86. [PMID: 20921200 DOI: 10.1113/jphysiol.2010.193888] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Retinal ganglion cells exhibit substantial correlated firing: a tendency to fire nearly synchronously at rates different from those expected by chance. These correlations suggest that network interactions significantly shape the visual signal transmitted from the eye to the brain. This study describes the degree and structure of correlated firing among the major ganglion cell types in primate retina. Correlated firing among ON and OFF parasol, ON and OFF midget, and small bistratified cells, which together constitute roughly 75% of the input to higher visual areas, was studied using large-scale multi-electrode recordings. Correlated firing in the presence of constant, spatially uniform illumination exhibited characteristic strength, time course and polarity within and across cell types. Pairs of nearby cells with the same light response polarity were positively correlated; cells with the opposite polarity were negatively correlated. The strength of correlated firing declined systematically with distance for each cell type, in proportion to the degree of receptive field overlap. The pattern of correlated firing across cell types was similar at photopic and scotopic light levels, although additional slow correlations were present at scotopic light levels. Similar results were also observed in two other retinal ganglion cell types. Most of these observations are consistent with the hypothesis that shared noise from photoreceptors is the dominant cause of correlated firing. Surprisingly, small bistratified cells, which receive ON input from S cones, fired synchronously with ON parasol and midget cells, which receive ON input primarily from L and M cones. Collectively, these results provide an overview of correlated firing across cell types in the primate retina, and constraints on the underlying mechanisms.
Collapse
Affiliation(s)
- Martin Greschner
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Johnson EN, Van Hooser SD, Fitzpatrick D. The representation of S-cone signals in primary visual cortex. J Neurosci 2010; 30:10337-50. [PMID: 20685977 PMCID: PMC2933431 DOI: 10.1523/jneurosci.1428-10.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 11/21/2022] Open
Abstract
Recent studies of middle-wavelength-sensitive and long-wavelength-sensitive cone responses in primate primary visual cortex (V1) have challenged the view that color and form are represented by distinct neuronal populations. Individual V1 neurons exhibit hallmarks of both color and form processing (cone opponency and orientation selectivity), and many display cone interactions that do not fit classic chromatic/achromatic classifications. Comparable analysis of short-wavelength-sensitive (S) cone responses has yet to be achieved and is of considerable interest because S-cones are the basis for the primordial mammalian chromatic pathway. Using intrinsic and two-photon imaging techniques in the tree shrew, we assessed the properties of V1 layer 2/3 neurons responsive to S-cone stimulation. These responses were orientation selective, exhibited distinct spatiotemporal properties, and reflected integration of S-cone inputs via opponent, summing, and intermediate configurations. Our observations support a common framework for the representation of cone signals in V1, one that endows orientation-selective neurons with a range of chromatic, achromatic, and mixed response properties.
Collapse
Affiliation(s)
- Elizabeth N Johnson
- Duke Institute for Brain Sciences, Duke University and Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
33
|
Vialatte FB, Maurice M, Dauwels J, Cichocki A. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol 2009; 90:418-38. [PMID: 19963032 DOI: 10.1016/j.pneurobio.2009.11.005] [Citation(s) in RCA: 584] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 11/26/2009] [Accepted: 11/30/2009] [Indexed: 11/26/2022]
Abstract
After 40 years of investigation, steady-state visually evoked potentials (SSVEPs) have been shown to be useful for many paradigms in cognitive (visual attention, binocular rivalry, working memory, and brain rhythms) and clinical neuroscience (aging, neurodegenerative disorders, schizophrenia, ophthalmic pathologies, migraine, autism, depression, anxiety, stress, and epilepsy). Recently, in engineering, SSVEPs found a novel application for SSVEP-driven brain-computer interface (BCI) systems. Although some SSVEP properties are well documented, many questions are still hotly debated. We provide an overview of recent SSVEP studies in neuroscience (using implanted and scalp EEG, fMRI, or PET), with the perspective of modern theories about the visual pathway. We investigate the steady-state evoked activity, its properties, and the mechanisms behind SSVEP generation. Next, we describe the SSVEP-BCI paradigm and review recently developed SSVEP-based BCI systems. Lastly, we outline future research directions related to basic and applied aspects of SSVEPs.
Collapse
Affiliation(s)
- François-Benoît Vialatte
- Riken BSI, Laboratory for Advanced Brain Signal Processing, 2-1 Hirosawa, Wako-Shi, Saitama-Ken 351-0128, Japan.
| | | | | | | |
Collapse
|
34
|
Lee RJ, Mollon JD, Zaidi Q, Smithson HE. Latency characteristics of the short-wavelength-sensitive cones and their associated pathways. J Vis 2009; 9:5.1-17. [PMID: 20053096 DOI: 10.1167/9.12.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 10/09/2009] [Indexed: 11/24/2022] Open
Abstract
There are many distinct types of retinal ganglion and LGN cells that have opponent cone inputs and which may carry chromatic information. Of interest are the asymmetries in those LGN cells that carry S-cone signals: in S-ON cells, S+ signals are opposed by (L + M) whereas, in many S-OFF cells, L+ signals are opposed by (S + M), giving -S + L - M (C. Tailby, S. G. Solomon, & P. Lennie, 2008). However, the S-opponent pathway is traditionally modeled as +/-[S - (L + M)]. A phase lag of the S-cone signal has been inferred from psychophysical thresholds for discriminating combinations of simultaneous sinusoidal modulations along +/-[L - M] and +/-[S - (L + M)] directions (C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, & L. Spillmann, 1991). We extend this experiment, measuring discrimination thresholds as a function of the phase delay between pairs of orthogonal component modulations. When one of the components isolates the tritan axis, there are phase delays at which discrimination is impossible; when neither component is aligned with the tritan axis, discrimination is possible at all delays. The data imply that the S-cone signal is delayed by approximately 12 ms relative to (L - M) responses. Given that post-receptoral mechanisms show diverse tuning around the tritan axis, we suggest that the delay arises before the S-opponent channels are constructed, possibly in the S-cones themselves.
Collapse
Affiliation(s)
- R J Lee
- Department of Psychology, Durham University, UK.
| | | | | | | |
Collapse
|
35
|
Skottun BC, Skoyles JR. Visual Search: Magno- and Parvocellular Systems or Color and Luminance Processes? Int J Neurosci 2009; 118:1259-67. [DOI: 10.1080/00207450701239434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Yin L, Smith RG, Sterling P, Brainard DH. Physiology and morphology of color-opponent ganglion cells in a retina expressing a dual gradient of S and M opsins. J Neurosci 2009; 29:2706-24. [PMID: 19261865 PMCID: PMC2677103 DOI: 10.1523/jneurosci.5471-08.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/06/2009] [Accepted: 01/15/2009] [Indexed: 11/21/2022] Open
Abstract
Most mammals are dichromats, having short-wavelength-sensitive (S) and middle-wavelength-sensitive (M) cones. Smaller terrestrial species commonly express a dual gradient in opsins, with M opsin concentrated superiorly and declining inferiorly, and vice-versa for S opsin. Some ganglion cells in these retinas combine S- and M-cone inputs antagonistically, but no direct evidence links this physiological opponency with morphology; nor is it known whether opponency varies with the opsin gradients. By recording from >3000 ganglion cells in guinea pig, we identified small numbers of color-opponent cells. Chromatic properties were characterized by responses to monochromatic spots and/or spots produced by mixtures of two primary lights. Superior retina contained cells with strong S+/M- and M+/S- opponency, whereas inferior retina contained cells with weak opponency. In superior retina, the opponent cells had well-balanced M and S weights, while in inferior retina the weights were unbalanced, with the M weights being much weaker. The M and S components of opponent cell receptive fields had approximately the same diameter. Opponent cells injected with Lucifer yellow restricted their dendrites to the ON stratum of the inner plexiform layer and provided sufficient membrane area (approximately 2.1 x 10(4) microm(2)) to collect approximately 3.9 x 10(3) bipolar synapses. Two bistratified cells studied were nonopponent. The apparent decline in S/M opponency from superior to inferior retina is consistent with the dual gradient and a model where photoreceptor signals in both superior and inferior retina are processed by the same postreceptoral circuitry.
Collapse
Affiliation(s)
- Lu Yin
- Departments of Neuroscience and
| | | | | | - David H. Brainard
- Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
37
|
Hashemi-Nezhad M, Blessing EM, Dreher B, Martin PR. Segregation of short-wavelength sensitive (“blue”) cone signals among neurons in the lateral geniculate nucleus and striate cortex of marmosets. Vision Res 2008; 48:2604-14. [DOI: 10.1016/j.visres.2008.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/25/2022]
|
38
|
Tailby C, Szmajda BA, Buzás P, Lee BB, Martin PR. Transmission of blue (S) cone signals through the primate lateral geniculate nucleus. J Physiol 2008; 586:5947-67. [PMID: 18955378 DOI: 10.1113/jphysiol.2008.161893] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study concerns the transmission of short-wavelength-sensitive (S) cone signals through the primate dorsal lateral geniculate nucleus. The principal cell classes, magnocellular (MC) and parvocellular (PC), are traditionally segregated into on- and off-subtypes on the basis of the sign of their response to luminance variation. Cells dominated by input from S-cones ('blue-on and blue-off') are less frequently encountered and their properties are less well understood. Here we characterize the spatial and chromatic properties of a large sample of blue-on and blue-off neurons and contrast them with those of PC and MC neurons. The results confirm that blue-on and blue-off cells have larger receptive fields than PC and MC neurons at equivalent eccentricities. Relative to blue-on cells, blue-off cells are less sensitive to S-cone contrast, have larger receptive fields, and show more low-pass spatial frequency tuning. Thus, blue-on and blue-off neurons lack the functional symmetry characteristic of on- and off-subtypes in the MC and PC pathways. The majority of MC and PC cells received no detectible input from S-cones. Where present, input from S-cones tended to provide weak inhibition to PC cells. All cell types showed evidence of a suppressive extra-classical receptive field driven largely or exclusively by ML-cones. These data indicate that S-cone signals are isolated to supply the classical receptive field mechanisms of blue-on and blue-off cells in the LGN, and that the low spatial precision of S-cone vision has origins in both classical and extraclassical receptive field properties of subcortical pathways.
Collapse
Affiliation(s)
- C Tailby
- National Vision Research Institute of Australia, Corner of Keppel and Cardigan Streets, Carlton, Victoria 3053, Australia
| | | | | | | | | |
Collapse
|
39
|
Abstract
Neural models of retinal processing provide an important tool for analyzing retinal signals and their functional significance. However, it is here argued that in biological reality, retinal connectivity is unlikely to be as specific as ideal neural models might suggest. The retina is thought to provide functionally specific signals, but this specificity is unlikely to be anatomically complete. This is illustrated by examples of cone connectivity to macaque ganglion cells. For example, cells of the magnocellular pathway appear to avoid short-wavelength cone input, so that such input is negligible under normal conditions. However, there is anatomical, physiological, and psychophysical evidence that under special conditions, weak input may be revealed. Second, ideal models of how retinal information is centrally utilized have to take into account the biological reality of retinal signals. The stochastic nature of impulse trains modifies signal-to-noise ratio in unexpected ways. Also, non-linearities in cell responses make, for example, multiplexing of luminance and chromatic signals in the parvocellular pathway impracticable. The purpose of this analysis is to show than ideal neural models must confront an often more complex and nuanced physiological reality.
Collapse
Affiliation(s)
- Barry B Lee
- SUNY College of Optometry, New York, NY 10036, USA.
| |
Collapse
|
40
|
Anderson EJ, Husain M, Sumner P. Human intraparietal sulcus (IPS) and competition between exogenous and endogenous saccade plans. Neuroimage 2008; 40:838-851. [PMID: 18222708 DOI: 10.1016/j.neuroimage.2007.10.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 10/19/2007] [Accepted: 10/30/2007] [Indexed: 11/29/2022] Open
Abstract
How are stimulus-driven reflexes generated, and what controls their competition with voluntary action? The saccadic reflex to look towards an abrupt visual onset (prosaccade) has been associated with the retinotectal and magnocellular pathways, which rapidly convey signals to the superior colliculus and cortical eye fields. Such stimulus-driven reflexes need to be suppressed when making an eye movement in the opposite direction (antisaccade), resulting in a cost in saccade latency. We compared the latencies of pro- and anti-saccades elicited by conventional luminance stimuli with those evoked by stimuli visible only to short-wave-sensitive cones (S cones) embedded in dynamic luminance noise. Critically, the retinotectal and magnocellular pathways are functionally blind to such stimuli. Compared to luminance stimuli, antisaccade latency costs were significantly reduced for 'S-cone' stimuli. This behavioural interaction is consistent with reduced competition between reflexive and endogenous saccade plans when S-cone stimuli are employed, while other processes involved in making an antisaccade, such as changing preparatory set or generating an endogenous saccade, are predicted to be equivalent for each kind of stimulus. Using fMRI, we found that activity in the right intraparietal sulcus (IPS) mirrored the behavioural interaction in saccade latencies. Thus, the right IPS appears to index the degree of competition between exogenous and endogenous saccade plans, showing the activity pattern predicted for an area involved in suppressing the saccade reflex. Furthermore, signals recorded from the superior colliculus showed the reverse pattern of responses, consistent with a direct inhibitory influence of IPS on SC.
Collapse
Affiliation(s)
- Elaine J Anderson
- Institute of Cognitive Neuroscience, Alexandra House, 17 Queen Square, London WC1N 3AR, UK; Department of Clinical Neuroscience, Imperial College London, Charing Cross Campus, Fulham Palace Road, London W6 8RP, UK.
| | - Masud Husain
- Institute of Cognitive Neuroscience, Alexandra House, 17 Queen Square, London WC1N 3AR, UK; Department of Clinical Neuroscience, Imperial College London, Charing Cross Campus, Fulham Palace Road, London W6 8RP, UK
| | - Petroc Sumner
- Department of Clinical Neuroscience, Imperial College London, Charing Cross Campus, Fulham Palace Road, London W6 8RP, UK; School of Psychology, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
41
|
Schiller PH, Slocum WM, Weiner VS. How the parallel channels of the retina contribute to depth processing. Eur J Neurosci 2007; 26:1307-21. [PMID: 17767508 DOI: 10.1111/j.1460-9568.2007.05740.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Reconstructing the third dimension in the visual scene from the two dimensional images that impinge on the retinal surface is one of the major tasks of the visual system. We have devised a visual display that makes it possible to study stereoscopic depth cues and motion parallax cues separately or in concert using rhesus macaques. By varying the spatial frequency of the display and its luminance and chrominance, it is possible to selectively activate channels that originate in the primate retina. Our results show that (i) the parasol system plays a central role in processing motion parallax cues; (ii) the midget system plays a central role in stereoscopic depth perception at high spatial frequencies, and (iii) red/green colour selective neurons can effectively process both cues but blue/yellow neurons cannot do so.
Collapse
Affiliation(s)
- Peter H Schiller
- Massachusetts Institute of Technology, 77 Massachusetts Ave, 46-6041, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
42
|
Lee SCS, Grünert U. Connections of diffuse bipolar cells in primate retina are biased against S-cones. J Comp Neurol 2007; 502:126-40. [PMID: 17335043 DOI: 10.1002/cne.21284] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In mammalian retina, each diffuse bipolar type stratifies in a distinct layer of the inner plexiform layer. Thus, different types of bipolar cells provide output to distinct visual pathways. Here, the question of whether diffuse bipolar cell types differ with respect to their contacts with short wavelength-sensitive (S-) cones was investigated in the retinas of a New World monkey, Callithrix jacchus, and an Old World monkey, Macaca fascicularis. Subpopulations of OFF bipolar cells were labeled with antibodies to the glutamate transporter Glt-1 and ON bipolar cells were labeled with antibodies to the alpha subunit of the Go protein (Goalpha). Two types of diffuse ON bipolar cells, DB4 and DB6, were identified with antibodies to protein kinase Calpha and CD15, respectively. Cone pedicles were labeled either with peanut agglutinin coupled to fluorescein or with antibodies to the ribbon protein, C-terminus binding protein 2. We found that immunoreactivity for Glt-1 (OFF bipolar cells) is reduced at S-cones in comparison to medium/long wavelength-sensitive (M/L-) cones. Immunoreactivity for Goalpha (ON bipolar cells) is comparable at all cone types. Nearly all M/L-cone pedicles contact the diffuse ON bipolar types DB4 and DB6, but only between 60% and 75% of the S-cone pedicles make contact. Furthermore, the number of dendritic tips of DB4 and DB6 cells at S-cone pedicles is lower than that at M/L-cone pedicles. These results suggest that there is a bias in the S-cone connectivity of diffuse bipolar cells.
Collapse
Affiliation(s)
- Sammy C S Lee
- National Vision Research Institute of Australia, Carlton, VIC 3053, Australia
| | | |
Collapse
|
43
|
Abstract
Some fundamental principles of colour vision, deduced from perceptual studies, have been understood for a long time. Physiological studies have confirmed the existence of three classes of cone photoreceptors, and of colour-opponent neurons that compare the signals from cones, but modern work has drawn attention to unexpected complexities of early organization: the proportions of cones of different types vary widely among individuals, without great effect on colour vision; the arrangement of different types of cones in the mosaic seems to be random, making it hard to optimize the connections to colour-opponent mechanisms; and new forms of colour-opponent mechanisms have recently been discovered. At a higher level, in the primary visual cortex, recent studies have revealed a simpler organization than had earlier been supposed, and in some respects have made it easier to reconcile physiological and perceptual findings.
Collapse
Affiliation(s)
- Samuel G Solomon
- Disciplines of Physiology, Anatomy and Histology, School of Medical Sciences and Bosch Institute, Anderson-Stuart Building F13, The University of Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
44
|
Abstract
It has been suggested that yellow filters may increase magnocellular responsivity. This suggestion was, in large part, based on the assumption that the S-cones inhibit the magnocellular system. However, the evidence invoked to justify this assumption is only indirect. A previously reported direct electrophysiological investigation of this issue has found that S-cone input to the magnocellular system actually sum with L-and M-cone inputs. Therefore, the notion that yellow filters enhance magnocellular responses by reducing inhibition from S-cones cannot be maintained.
Collapse
|
45
|
Ruppertsberg AI, Wuerger SM, Bertamini M. When S-cones contribute to chromatic global motion processing. Vis Neurosci 2007; 24:1-8. [PMID: 17430604 DOI: 10.1017/s0952523807230081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 04/25/2006] [Indexed: 11/07/2022]
Abstract
There is common consensus now that color-defined motion can be perceived by the human visual system. For global motion integration tasks based on isoluminant random dot kinematograms conflicting evidence exists, whether observers can (Ruppertsberg et al., 2003) or cannot (Bilodeau & Faubert, 1999) extract a common motion direction for stimuli modulated along the isoluminant red-green axis. Here we report conditions, in which S-cones contribute to chromatic global motion processing. When the display included extra-foveal regions, the individual elements were large (∼0.3°) and the displacement was large (∼1°), stimuli modulated along the yellowish-violet axis proved to be effective in a global motion task. The color contrast thresholds for detection for both color axes were well below the contrasts required for global motion integration, and therefore the discrimination-to-detection ratio was >1. We conclude that there is significant S-cone input to chromatic global motion processing and the extraction of global motion is not mediated by the same mechanism as simple detection. Whether the koniocellular or the magnocellular pathway is involved in transmitting S-cone signals is a topic of current debate (Chatterjee & Callaway, 2002).
Collapse
Affiliation(s)
- Alexa I Ruppertsberg
- Department of Psychology, University of Liverpool, Eleanor Rathbone Building, Liverpool, United Kingdom.
| | | | | |
Collapse
|
46
|
Horwitz GD, Chichilnisky EJ, Albright TD. Cone Inputs to Simple and Complex Cells in V1 of Awake Macaque. J Neurophysiol 2007; 97:3070-81. [PMID: 17303812 DOI: 10.1152/jn.00965.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rules by which V1 neurons combine signals originating in the cone photoreceptors are poorly understood. We measured cone inputs to V1 neurons in awake, fixating monkeys with white-noise analysis techniques that reveal properties of light responses not revealed by purely linear models used in previous studies. Simple cells were studied by spike-triggered averaging that is robust to static nonlinearities in spike generation. This analysis revealed, among heterogeneously tuned neurons, two relatively discrete categories: one with opponent L- and M-cone weights and another with nonopponent cone weights. Complex cells were studied by spike-triggered covariance, which identifies features in the stimulus sequence that trigger spikes in neurons with receptive fields containing multiple linear subunits that combine nonlinearly. All complex cells responded to nonopponent stimulus modulations. Although some complex cells responded to cone-opponent stimulus modulations too, none exhibited the pure opponent sensitivity observed in many simple cells. These results extend the findings on distinctions between simple and complex cell chromatic tuning observed in previous studies in anesthetized monkeys.
Collapse
Affiliation(s)
- Gregory D Horwitz
- Vision Center Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA.
| | | | | |
Collapse
|
47
|
Calkins DJ, Sterling P. Microcircuitry for two types of achromatic ganglion cell in primate fovea. J Neurosci 2007; 27:2646-53. [PMID: 17344402 PMCID: PMC6672494 DOI: 10.1523/jneurosci.4739-06.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 01/18/2007] [Accepted: 02/06/2007] [Indexed: 11/21/2022] Open
Abstract
Synaptic circuits in primate fovea have been quantified for midget/parvocellular ganglion cells. Here, based on partial reconstructions from serial electron micrographs, we quantify synaptic circuits for two other types of ganglion cell: the familiar parasol/magnocellular cell and a smaller type, termed "garland." The excitatory circuits both derive from two types of OFF diffuse cone bipolar cell, DB3 and DB2, which collected unselectively from at least 6 +/- 1 cones, including the S type. Cone contacts to DB3 dendrites were usually located between neighboring triads, whereas half of the cone contacts to DB2 were triad associated. Ribbon outputs were as follows: DB3, 69 +/- 5; DB2, 48 +/- 4. A complete parasol cell (30 microm dendritic field diameter) would collect from approximately 50 cones via approximately 120 bipolar and approximately 85 amacrine contacts; a complete garland cell (25 microm dendritic field) would collect from approximately 40 cones via approximately 75 bipolar and approximately 145 amacrine contacts. The bipolar types contributed differently: the parasol cell received most contacts (60%) from DB3, whereas the garland cell received most contacts (67%) from DB2. We hypothesize that DB3 is a transient bipolar cell and that DB2 is sustained. This would be consistent with their relative inputs to the brisk-transient (parasol) ganglion cell. The garland cell, with its high proportion of DB2 inputs plus its high proportion of amacrine synapses (70%) and dense mosaic, might correspond to the local-edge cell in nonprimate retinas, which serves finer acuity at low temporal frequencies. The convergence of S cones onto both types could contribute S-cone input for cortical areas primary visual cortex and the middle temporal area.
Collapse
Affiliation(s)
- David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
48
|
Michna ML, Yoshizawa T, Mullen KT. S-cone contributions to linear and non-linear motion processing. Vision Res 2007; 47:1042-54. [PMID: 17343890 DOI: 10.1016/j.visres.2007.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/21/2006] [Accepted: 01/25/2007] [Indexed: 11/30/2022]
Abstract
We investigated the characteristics of mechanisms mediating motion discrimination of S-cone isolating stimuli and found a double dissociation between the effects of luminance noise, which masks linear but not non-linear motion, and chromatic noise, which masks non-linear but not linear motion. We conclude that S-cones contribute to motion via two different pathways: a non-linear motion mechanism via a chromatic pathway and a linear motion mechanism via a luminance pathway. Additionally, motion discrimination and detection thresholds for drifting, S-cone isolating Gabors are unaffected by luminance noise, indicating that grating motion is mediated via chromatic mechanisms and based on higher-order motion processing.
Collapse
Affiliation(s)
- Magda L Michna
- Department of Ophthalmology, McGill Vision Research, McGill University, Montreal, Que., Canada H3A 1A1.
| | | | | |
Collapse
|
49
|
Chase C, Dougherty RF, Ray N, Fowler S, Stein J. L/M Speed-Matching Ratio Predicts Reading in Children. Optom Vis Sci 2007; 84:229-36. [PMID: 17435537 DOI: 10.1097/opx.0b013e31803399df] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Many behavioral studies have found impaired perception of dynamic visual stimuli in dyslexia and several neuroimaging studies have found reduced activation of the human motion area MT+ in dyslexia. These results are often interpreted as a magnocellular (MC) deficit in dyslexia. It has also been claimed that colored filters can help dyslexics to read. One defining feature of the MC-pathway is a greater weight for L-cone input than M-cone input, and at most very weak S-cone input. We measured the subjective speed matches between L-, M-, and S-cone isolating stimuli in good and poor readers. METHODS Subjects performed a speed-matching task with drifting cone-isolating stimuli to find the point of subjective equality between two drifting patterns. Such a task is known to activate cortical area MT+, presumably via the MC-pathway. RESULTS L- to M-cone speed-match ratios were negatively correlated with single-word (r=-0.46) and irregular-word reading (r=-0.56) but not with non-word reading. CONCLUSIONS Results suggest that relative L-cone sensitivity within the MC-pathway may limit orthographic reading performance.
Collapse
Affiliation(s)
- Chris Chase
- Department of Psychology, Claremont McKenna College, Claremont, California 91711, USA.
| | | | | | | | | |
Collapse
|
50
|
Mullen KT, Dumoulin SO, McMahon KL, de Zubicaray GI, Hess RF. Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation. Eur J Neurosci 2007; 25:491-502. [PMID: 17284191 DOI: 10.1111/j.1460-9568.2007.05302.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Our aim was to make a quantitative comparison of the response of the different visual cortical areas to selective stimulation of the two different cone-opponent pathways [long- and medium-wavelength (L/M)- and short-wavelength (S)-cone-opponent] and the achromatic pathway under equivalent conditions. The appropriate stimulus-contrast metric for the comparison of colour and achromatic sensitivity is unknown, however, and so a secondary aim was to investigate whether equivalent fMRI responses of each cortical area are predicted by stimulus contrast matched in multiples of detection threshold that approximately equates for visibility, or direct (cone) contrast matches in which psychophysical sensitivity is uncorrected. We found that the fMRI response across the two colour and achromatic pathways is not well predicted by threshold-scaled stimuli (perceptual visibility) but is better predicted by cone contrast, particularly for area V1. Our results show that the early visual areas (V1, V2, V3, VP and hV4) all have robust responses to colour. No area showed an overall colour preference, however, until anterior to V4 where we found a ventral occipital region that has a significant preference for chromatic stimuli, indicating a functional distinction from earlier areas. We found that all of these areas have a surprisingly strong response to S-cone stimuli, at least as great as the L/M response, suggesting a relative enhancement of the S-cone cortical signal. We also identified two areas (V3A and hMT+) with a significant preference for achromatic over chromatic stimuli, indicating a functional grouping into a dorsal pathway with a strong magnocellular input.
Collapse
Affiliation(s)
- Kathy T Mullen
- McGill Vision Research (H4.14), Department of Ophthalmology, McGill University, 687 Pine Ave. West, Montreal, Canada H3A 1A1.
| | | | | | | | | |
Collapse
|