1
|
Treviño CL, De la Vega-Beltrán JL, Nishigaki T, Felix R, Darszon A. Maitotoxin potently promotes Ca2+ influx in mouse spermatogenic cells and sperm, and induces the acrosome reaction. J Cell Physiol 2006; 206:449-56. [PMID: 16155908 DOI: 10.1002/jcp.20487] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Maitotoxin (MTX), a potent marine toxin, activates Ca2+ entry via nonselective cation channels in a wide variety of cells. The identity of the channels involved in MTX action remains unknown. In mammalian sperm, Ca2+ entry through store-operated channels regulates a number of physiological events including the acrosome reaction (AR). Here we report that MTX produced an increase in the intracellular concentration of Ca2+ ([Ca2+]i) in spermatogenic cells that depended on extracellular Ca2+. Ni2+ and SKF96365 diminished the MTX-activated Ca2+ uptake, at concentrations they inhibit store-operated channels, and in a similar manner as they inhibit the Ca2+ influx activated following depletion of intracellular stores by thapsigargin (Tpg). In addition, MTX significantly increased [Ca2+]i in single mature sperm and effectively induced the AR with a half-maximal concentration (ED50) of approximately 1.1 nM. Notably, SKF96365 similarly inhibited the MTX-induced increase in sperm [Ca2+]i and the AR triggered by the toxin, Tpg and zona pellucida. These results suggest that putative MTX-activated channels may be involved in the Ca2+ influx required for mouse sperm AR.
Collapse
Affiliation(s)
- Claudia L Treviño
- Department of Genetics of Development and Molecular Physiology, Institute of Biotechnology, UNAM, Cuernavaca, Mexico
| | | | | | | | | |
Collapse
|
2
|
Gregory RB, Sykiotis D, Barritt GJ. Evidence that store-operated Ca2+ channels are more effective than intracellular messenger-activated non-selective cation channels in refilling rat hepatocyte intracellular Ca2+ stores. Cell Calcium 2003; 34:241-51. [PMID: 12887971 DOI: 10.1016/s0143-4160(03)00106-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Liver cells possess store-operated Ca2+ channels (SOCs) with a high selectivity for Ca2+ compared with Na+, and several types of intracellular messenger-activated non-selective cation channels with a lower selectivity for Ca2+ (NSCCs). The main role of SOCs is thought to be in refilling depleted endoplasmic reticulum Ca2+ stores [Cell Calcium 7 (1986) 1]. NSCCs may be involved in refilling intracellular stores but are also thought to have other roles in regulating the cytoplasmic-free Ca2+ and Na+ concentrations. The ability of SOCs to refill the endoplasmic reticulum Ca2+ stores in hepatocytes has not previously been compared with that of NSCCs. The aim of the present studies was to compare the ability of SOCs and maitotoxin-activated NSCCs to refill the endoplasmic reticulum in rat hepatocytes. The experiments were performed using fura-2FF and fura-2 to monitor the free Ca2+ concentrations in the endoplasmic reticulum and cytoplasmic space, respectively, a Ca2+ add-back protocol, and 2-aminoethyl diphenylborate (2-APB) to inhibit Ca2+ inflow through SOCs. In cells treated with 2,5-di-t-butylhydroquinone (DBHQ) or vasopressin to deplete the endoplasmic reticulum Ca2+ stores, then washed to remove DBHQ or vasopressin, the addition of Ca2+ caused a substantial increase in the concentration of Ca2+ in the endoplasmic reticulum and cytoplasmic space due to the activation of SOCs. These increases were inhibited 80% by 2-APB, indicating that Ca2+ inflow is predominantly through SOCs. In the presence of 2-APB (to block SOCs), maitotoxin induced a substantial increase in [Ca2+](cyt), but only a modest and slower increase in [Ca2+](er). Under these conditions, Ca2+ inflow is predominantly through maitotoxin-activated NSCCs. It is concluded that SOCs are more effective than maitotoxin-activated NSCCs in refilling the endoplasmic reticulum Ca2+ stores. The previously developed concept of a specific role for SOCs in refilling the endoplasmic reticulum is consistent with the results reported here.
Collapse
Affiliation(s)
- R B Gregory
- Department of Medical Biochemistry, School of Medicine, Faculty of Health Sciences, Flinders University, G.P.O. Box 2100, South Australia 5001, Adelaide, Australia
| | | | | |
Collapse
|
3
|
Chen J, Barritt GJ. Evidence that TRPC1 (transient receptor potential canonical 1) forms a Ca(2+)-permeable channel linked to the regulation of cell volume in liver cells obtained using small interfering RNA targeted against TRPC1. Biochem J 2003; 373:327-36. [PMID: 12720547 PMCID: PMC1223516 DOI: 10.1042/bj20021904] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Revised: 04/07/2003] [Accepted: 04/29/2003] [Indexed: 11/17/2022]
Abstract
The TRPC1 (transient receptor potential canonical 1) protein, which is thought to encode a non-selective cation channel activated by store depletion and/or an intracellular messenger, is expressed in a number of non-excitable cells. However, the physiological functions of TRPC1 are not well understood. The aim of these studies was to investigate the function of TRPC1 in liver cells using small interfering RNA (siRNA) to ablate the TRPC1 protein. Treatment of H4-IIE liver cells with siRNA targeted against TRPC1 caused an approx. 50% decrease in expression of the human TRPC1 protein in cells transfected with cDNA encoding human TRPC1, and a 50% decrease in expression of the endogenous TRPC1 protein (assessed by Western blot and immunofluorescence). The decrease in endogenous TRPC1 protein in cells transfected with TRPC1 siRNA was associated with a greater increase in cell volume (compared with the increase observed in control cells) immediately after cells were placed in a hypotonic medium, and an enhanced regulatory cell volume decrease after exposure to hypotonic medium. Treatment with siRNA targeted against TRPC1 also led to a 25% inhibition of thapsigargin-stimulated Ca(2+) inflow, a 40% inhibition of ATP and maitotoxin-stimulated Ca(2+) inflow, and a 50% inhibition of maitotoxin-stimulated Mn(2+) inflow. The idea that, in liver cells, TRPC1 encodes a non-selective cation channel involved directly or indirectly in the regulation of cell volume is consistent with the results obtained.
Collapse
Affiliation(s)
- Jinglong Chen
- Department of Medical Biochemistry, School of Medicine, Faculty of Health Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | | |
Collapse
|
4
|
Gregory RB, Barritt GJ. Evidence that Ca2+-release-activated Ca2+ channels in rat hepatocytes are required for the maintenance of hormone-induced Ca2+ oscillations. Biochem J 2003; 370:695-702. [PMID: 12460123 PMCID: PMC1223201 DOI: 10.1042/bj20021671] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2002] [Accepted: 12/02/2002] [Indexed: 12/30/2022]
Abstract
Store-operated Ca(2+) channels in liver cells have been shown previously to exhibit a high selectivity for Ca(2+) and to have properties indistinguishable from those of Ca(2+)-release-activated Ca(2+) (CRAC) channels in mast cells and lymphocytes [Rychkov, Brereton, Harland and Barritt (2001) Hepatology 33, 938-947]. The role of CRAC channels in the maintenance of hormone-induced oscillations in the cytoplasmic free Ca(2+) concentration ([Ca(2+)](cyt)) in isolated rat hepatocytes was investigated using several inhibitors of CRAC channels. 2-Aminoethyl diphenylborate (2-APB; 75 microM), Gd(3+) (1 microM) and 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride (SK&F 96365; 50 microM) each inhibited vasopressin- and adrenaline (epinephrine)-induced Ca(2+) oscillations (measured using fura-2). The characteristics of this inhibition were similar to those of inhibition caused by decreasing the extracellular Ca(2+) concentration to zero by addition of EGTA. The effect of 2-APB was reversible. In contrast, LOE-908 [( R, S )-(3,4-dihydro-6,7-dimethoxy-isochinolin-1-yl)-2-phenyl- N, N -di[2-(2,3,4-trimethoxyphenyl)ethyl]acetamide mesylate] (30 microM), used commonly to block Ca(2+) inflow through intracellular-messenger-activated, non-selective cation channels, did not inhibit the Ca(2+) oscillations. In the absence of added extracellular Ca(2+), 2-APB, Gd(3+) and SK&F 96365 did not alter the kinetics of the increase in [Ca(2+)](cyt) induced by a concentration of adrenaline or vasopressin that induces continuous Ca(2+) oscillations at the physiological extracellular Ca(2+) concentration. Ca(2+) inflow through non-selective cation channels activated by maitotoxin could not restore Ca(2+) oscillations in cells treated with 2-APB to block Ca(2+) inflow through CRAC channels. Evidence for the specificity of the pharmacological agents for inhibition of CRAC channels under the conditions of the present experiments with hepatocytes is discussed. It is concluded that Ca(2+) inflow through CRAC channels is required for the maintenance of hormone-induced Ca(2+) oscillations in isolated hepatocytes.
Collapse
Affiliation(s)
- Roland B Gregory
- Department of Medical Biochemistry, School of Medicine, Faculty of Health Sciences, Flinders University, G.P.O. Box 2100, Adelaide South Australia 5001, Australia
| | | |
Collapse
|
5
|
Mayer AMS, Hamann MT. Marine pharmacology in 1999: compounds with antibacterial, anticoagulant, antifungal, anthelmintic, anti-inflammatory, antiplatelet, antiprotozoal and antiviral activities affecting the cardiovascular, endocrine, immune and nervous systems, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2002; 132:315-39. [PMID: 12161166 DOI: 10.1016/s1532-0456(02)00094-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review, a sequel to the 1998 review, classifies 63 peer-reviewed articles on the basis of the reported preclinical pharmacological properties of marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. In all, 21 marine chemicals demonstrated anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antituberculosis or antiviral activities. An additional 23 compounds had significant effects on the cardiovascular, sympathomimetic or the nervous system, as well as possessed anti-inflammatory, immunosuppressant or fibrinolytic effects. Finally, 22 marine compounds were reported to act on a variety of molecular targets, and thus could potentially contribute to several pharmacological classes. Thus, during 1999 pharmacological research with marine chemicals continued to contribute potentially novel chemical leads in the ongoing global search for therapeutic agents for the treatment of multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | | |
Collapse
|
6
|
Wang YJ, Gregory RB, Barritt GJ. Maintenance of the filamentous actin cytoskeleton is necessary for the activation of store-operated Ca2+ channels, but not other types of plasma-membrane Ca2+ channels, in rat hepatocytes. Biochem J 2002; 363:117-26. [PMID: 11903054 PMCID: PMC1222458 DOI: 10.1042/0264-6021:3630117] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The roles of the filamentous actin (F-actin) cytoskeleton and the endoplasmic reticulum (ER) in the mechanism by which store-operated Ca(2+) channels (SOCs) and other plasma-membrane Ca(2+) channels are activated in rat hepatocytes in primary culture were investigated using cytochalasin D as a probe. Inhibition of thapsigargin-induced Ca(2+) inflow by cytochalasin D depended on the concentration and time of treatment, with maximum inhibition observed with 0.1 microM cytochalasin D for 3 h. Cytochalasin D (0.1 microM for 3 h) did not inhibit the total amount of Ca(2+) released from the ER in response to thapsigargin but did alter the kinetics of Ca(2+) release. The effects of cytochalasin D (0.1 microM) on vasopressin-induced Ca(2+) inflow were similar to those on thapsigargin-induced Ca(2+) inflow, except that cytochalasin D did inhibit vasopressin-induced release of Ca(2+) from the ER. Cytochalasin D (0.1 microM) inhibited vasopressin-induced Mn(2+) inflow (predominantly through intracellular messenger-activated non-selective cation channels), but the degree of inhibition was less than that of vasopressin-induced Ca(2+) inflow (predominantly through Ca(2+)-selective SOCs). Maitotoxin- and hypotonic shock-induced Ca(2+) inflow were enhanced rather than inhibited by 0.1 microM cytochalasin D. Treatment with 0.1 microM cytochalasin D substantially reduced the amount of F-actin at the cell cortex, whereas 5 microM cytochalasin D increased the total amount of F-actin and caused an irregular distribution of F-actin at the cell cortex. Cytochalasin D (0.1 microM) caused no significant change in the overall arrangement of the ER [monitored using 3',3'-dihexyloxacarbocyanine iodide [DiOC(6)(3)] in fixed cells] but disrupted the fine structure of the smooth ER and reduced the diffusion of DiOC(6)(3) in the ER in live hepatocytes after photobleaching. It is concluded that (i) the concentration of cytochalasin D is a critical factor in the use of this agent as a probe to disrupt the cortical F-actin cytoskeleton in rat hepatocytes, (ii) a reduction in the amount of cortical F-actin inhibits SOCs but not intracellular messenger-activated non-selective cation channels, and (iii) inhibition of the activation of SOCs and reduction in the amount of cortical F-actin is associated with disruption of the organization of the ER.
Collapse
Affiliation(s)
- Ying-Jie Wang
- Department of Medical Biochemistry, School of Medicine, Faculty of Health Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | | | | |
Collapse
|
7
|
Brereton HM, Chen J, Rychkov G, Harland ML, Barritt GJ. Maitotoxin activates an endogenous non-selective cation channel and is an effective initiator of the activation of the heterologously expressed hTRPC-1 (transient receptor potential) non-selective cation channel in H4-IIE liver cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1540:107-26. [PMID: 11513973 DOI: 10.1016/s0167-4889(01)00124-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The structures and mechanisms of activation of non-selective cation channels (NSCCs) are not well understood although NSCCs play important roles in the regulation of metabolism, ion transport, cell volume and cell shape. It has been proposed that TRP (transient receptor potential) proteins are the molecular correlates of some NSCCs. Using fura-2 and patch-clamp recording, it was shown that the maitotoxin-activated cation channels in the H4-IIE rat liver cell line admit Ca(2+), Mn(2+) and Na(+), have a high selectivity for Na(+) compared with Ca(2+), and are inhibited by Gd(3+) (half-maximal inhibition at 1 microM). Activation of the channels by maitotoxin was inhibited by increasing the extracellular Ca(2+) concentration or by inclusion of 10 mM EGTA in the patch pipette. mRNA encoding TRP proteins 1, 2 and 3 at levels comparable with those in brain was detected using reverse transcriptase-polymerase chain reaction in poly(A)(+) RNA prepared from H4-IIE cells and freshly-isolated rat hepatocytes. In H4-IIE cells transiently transfected with cDNA encoding hTRPC-1, the expressed hTRPC-1 protein was chiefly located at intracellular sites and at the plasma membrane. Cells expressing hTRPC-1 exhibited a substantial enhancement of maitotoxin-initiated Ca(2+) inflow and a modest enhancement of thapsigargin-initiated Ca(2+) inflow (measured using fura-2) and no enhancement of the highly Ca(2+)-selective store-operated Ca(2+) current (measured using patch-clamp recording). In cells expressing hTRPC-1, maitotoxin activated channels which were not found in untransfected cells, have an approximately equal selectivity for Na(+) and Ca(2+), and are inhibited by Gd(3+) (half-maximal inhibition at 3 microM). It is concluded that in liver cells (i) maitotoxin initiates the activation of endogenous NSCCs with a high selectivity for Na(+) compared with Ca(2+); (ii) TRP proteins 1, 2 and 3 are expressed; (iii) maitotoxin is an effective initiator of activation of heterologously expressed hTRPC-1 channels; and (iv) the endogenous TRP-1 protein is unlikely to be the molecular counterpart of the maitotoxin-activated NSCCs nor the highly Ca(2+)-selective store-operated Ca(2+) channels.
Collapse
Affiliation(s)
- H M Brereton
- Department of Medical Boichemistry, School of Medicine, Flinders University, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
8
|
Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+ channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors. Biochem J 2001. [PMID: 11171105 DOI: 10.1042/bj3540285] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The compound 2-aminoethyl diphenylborate (2-APB), an inhibitor of Ins(1,4,5)P(3) receptor action in some cell types, has been used to assess the role of Ins(1,4,5)P(3) receptors in the activation of store-operated Ca2+ channels (SOCs) [Ma, Patterson, van Rossum, Birnbaumer, Mikoshiba and Gill (2000) Science 287, 1647-1651]. In freshly-isolated rat hepatocytes, 2-APB inhibited thapsigargin- and vasopressin-stimulated Ca2+ inflow (measured using fura-2) with no detectable effect on the release of Ca2+ from intracellular stores. The concentration of 2-APB which gave half-maximal inhibition of Ca2+ inflow was approx. 10 microM. 2-APB also inhibited Ca2+ inflow initiated by a low concentration of adenophostin A but had no effect on maitotoxin-stimulated Ca2+ inflow through non-selective cation channels. The onset of the inhibitory effect of 2-APB on thapsigargin-stimulated Ca2+ inflow was rapid. When 2-APB was added to rat hepatocytes in the presence of extracellular Ca2+ after a vasopressin-induced plateau in the cytoplasmic free Ca2+ concentration ([Ca2+](cyt)) had been established, the kinetics of the decrease in [Ca2+](cyt) were identical with those induced by the addition of 50 microM Gd(3+) (gadolinium). 2-APB did not inhibit the release of Ca2+ from intracellular stores induced by the addition of Ins(1,4,5)P(3) to permeabilized hepatocytes. In the H4-IIE rat hepatoma cell line, 2-APB inhibited thapsigargin-stimulated Ca2+ inflow (measured using fura-2) and, in whole-cell patch-clamp experiments, the Ins(1,4,5)P(3)-induced inward current carried by Ca2+. It was concluded that, in liver cells, 2-APB inhibited SOCs through a mechanism which involved the binding of 2-APB to either the channel protein or an associated regulatory protein. 2-APB appeared to be a novel inhibitor of SOCs in liver cells with a mechanism of action which, in this cell type, is unlikely to involve an interaction of 2-APB with Ins(1,4,5)P(3) receptors. The need for caution in the use of 2-APB as a probe for the involvement of Ins(1,4,5)P(3) receptors in the activation of SOCs in other cell types is briefly discussed.
Collapse
|
9
|
Chiesa A, Rapizzi E, Tosello V, Pinton P, de Virgilio M, Fogarty KE, Rizzuto R. Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. Biochem J 2001; 355:1-12. [PMID: 11256942 PMCID: PMC1221705 DOI: 10.1042/0264-6021:3550001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Luminous proteins include primary light producers, such as aequorin, and secondary photoproteins that in some organisms red-shift light emission for better penetration in space. When expressed in heterologous systems, both types of proteins may act as versatile reporters capable of monitoring phenomena as diverse as calcium homoeostasis, protein sorting, gene expression, and so on. The Ca(2+)-sensitive photoprotein aequorin was targeted to defined intracellular locations (organelles, such as mitochondria, endoplasmic reticulum, sarcoplasmic reticulum, Golgi apparatus and nucleus, and cytoplasmic regions, such as the bulk cytosol and the subplasmalemmal rim), and was used to analyse Ca(2+) homoeostasis at the subcellular level. We will discuss this application, reviewing its advantages and disadvantages and the experimental procedure. The applications of green fluorescent protein (GFP) are even broader. Indeed, the ability to molecularly engineer and recombinantly express a strongly fluorescent probe has provided a powerful tool for investigating a wide variety of biological events in live cells (e.g. tracking of endogenous proteins, labelling of intracellular structures, analysing promoter activity etc.). More recently, the demonstration that, using appropriate mutants and/or fusion proteins, GFP fluorescence can become sensitive to physiological parameters or activities (ion concentration, protease activity, etc.) has further expanded its applications and made GFP the favourite probe of cell biologists. We will here present two applications in the field of cell signalling, i.e. the use of GFP chimaeras for studying the recruitment of protein kinase C isoforms and the activity of intracellular proteases.
Collapse
Affiliation(s)
- A Chiesa
- University of Ferrara, Department of Experimental and Diagnostic Medicine, Section of General Pathology, Via L. Borsari 46, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Gregory RB, Rychkov G, Barritt GJ. Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+ channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors. Biochem J 2001; 354:285-90. [PMID: 11171105 PMCID: PMC1221654 DOI: 10.1042/0264-6021:3540285] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The compound 2-aminoethyl diphenylborate (2-APB), an inhibitor of Ins(1,4,5)P(3) receptor action in some cell types, has been used to assess the role of Ins(1,4,5)P(3) receptors in the activation of store-operated Ca2+ channels (SOCs) [Ma, Patterson, van Rossum, Birnbaumer, Mikoshiba and Gill (2000) Science 287, 1647-1651]. In freshly-isolated rat hepatocytes, 2-APB inhibited thapsigargin- and vasopressin-stimulated Ca2+ inflow (measured using fura-2) with no detectable effect on the release of Ca2+ from intracellular stores. The concentration of 2-APB which gave half-maximal inhibition of Ca2+ inflow was approx. 10 microM. 2-APB also inhibited Ca2+ inflow initiated by a low concentration of adenophostin A but had no effect on maitotoxin-stimulated Ca2+ inflow through non-selective cation channels. The onset of the inhibitory effect of 2-APB on thapsigargin-stimulated Ca2+ inflow was rapid. When 2-APB was added to rat hepatocytes in the presence of extracellular Ca2+ after a vasopressin-induced plateau in the cytoplasmic free Ca2+ concentration ([Ca2+](cyt)) had been established, the kinetics of the decrease in [Ca2+](cyt) were identical with those induced by the addition of 50 microM Gd(3+) (gadolinium). 2-APB did not inhibit the release of Ca2+ from intracellular stores induced by the addition of Ins(1,4,5)P(3) to permeabilized hepatocytes. In the H4-IIE rat hepatoma cell line, 2-APB inhibited thapsigargin-stimulated Ca2+ inflow (measured using fura-2) and, in whole-cell patch-clamp experiments, the Ins(1,4,5)P(3)-induced inward current carried by Ca2+. It was concluded that, in liver cells, 2-APB inhibited SOCs through a mechanism which involved the binding of 2-APB to either the channel protein or an associated regulatory protein. 2-APB appeared to be a novel inhibitor of SOCs in liver cells with a mechanism of action which, in this cell type, is unlikely to involve an interaction of 2-APB with Ins(1,4,5)P(3) receptors. The need for caution in the use of 2-APB as a probe for the involvement of Ins(1,4,5)P(3) receptors in the activation of SOCs in other cell types is briefly discussed.
Collapse
Affiliation(s)
- R B Gregory
- Department of Medical Biochemistry, School of Medicine, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | | | | |
Collapse
|