1
|
Samanta D. Evolving treatment strategies for early-life seizures in Tuberous Sclerosis Complex: A review and treatment algorithm. Epilepsy Behav 2024; 161:110123. [PMID: 39488094 DOI: 10.1016/j.yebeh.2024.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Tuberous sclerosis Complex (TSC) is a genetic disorder characterized by multisystem involvement, with epilepsy affecting 80-90% of patients, often beginning in infancy. Early-life seizures in TSC are associated with poor neurodevelopmental outcomes, underscoring the importance of timely and effective management. This review explores the evolving treatment landscape for TSC-associated seizures in young children, focusing on three recently approved or license-expanded therapies: vigabatrin, everolimus, and cannabidiol. The efficacy and safety profiles of these treatments are examined based on clinical trials and real-world evidence, with a focus on their use in treating seizures in young children. The preemptive use of vigabatrin in clinical studies has also been carefully reviewed. A treatment algorithm is proposed, emphasizing early diagnosis, prompt initiation of appropriate therapy, and a stepwise approach to managing both infantile spasms and focal seizures. The algorithm incorporates these newer therapies alongside traditional antiseizure medications and non-pharmacological approaches. Challenges in optimizing treatment strategies, minimizing side effects, and improving long-term outcomes are discussed. This review aims to guide clinicians in navigating the complex landscape of early-life seizures associated with TSC, ultimately striving for improved seizure control and better developmental outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
2
|
Vazquez AR, Wong WK. Mathematical programming tools for randomization purposes in small two-arm clinical trials: A case study with real data. Pharm Stat 2024. [PMID: 38613324 DOI: 10.1002/pst.2388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Modern randomization methods in clinical trials are invariably adaptive, meaning that the assignment of the next subject to a treatment group uses the accumulated information in the trial. Some of the recent adaptive randomization methods use mathematical programming to construct attractive clinical trials that balance the group features, such as their sizes and covariate distributions of their subjects. We review some of these methods and compare their performance with common covariate-adaptive randomization methods for small clinical trials. We introduce an energy distance measure that compares the discrepancy between the two groups using the joint distribution of the subjects' covariates. This metric is more appealing than evaluating the discrepancy between the groups using their marginal covariate distributions. Using numerical experiments, we demonstrate the advantages of the mathematical programming methods under the new measure. In the supplementary material, we provide R codes to reproduce our study results and facilitate comparisons of different randomization procedures.
Collapse
Affiliation(s)
- Alan R Vazquez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Weng-Kee Wong
- Department of Biostatistics, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
Kuchenbuch M, Lo Barco T, Chemaly N, Chiron C, Nabbout R. Fifteen years of real-world data on the use of vigabatrin in individuals with infantile epileptic spasms syndrome. Epilepsia 2024; 65:430-444. [PMID: 37872396 DOI: 10.1111/epi.17808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE This study was undertaken to evaluate our treatment algorithm for infantile epileptic spasms syndrome (IESS) used between 2000 and 2018. We initiated vigabatrin (VGB), and steroids were added if the electroclinical response (spasms and electroencephalogram [EEG]) to VGB was not obtained or incomplete. METHODS Individuals with IESS treated with VGB were recruited from our hospital clinical data warehouse based on electronic health records (EHRs) generated since 2009 and containing relevant keywords. We confirmed the diagnosis of IESS. Clinical, EEG, imaging, and biological data were extracted from the EHRs. We analyzed factors associated with short-term response, time to response, relapse, time to relapse of spasms, and the presence of spasms at last follow-up. RESULTS We collected data from 198 individuals (female: 46.5%, IESS onset: 6 [4.5-10.3] months, follow-up: 4.6 [2.5-7.6] years, median [Q1-Q3]) including 129 (65.2%) with identifiable etiology. VGB was started 17 (5-57.5) days after IESS diagnosis. A total of 113 individuals were responders (57.1% of the cohort), 64 with VGB alone and 38 with VGB further combined with steroids (56.6% and 33.6% of responders, respectively). Among responders, 33 (29%) experienced relapses of spasms, mostly those with later onset of spasms (p = .002) and those who received VGB for <24 months after spasms cessation compared to a longer duration on VGB (45% vs. 12.8%, p = .003). At follow-up, 92 individuals were seizure-free (46.5% of the whole cohort), including 26 free of therapy (13.1%). One hundred twelve individuals (56.6%) were still receiving VGB, with a duration of 3.2 (1.75-5.7) years. SIGNIFICANCE Our sequential protocol introducing VGB then adding steroids is an effective alternative to a combined VGB-steroids approach in IESS. It avoids steroid-related adverse events, as well as those from VGB-steroid combination. According to our data, a period of 7 days seems sufficient to assess VGB response and enables the addition of steroids rapidly if needed. Continuing VGB for 2 years may balance the risk of relapse and treatment-induced adverse events.
Collapse
Affiliation(s)
- Mathieu Kuchenbuch
- Department of Pediatric Neurology, Reference Center for Rare Epilepsies, Hôpital Necker-Enfants Malades, member of ERN EpiCARE, Paris, France
- Laboratory of Translational Research for Neurological Disorders, INSERM MR1163, Imagine Institute, Paris, France
- Service de Pédiatrie, Reference Center for Rare Epilepsies, member of ERN EpiCARE, Université de Lorraine, CHRU-Nancy, Nancy, France
| | - Tommaso Lo Barco
- Department of Pediatric Neurology, Reference Center for Rare Epilepsies, Hôpital Necker-Enfants Malades, member of ERN EpiCARE, Paris, France
| | - Nicole Chemaly
- Department of Pediatric Neurology, Reference Center for Rare Epilepsies, Hôpital Necker-Enfants Malades, member of ERN EpiCARE, Paris, France
- Laboratory of Translational Research for Neurological Disorders, INSERM MR1163, Imagine Institute, Paris, France
| | - Catherine Chiron
- Department of Pediatric Neurology, Reference Center for Rare Epilepsies, Hôpital Necker-Enfants Malades, member of ERN EpiCARE, Paris, France
| | - Rima Nabbout
- Department of Pediatric Neurology, Reference Center for Rare Epilepsies, Hôpital Necker-Enfants Malades, member of ERN EpiCARE, Paris, France
- Laboratory of Translational Research for Neurological Disorders, INSERM MR1163, Imagine Institute, Paris, France
- Université de Paris Cité, Paris, France
| |
Collapse
|
4
|
Dozieres-Puyravel B, Nasser H, Mauvais FX, De Saint Martin A, Perriard C, Di Meglio C, Cances C, Hachon-LE Camus C, Milh M, Auvin S. Real-life data comparing the efficacy of vigabatrin and oral steroids given sequentially or combined for infantile epileptic spasms syndrome. Eur J Paediatr Neurol 2024; 48:61-66. [PMID: 38041897 DOI: 10.1016/j.ejpn.2023.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
AIMS The prognosis of Infantile epileptic spasm syndrome (IESS), relates to the underlying etiology and delay in controlling epileptic spasms. Based on the spasm-free rate, a randomized controlled trial has demonstrated the superiority of combining oral steroids and vigabatrin over oral steroids alone but confirmation in real-life conditions is mandatory. METHODS We compared two real-life IESS cohorts: a multicenter, retrospective cohort of 40 infants treated with vigabatrin followed by a sequential (ST) addition of steroids, and a prospective, single-center cohort of 58 infants treated with an immediate combination of vigabatrin and steroids (CT). RESULTS The two cohorts were similar. When the rate of spasm-free infants in the two cohorts was compared on day 14, a significant difference was observed between the ST (27,5 %) and CT cohorts (64 %) (p < 0.0004). This difference remained significant on day 30, with 55 % spasm-free patients in the ST cohort compared to 76 % in the CT cohort (p = 0.03). After the infants had received both vigabatrin and steroids, without taking into account the time point after treatment initiation, no significant difference was observed in the spasm-free rate between the two cohorts (p = 0.38). INTERPRETATION Real-life data confirm the interest of combination therapy as a first-line treatment for IESS.
Collapse
Affiliation(s)
| | - Hala Nasser
- Service de Physiologie - Explorations Fonctionnelles Pédiatriques - Centre Pédiatrique des Pathologies du Sommeil, AP-HP, Hôpital Universitaire Robert Debré, F-75019, Paris, France.
| | - François-Xavier Mauvais
- Service de Physiologie - Explorations Fonctionnelles Pédiatriques - Centre Pédiatrique des Pathologies du Sommeil, AP-HP, Hôpital Universitaire Robert Debré, F-75019, Paris, France; Université Paris Cité, CNRS, Inserm, Institut Necker-Enfants Malades, F- 75015, Paris, France.
| | | | | | - Chloé Di Meglio
- Aix-Marseille Univ, APHM, Service de Neurologie Pédiatrique, Hopital de la Timone-Enfants. Marseille, France.
| | - Claude Cances
- Service de neurologie pédiatrique, CHU de Toulouse, France.
| | | | - Mathieu Milh
- Aix-Marseille Univ, APHM, Service de Neurologie Pédiatrique, Hopital de la Timone-Enfants. Marseille, France.
| | - Stéphane Auvin
- APHP. Service de Neurologie Pédiatrique, EpiCARE ERN Membre, Hôpital Robert Debré, Paris, France; Université Paris-Cité, INSERM NeuroDiderot, Paris, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
5
|
Vitale G, Terrone G, Vitale S, Vitulli F, Aiello S, Bravaccio C, Pisano S, Bove I, Rizzo F, Seetahal-Maraj P, Wiese T. The Evolving Landscape of Therapeutics for Epilepsy in Tuberous Sclerosis Complex. Biomedicines 2023; 11:3241. [PMID: 38137462 PMCID: PMC10741146 DOI: 10.3390/biomedicines11123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multisystem genetic disorder characterized by benign tumor growth in multiple organs, including the brain, kidneys, heart, eyes, lungs, and skin. Pathogenesis stems from mutations in either the TSC1 or TSC2 gene, which encode the proteins hamartin and tuberin, respectively. These proteins form a complex that inhibits the mTOR pathway, a critical regulator of cell growth and proliferation. Disruption of the tuberin-hamartin complex leads to overactivation of mTOR signaling and uncontrolled cell growth, resulting in hamartoma formation. Neurological manifestations are common in TSC, with epilepsy developing in up to 90% of patients. Seizures tend to be refractory to medical treatment with anti-seizure medications. Infantile spasms and focal seizures are the predominant seizure types, often arising in early childhood. Drug-resistant epilepsy contributes significantly to morbidity and mortality. This review provides a comprehensive overview of the current state of knowledge regarding the pathogenesis, clinical manifestations, and treatment approaches for epilepsy and other neurological features of TSC. While narrative reviews on TSC exist, this review uniquely synthesizes key advancements across the areas of TSC neuropathology, conventional and emerging pharmacological therapies, and targeted treatments. The review is narrative in nature, without any date restrictions, and summarizes the most relevant literature on the neurological aspects and management of TSC. By consolidating the current understanding of TSC neurobiology and evidence-based treatment strategies, this review provides an invaluable reference that highlights progress made while also emphasizing areas requiring further research to optimize care and outcomes for TSC patients.
Collapse
Affiliation(s)
- Giovanni Vitale
- Neuroscience and Rare Diseases, Discovery and Translational Area, Roche Pharma Research and Early Development (pRED), F. Hoffmann–La Roche, 4070 Basel, Switzerland
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Samuel Vitale
- School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy;
| | - Francesca Vitulli
- Department of Neurosciences and Reproductive and Dental Sciences, Division of Neurosurgery, University of Naples Federico II, 80138 Naples, Italy (I.B.)
| | - Salvatore Aiello
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Carmela Bravaccio
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Simone Pisano
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Ilaria Bove
- Department of Neurosciences and Reproductive and Dental Sciences, Division of Neurosurgery, University of Naples Federico II, 80138 Naples, Italy (I.B.)
| | - Francesca Rizzo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy;
| | | | - Thomas Wiese
- Neuroscience and Rare Diseases, Discovery and Translational Area, Roche Pharma Research and Early Development (pRED), F. Hoffmann–La Roche, 4070 Basel, Switzerland
| |
Collapse
|
6
|
Boothman I, Clayton LM, McCormack M, Driscoll AM, Stevelink R, Moloney P, Krause R, Kunz WS, Diehl S, O’Brien TJ, Sills GJ, de Haan GJ, Zara F, Koeleman BP, Depondt C, Marson AG, Stefansson H, Stefansson K, Craig J, Johnson MR, Striano P, Lerche H, Furney SJ, Delanty N, Sisodiya SM, Cavalleri GL. Testing for pharmacogenomic predictors of ppRNFL thinning in individuals exposed to vigabatrin. Front Neurosci 2023; 17:1156362. [PMID: 37790589 PMCID: PMC10542409 DOI: 10.3389/fnins.2023.1156362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Background The anti-seizure medication vigabatrin (VGB) is effective for controlling seizures, especially infantile spasms. However, use is limited by VGB-associated visual field loss (VAVFL). The mechanisms by which VGB causes VAVFL remains unknown. Average peripapillary retinal nerve fibre layer (ppRNFL) thickness correlates with the degree of visual field loss (measured by mean radial degrees). Duration of VGB exposure, maximum daily VGB dose, and male sex are associated with ppRNFL thinning. Here we test the hypothesis that common genetic variation is a predictor of ppRNFL thinning in VGB exposed individuals. Identifying pharmacogenomic predictors of ppRNFL thinning in VGB exposed individuals could potentially enable safe prescribing of VGB and broader use of a highly effective drug. Methods Optical coherence topography (OCT) and GWAS data were processed from VGB-exposed individuals (n = 71) recruited through the EpiPGX Consortium. We conducted quantitative GWAS analyses for the following OCT measurements: (1) average ppRNFL, (2) inferior quadrant, (3) nasal quadrant, (4) superior quadrant, (5) temporal quadrant, (6) inferior nasal sector, (7) nasal inferior sector, (8) superior nasal sector, and (9) nasal superior sector. Using the summary statistics from the GWAS analyses we conducted gene-based testing using VEGAS2. We conducted nine different PRS analyses using the OCT measurements. To determine if VGB-exposed individuals were predisposed to having a thinner RNFL, we calculated their polygenic burden for retinal thickness. PRS alleles for retinal thickness were calculated using published summary statistics from a large-scale GWAS of inner retinal morphology using the OCT images of UK Biobank participants. Results The GWAS analyses did not identify a significant association after correction for multiple testing. Similarly, the gene-based and PRS analyses did not reveal a significant association that survived multiple testing. Conclusion We set out to identify common genetic predictors for VGB induced ppRNFL thinning. Results suggest that large-effect common genetic predictors are unlikely to exist for ppRNFL thinning (as a marker of VAVFL). Sample size was a limitation of this study. However, further recruitment is a challenge as VGB is rarely used today because of this adverse reaction. Rare variants may be predictors of this adverse drug reaction and were not studied here.
Collapse
Affiliation(s)
- Isabelle Boothman
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- The SFI Futureneuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
| | - Lisa M. Clayton
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Bucks, United Kingdom
| | - Mark McCormack
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Remi Stevelink
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Patrick Moloney
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Wolfram S. Kunz
- Division of Neurochemistry, Department of Epileptology, University Bonn Medical Center, Bonn, Germany
| | - Sarah Diehl
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Terence J. O’Brien
- Departments of Neuroscience and Neurology, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Graeme J. Sills
- School of Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gerrit-Jan de Haan
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Federico Zara
- "IRCCS”G. Gaslini" Institute, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Bobby P. Koeleman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Anthony G. Marson
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | | | | | - John Craig
- Department of Neurology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Michael R. Johnson
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, United Kingdom
| | - Pasquale Striano
- "IRCCS”G. Gaslini" Institute, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Simon J. Furney
- Genomic Oncology Research Group, Deptartment of Physiology and Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Norman Delanty
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Bucks, United Kingdom
| | - Gianpiero L. Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- The SFI Futureneuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
| |
Collapse
|
7
|
Prezioso G, Chiarelli F, Matricardi S. Efficacy and safety of vigabatrin in patients with tuberous sclerosis complex and infantile epileptic spasm syndrome: a systematic review. Expert Rev Neurother 2023; 23:661-671. [PMID: 37243682 DOI: 10.1080/14737175.2023.2216385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Tuberous sclerosis complex (TSC) is a common genetic cause of epilepsy. Infantile epileptic spasm syndrome (IESS) is often the presenting neurologic feature, progressively evolving into refractory epilepsy. Vigabatrin (VGB) is often used in clinical practice as a first-line therapy in TSC with IESS. This systematic review aims to collect and analyze the efficacy data about VGB in TSC cases with IESS, in order to evaluate the strength of evidence in the literature. METHODS A systematic search of trials, observational studies, and case series involving patients with TSC and IESS treated with VGB was performed using MEDLINE, CENTRAL, and the US NIH Clinical Trials Registry. Single case studies, animal and non-English language studies were excluded. Seventeen studies were selected, of which 3 were RCTs and 14 were observational studies. RESULTS An overall response rate of 67% (231/343 responders) resulted from the analysis, with a spasm-free rate restricted to RCTs of 88% (29/33 subjects). CONCLUSIONS Although all the studies analyzed reported beneficial effects of VGB in TSC patients with IESS, with higher response rates in comparison to non-TSC subjects with IESS, a low level of evidence and high heterogeneity do not guarantee sufficient strength for therapeutic recommendations.
Collapse
Affiliation(s)
- Giovanni Prezioso
- Pediatric Neurologist, Department of Pediatrics, G. D'Annunzio University, Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, Department of Pediatrics, G. D'Annunzio University, Chieti, Italy
| | - Sara Matricardi
- Pediatric Neurologist, Department of Pediatrics, G. D'Annunzio University, Chieti, Italy
| |
Collapse
|
8
|
Wang J, Zhang YY, Guo HL, Hu YH, Lu XP, Wang SS, Wu CF, Chen F. Rapid determination of plasma vigabatrin by LC-ESI-MS/MS supporting therapeutic drug monitoring in children with infantile spasms. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1365-1377. [PMID: 36847418 DOI: 10.1039/d2ay02017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Vigabatrin is one of the second-generation anti-seizure medications (ASMs) designated orphan drugs by the FDA for monotherapy for pediatric patients with infantile spasms from 1 month to 2 years of age. Vigabatrin is also indicated as the adjunctive therapy for adults and pediatric patients 10 years of age and older with refractory complex partial seizures. Ideally, the vigabatrin treatment entails achieving complete seizure freedom without significant adverse effects, and the therapeutic drug monitoring (TDM) will make a significant contribution to this aim, which provides a pragmatic approach to such epilepsy care in that the dose tailoring can be undertaken for uncontrollable seizures and in cases of clinical toxicity guided by the drug concentrations. Thus, reliable assays are mandatory for TDM to be valuable, and blood, plasma, or serum are the matrixes of choice. In this study, a simple, rapid, and sensitive LC-ESI-MS/MS method for the measurement of plasma vigabatrin was developed and validated. The sample clean-up was performed by an easy-to-use method, i.e., protein precipitation using acetonitrile (ACN). Chromatographic separation of vigabatrin and vigabatrin-13C,d2 (internal standard) was achieved on the Waters symmetry C18 column (4.6 mm × 50 mm, 3.5 μm) with isocratic elution at a flow rate of 0.35 mL min-1. The target analyte was completely separated by elution with a highly aqueous mobile phase for 5 min, without any endogenous interference. The method showed good linearity over the 0.010-50.0 μg mL-1 concentration range with a correlation coefficient r2 = 0.9982. The intra-batch and inter-batch precision and accuracy, recovery, and stability of the method were all within the acceptable parameters. Moreover, the method was successfully used in pediatric patients treated with vigabatrin and also provided valuable information for clinicians by monitoring plasma vigabatrin levels in our hospital.
Collapse
Affiliation(s)
- Jie Wang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuan-Yuan Zhang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiao-Peng Lu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Shan-Shan Wang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Chun-Feng Wu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Sánchez Fernández I, Amengual-Gual M, Barcia Aguilar C, Romeu A, Sheikh T, Torres A, Chao J, Jonas R, Gaínza-Lein M, Harini C, Douglass L. Temporal trends in the cost and use of first-line treatments for infantile epileptic spasms syndrome. Epilepsia 2023; 64:630-640. [PMID: 36600453 DOI: 10.1111/epi.17498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To describe the temporal trends in the cost and use of adrenocorticotropic hormone (ACTH), oral prednisolone, and vigabatrin, the first-line treatments for infantile epileptic spasms syndrome (IESS). METHODS Retrospective observational study using the MarketScan Commercial database from 2006 to 2020. We identified patients with IESS diagnosed between birth and 18 months of age who received at least one of the first-line treatments within 60 days of diagnosis. Costs were adjusted for inflation using the Gross Domestic Product Implicit Price Deflator. RESULTS A total of 1131 patients received at least one first-line treatment (median [p25 -p75 ] age: 6.3 [4.5-8.3] months, 55% male), of whom 592 patients received ACTH, 363 patients received oral prednisolone, and 355 patients received vigabatrin. After adjusting for inflation, the median average wholesale price of a 14-day course of treatment increased for ACTH from $3718 in 2006 to $100 457 in 2020, ~2700% (by a factor of 27), whereas it decreased for oral prednisolone from $169 in 2006 to $89 in 2020, ~50% (by a factor of 0.5), and increased for vigabatrin from $1206 in 2009 (first year with data on vigabatrin used for IESS) to $4102 in 2020, ~340% (by a factor of 3.4). During the first 60 days after diagnosis, inpatient admission days and costs where higher for ACTH than for oral prednisolone and vigabatrin-5.0 (3.0-8.3) days vs 2.0 (0.0-5.0) days vs 2.0 (0.0-6.0) days, p < .0001; and $32 828 ($14 711-$67 216) vs $16 227 ($0-$35 829) vs $17 844 ($0-$47 642), p < .0001. ACTH use decreased from representing 78% of first-line treatments in 2006 to 18% in 2020 (p < .0001). Sensitivity analyses confirmed the robustness of the results. SIGNIFICANCE The gap between the cost of ACTH and the cost of oral prednisolone or vigabatrin has widened markedly from 2006 to 2020, whereas the relative proportion of ACTH use has decreased.
Collapse
Affiliation(s)
- Iván Sánchez Fernández
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Marta Amengual-Gual
- Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Son Llàtzer, Universitat de les Illes Balears, Palma, Spain
| | - Cristina Barcia Aguilar
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario Universitario de La Coruña, La Coruña, Spain
| | - Amanda Romeu
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Tahir Sheikh
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Alcy Torres
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jessica Chao
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Rinat Jonas
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Marina Gaínza-Lein
- Instituto de Pediatría, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Servicio de Neuropsiquiatría Infantil, Hospital Clínico San Borja Arriarán, Universidad de Chile, Santiago, Chile
| | - Chellamani Harini
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurie Douglass
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Jain P, Sahu JK, Horn PS, Chau V, Go C, Mahood Q, Arya R. Treatment of children with infantile spasms: A network meta-analysis. Dev Med Child Neurol 2022; 64:1330-1343. [PMID: 35765990 DOI: 10.1111/dmcn.15330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022]
Abstract
AIM We performed a systematic review and network meta-analysis (NMA) to obtain comparative effectiveness estimates and rankings of non-surgical interventions used to treat infantile spasms. METHOD All randomized controlled trials (RCTs) including children 2 months to 3 years of age with infantile spasms (with hypsarrhythmia or hypsarrhythmia variants on electroencephalography) receiving appropriate first-line medical treatment were included. Electroclinical and clinical remissions within 1 month of starting treatment were analyzed. RESULTS Twenty-two RCTs comparing first-line treatments for infantile spasms were reviewed; of these, 17 were included in the NMA. Both frequentist and Bayesian network rankings for electroclinical remission showed that high dose adrenocorticotropic hormone (ACTH), methylprednisolone, low dose ACTH and magnesium sulfate (MgSO4 ) combination, low dose ACTH, and high dose prednisolone were most likely to be the 'best' interventions, although these were not significantly different from each other. For clinical remission, low dose ACTH/MgSO4 combination, high dose ACTH (with/without vitamin B6 ), high dose prednisolone, and low dose ACTH were 'best'. INTERPRETATION Treatments including ACTH and high dose prednisolone are more effective in achieving electroclinical and clinical remissions for infantile spasms. WHAT THIS PAPER ADDS Adrenocorticotropic hormone and high dose prednisolone are more effective than other medications for infantile spasms. Symptomatic etiology decreases the likelihood of remission even after adjusting for treatment lag.
Collapse
Affiliation(s)
- Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jitendra K Sahu
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Paul S Horn
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Vann Chau
- Neonatal Neurology Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Cristina Go
- Epilepsy Program, Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Quenby Mahood
- Hospital Library and Archives, Learning Institute, Toronto, ON, Canada
| | - Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
11
|
Whitney R, Zak M, Haile D, Nabavi Nouri M. The state of pediatric tuberous sclerosis complex epilepsy care: Results from a national survey. Epilepsia Open 2022; 7:718-728. [PMID: 36161285 PMCID: PMC9712483 DOI: 10.1002/epi4.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/21/2022] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Epilepsy associated with tuberous sclerosis complex (TSC) can be challenging to treat and is associated with significant disease burden. Our objective was to better understand the state of epilepsy care of TSC amongst pediatric neurologists in Canada, identify gaps in care and determine whether access to a dedicated TSC clinic has an impact on epilepsy management. METHODS A survey was developed after a literature review and discussion amongst two pediatric epileptologists and one nurse practitioner with expertise in TSC about the state of epilepsy care of TSC patients in Canada. Canadian pediatric neurologists were asked to participate in sharing their experiences via an anonymous web-based survey through the Canadian League Against Epilepsy (CLAE) and the Canadian Neurological Sciences Federation (CNSF). RESULTS Fifty-seven responses were received. Access to a dedicated TSC clinic was reported by 25% (n = 14). Sixty percent (n = 34) reported performing serial EEG monitoring in infants with TSC and 57% (n = 33) started prophylactic antiseizure therapy when EEG abnormalities were detected, regardless of whether there was access to a TSC clinic (P = .06 and P = .29, respectively). While 52% (n = 29) did not feel comfortable prescribing mTORi for epilepsy, 65% (n = 36) indicated they would consider it with additional training. Epilepsy surgery was offered in 93% (n = 13) of centers with a dedicated TSC clinic but only 45% of centers without a TSC clinic (n = 19) (P = .002). SIGNIFICANCE Our findings demonstrate the variability in neurological care of pediatric patients with TSC as it pertains to epilepsy management. There is a need for the establishment of epilepsy practice guidelines and a national network to support clinical practice, research, and education.
Collapse
Affiliation(s)
- Robyn Whitney
- Division of Neurology, Department of PaediatricsMcMaster UniversityHamiltonOntarioCanada
| | - Maria Zak
- Division of Neurology, Department of PaediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Denait Haile
- Department of Paediatrics, Schulich School of Dentistry and MedicineWestern UniversityLondonOntarioCanada
| | - Maryam Nabavi Nouri
- Department of Paediatrics, Schulich School of Dentistry and MedicineWestern UniversityLondonOntarioCanada
- Children's Health Research InstituteLawson Health Research InstituteLondonOntarioCanada
| |
Collapse
|
12
|
Ramantani G, Bölsterli BK, Alber M, Klepper J, Korinthenberg R, Kurlemann G, Tibussek D, Wolff M, Schmitt B. Treatment of Infantile Spasm Syndrome: Update from the Interdisciplinary Guideline Committee Coordinated by the German-Speaking Society of Neuropediatrics. Neuropediatrics 2022; 53:389-401. [PMID: 35882373 PMCID: PMC9643068 DOI: 10.1055/a-1909-2977] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
OBJECTIVES The manuscript serves as an update on the current management practices for infantile spasm syndrome (ISS). It includes a detailed summary of the level of current evidence of different treatment options for ISS and gives recommendations for the treatment and care of patients with ISS. METHODS A literature search was performed using the Cochrane and Medline Databases (2014 to July 2020). All studies were objectively rated using the Scottish Intercollegiate Guidelines Network. For recommendations, the evidence from these studies was combined with the evidence from studies used in the 2014 guideline. RECOMMENDATIONS If ISS is suspected, electroencephalography (EEG) should be performed within a few days and, if confirmed, treatment should be initiated immediately. Response to first-line treatment should be evaluated clinically and electroencephalographically after 14 days. The preferred first-line treatment for ISS consists of either hormone-based monotherapy (AdrenoCorticoTropic Hormone [ACTH] or prednisolone) or a combination of hormone and vigabatrin. Children with tuberous sclerosis complex and those with contraindications against hormone treatment should be treated with vigabatrin. If first-line drugs are ineffective, second-line treatment options such as ketogenic dietary therapies, sulthiame, topiramate, valproate, zonisamide, or benzodiazepines should be considered. Children refractory to drug therapy should be evaluated early for epilepsy surgery, especially if focal brain lesions are present. Parents should be informed about the disease, the efficacy and adverse effects of the medication, and support options for the family. Regular follow-up controls are recommended.
Collapse
Affiliation(s)
- Georgia Ramantani
- Division of Clinical Neurophysiology and Epilepsy, University Children's Hospital, Zurich, Switzerland,Address for correspondence Georgia Ramantani, MD, PhD Department of Neuropediatrics, Steinwiesstrasse 758032 ZurichSwitzerland
| | - Bigna K. Bölsterli
- Division of Clinical Neurophysiology and Epilepsy, University Children's Hospital, Zurich, Switzerland
| | - Michael Alber
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tubingen, Germany
| | - Joerg Klepper
- Department of Pediatrics, Klinikum Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Rudolf Korinthenberg
- Department of Neuropediatrics and Muscular Diseases, Centre of Pediatrics and Adolescent Medicine, University Medical Centre, Freiburg, Germany
| | - Gerhard Kurlemann
- St. Bonifatius Hospital Lingen, Children's Hospital, Lingen, Germany
| | - Daniel Tibussek
- Center for Pediatric and Teenage Health Care, Child Neurology, Sankt Augustin, Germany
| | - Markus Wolff
- Department of Pediatric Neurology, Vivantes Hospital Neukölln, Berlin, Germany
| | - Bernhard Schmitt
- Division of Clinical Neurophysiology and Epilepsy, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
13
|
Gataullina S, Galvani G, Touchet S, Nous C, Lemaire E, Laschet J, Chiron C, Dulac O, Dossi E, Brion JD, Messaoudi S, Alami M, Huberfeld G. GluN2C
selective inhibition is a target to develop new antiepileptic compounds. Epilepsia 2022; 63:2911-2924. [PMID: 36054371 DOI: 10.1111/epi.17396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Many early-onset epilepsies present as developmental and epileptic encephalopathy associated with refractory seizures, altered psychomotor development, and disorganized interictal cortical activity. Abnormal upregulation of specific N-methyl-d-aspartate receptor (NMDA-R) subunits is being disentangled as one of the mechanisms of severe early-onset epilepsies. In tuberous sclerosis complex (TSC), upregulation of the GluN2C subunit of the NMDA-R with slow deactivation kinetic results in increased neuronal excitation and synchronization. METHODS Starting from an available GluN2C/D antagonist, NMDA-R-modulating compounds were developed and screened using a patch clamp on neuronal culture to select those with the strongest inhibitory effect on glutamatergic NMDA currents. For these selected compounds, blood pharmacokinetics and passage through the blood-brain barrier were studied. We tested the effect of the most promising compounds on epileptic activity in Tsc1+/- mice brain slices with multielectrode array, and then in vivo at postnatal ages P14-P17, comparable with the usual age at epilepsy onset in human TSC. RESULTS Using a double-electrode voltage clamp on isolated NMDA currents, we identified the most prominent antagonists of the GluN2C subunit with no effect on GluN2A as a means of preventing side effects. The best compound passing through the blood-brain barrier was selected. Applied in vivo in six Tsc1+/- mice at P14-P17, this compound reduced or completely stopped spontaneous seizures in four of them, and decreased the background activity disorganization. Furthermore, ictal-like discharges stopped on a human brain sample from an infant with epilepsy due to TSC. INTERPRETATION Subunit-selective inhibition is a valuable target for developing drugs for severe epilepsies resulting from an upregulation of NMDA-R subunit-mediated transmission.
Collapse
Affiliation(s)
- S. Gataullina
- Service d’explorations fonctionnelles multidisciplinaires Centre de médecine du sommeil, Antoine Béclère Hospital, APHP, Université Paris Saclay Clamart France
| | - G. Galvani
- AdPueriVitam (APV), Antony France
- Université de Lorraine CNRS, L2CM Nancy France
| | - S. Touchet
- AdPueriVitam (APV), Antony France
- Université de Lorraine CNRS, L2CM Nancy France
| | - C. Nous
- Institut de la Vision, UFR Sciences et Technologies Paris France
| | | | | | - C. Chiron
- Inserm U1141, Paris & APHP, Neuropediatrics, Necker Hospital Paris France
| | - O. Dulac
- AdPueriVitam (APV), Antony France
| | - E. Dossi
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050 Université PSL Paris France
| | - J. D. Brion
- Université Paris‐Saclay CNRS UMR 8076, BioCIS Châtenay‐Malabry France
| | - S. Messaoudi
- Université Paris‐Saclay CNRS UMR 8076, BioCIS Châtenay‐Malabry France
| | - M. Alami
- Université Paris‐Saclay CNRS UMR 8076, BioCIS Châtenay‐Malabry France
| | - G. Huberfeld
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050 Université PSL Paris France
- Neurology Department, Hôpital Fondation Adolphe de Rothschild Paris France
| |
Collapse
|
14
|
Knupp KG, Coryell J, Singh RK, Gaillard WD, Shellhaas RA, Koh S, Mitchell WG, Harini C, Millichap JJ, May A, Dlugos D, Nickels K, Mytinger JR, Keator C, Yozawitz E, Singhal N, Lockrow J, Thomas JF, Juarez-Colunga E. Comparison of Cosyntropin, Vigabatrin, and Combination Therapy in New-Onset Infantile Spasms in a Prospective Randomized Trial. J Child Neurol 2022; 37:186-193. [PMID: 35044272 DOI: 10.1177/08830738211073400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: In a randomized trial, we aimed to evaluate the efficacy of cosyntropin injectable suspension, 1 mg/mL, compared to vigabatrin for infantile spasms syndrome. An additional arm was included to assess the efficacy of combination therapy (cosyntropin and vigabatrin) compared with cosyntropin monotherapy. Methods: Children (2 months to 2 years) with new-onset infantile spasms syndrome and hypsarhythmia were randomized into 3 arms: cosyntropin, vigabatrin, and cosyntropin and vigabatrin combined. Daily seizures and adverse events were recorded, and EEG was repeated at day 14 to assess for resolution of hypsarhythmia. The primary outcome measure was the composite of resolution of hypsarhythmia and absence of clinical spasms at day 14. Fisher exact test was used to compare outcomes. Results: 37 children were enrolled and 34 were included in the final efficacy analysis (1 withdrew prior to treatment and 2 did not return seizure diaries). Resolution of both hypsarhythmia and clinical spasms was achieved in in 9 of 12 participants (75%) treated with cosyntropin, 1/9 (11%) vigabatrin, and 5/13 (38%) cosyntropin and vigabatrin combined. The primary comparison of cosyntropin versus vigabatrin was significant (64% [95% confidence interval 21, 82], P < .01). Adverse events were reported in all 3 treatment arms: 31 (86%) had an adverse event, 7 (19%) had a serious adverse event, and 15 (42%) had an adverse event of special interest with no difference between treatment arms. Significance: This randomized trial was underpowered because of incomplete enrollment, yet it demonstrated that cosyntropin was more effective for short-term outcomes than vigabatrin as initial treatment for infantile spasms.
Collapse
Affiliation(s)
- Kelly G Knupp
- Pediatrics and Neurology, 12225University of Colorado, Anschutz Campus, Aurora, CO, USA
| | - Jason Coryell
- Department of Pediatrics and Neurology, 89020Oregon Health and Sciences University, Portland, Oregon, USA
| | - Rani K Singh
- Department of Pediatrics, Division of Pediatric Neurology, Atrium Health/Levine Children's Hospital, Charlotte, NC, USA
| | - William D Gaillard
- Department of Pediatrics and Neurology, George Washington University, Washington, DC, USA
| | - Renée A Shellhaas
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sookyong Koh
- Department of Pediatrics, Children's Hospital, 12284University of Nebraska Medical Center, Omaha, NE, USA
| | - Wendy G Mitchell
- Neurology Division, Keck School of Medicine, 8785University of Southern California and Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - John J Millichap
- Department of Pediatrics and Neurology, Lurie Children's Hospital, Chicago, Illinois, USA
| | - Alison May
- Department of Neurology, Morgan Stanley Children's Hospital, 21611Columbia University Irving Medical Center, New York, NY, USA
| | - Dennis Dlugos
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - John R Mytinger
- Department of Pediatrics, Division of Pediatric Neurology, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Cynthia Keator
- Jane and John Justin Neurosciences, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Elissa Yozawitz
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Department of Pediatrics, 550033Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Nilika Singhal
- Department of Neurology, Division of Epilepsy, UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Jason Lockrow
- Division of Pediatric Neurology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jacob F Thomas
- School of Medicine, Adult and Child Consortium for Health Outcomes Research and Delivery Science, University of Colorado, Aurora, Colorado, USA
| | - Elizabeth Juarez-Colunga
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
15
|
Marini C, Giardino M. Novel treatments in epilepsy guided by genetic diagnosis. Br J Clin Pharmacol 2021; 88:2539-2551. [PMID: 34778987 DOI: 10.1111/bcp.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, precision medicine has emerged as a new paradigm for improved and more individualized patient care. Its key objective is to provide the right treatment, to the right patient at the right time, by basing medical decisions on individual characteristics, including specific genetic biomarkers. In order to realize this objective researchers and physicians must first identify the underlying genetic cause; over the last 10 years, advances in genetics have made this possible for several monogenic epilepsies. Through next generation techniques, a precise genetic aetiology is attainable in 30-50% of genetic epilepsies beginning in the paediatric age. While committed in such search for novel genes carrying disease-causing variants, progress in the study of experimental models of epilepsy has also provided a better understanding of the mechanisms underlying the condition. Such advances are already being translated into improving care, management and treatment of some patients. Identification of a precise genetic aetiology can already direct physicians to prescribe treatments correcting specific metabolic defects, avoid antiseizure medicines that might aggravate functional consequences of the disease-causing variant or select the drugs that counteract the underlying, genetically determined, functional disturbance. Personalized, tailored treatments should not just focus on how to stop seizures but possibly prevent their onset and cure the disorder, often consisting of seizures and its comorbidities including cognitive, motor and behaviour deficiencies. This review discusses the therapeutic implications following a specific genetic diagnosis and the correlation between genetic findings, pathophysiological mechanisms and tailored seizure treatment, emphasizing the impact on current clinical practice.
Collapse
Affiliation(s)
- Carla Marini
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| | - Maria Giardino
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| |
Collapse
|
16
|
Myers KA, Scheffer IE. Precision Medicine Approaches for Infantile-Onset Developmental and Epileptic Encephalopathies. Annu Rev Pharmacol Toxicol 2021; 62:641-662. [PMID: 34579535 DOI: 10.1146/annurev-pharmtox-052120-084449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epilepsy is an etiologically heterogeneous condition; however, genetic factors are thought to play a role in most patients. For those with infantile-onset developmental and epileptic encephalopathy (DEE), a genetic diagnosis is now obtained in more than 50% of patients. There is considerable motivation to utilize these molecular diagnostic data to help guide treatment, as children with DEEs often have drug-resistant seizures as well as developmental impairment related to cerebral epileptiform activity. Precision medicine approaches have the potential to dramatically improve the quality of life for these children and their families. At present, treatment can be targeted for patients with diagnoses in many genetic causes of infantile-onset DEE, including genes encoding sodium or potassium channel subunits, tuberous sclerosis, and congenital metabolic diseases. Precision medicine may refer to more intelligent choices of conventional antiseizure medications, repurposed agents previously used for other indications, novel compounds, enzyme replacement, or gene therapy approaches. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kenneth A Myers
- Research Institute of the McGill University Health Centre, Division of Child Neurology, Department of Pediatrics, and Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Quebec H4A 3J1, Canada;
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia; .,Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia.,The Florey Institute of Neuroscience and Mental Health and Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| |
Collapse
|
17
|
Nabbout R, Kuchenbuch M, Chiron C, Curatolo P. Pharmacotherapy for Seizures in Tuberous Sclerosis Complex. CNS Drugs 2021; 35:965-983. [PMID: 34417984 DOI: 10.1007/s40263-021-00835-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2021] [Indexed: 01/18/2023]
Abstract
Epilepsy is one of the main symptoms affecting the lives of individuals with tuberous sclerosis complex (TSC), causing a high rate of morbidity. Individuals with TSC can present with various types of seizures, epilepsies, and epilepsy syndromes that can coexist or appear in relation to age. Focal epilepsy is the most frequent epilepsy type with two developmental and epileptic encephalopathies: infantile spasms syndrome and Lennox-Gastaut syndrome. Active screening and early management of epilepsy is recommended in individuals with TSC to limit its consequences and its impact on quality of life, cognitive outcome and the economic burden of the disease. The progress in the knowledge of the mechanisms underlying epilepsy in TSC has paved the way for new concepts in the management of epilepsy related to TSC. In addition, we are moving from traditional "reactive" and therapeutic choices with current antiseizure medications used after the onset of seizures, to a proactive approach, aimed at predicting and preventing epileptogenesis and the onset of epilepsy with vigabatrin, and to personalized treatments with mechanistic therapies, namely mechanistic/mammalian target of rapamycin inhibitors. Indeed, epilepsy linked to TSC is one of the only epilepsies for which a predictive and preventive approach can delay seizure onset and improve seizure response. However, the efficacy of such interventions on long-term cognitive and psychiatric outcomes is still under investigation.
Collapse
Affiliation(s)
- Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, Université de Paris, 149 rue de Sèvres, 75015, Paris, France.
- UMR 1163, Institut National de la Santé et de la Recherche Médicale (INSERM), Imagine Institute, Université de Paris, Paris, France.
| | - Mathieu Kuchenbuch
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, Université de Paris, 149 rue de Sèvres, 75015, Paris, France
- UMR 1163, Institut National de la Santé et de la Recherche Médicale (INSERM), Imagine Institute, Université de Paris, Paris, France
| | - Catherine Chiron
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, Université de Paris, 149 rue de Sèvres, 75015, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1141, Neurospin, Gif sur Yvette, France
| | - Paolo Curatolo
- Department of System Medicine, Child Neurology and Psychiatry Unit, Tor Vergata University Hospital, Rome, Italy
| |
Collapse
|
18
|
Schubert-Bast S, Strzelczyk A. Review of the treatment options for epilepsy in tuberous sclerosis complex: towards precision medicine. Ther Adv Neurol Disord 2021; 14:17562864211031100. [PMID: 34349839 PMCID: PMC8290505 DOI: 10.1177/17562864211031100] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disorder caused by mutations in the TSC1 or TSC2 genes, which encode proteins that antagonise the mammalian isoform of the target of rapamycin complex 1 (mTORC1) - a key mediator of cell growth and metabolism. TSC is characterised by the development of benign tumours in multiple organs, together with neurological manifestations including epilepsy and TSC-associated neuropsychiatric disorders (TAND). Epilepsy occurs frequently and is associated with significant morbidity and mortality; however, the management is challenging due to the intractable nature of the seizures. Preventative epilepsy treatment is a key aim, especially as patients with epilepsy may be at a higher risk of developing severe cognitive and behavioural impairment. Vigabatrin given preventatively reduces the risk and severity of epilepsy although the benefits for TAND are inconclusive. These promising results could pave the way for evaluating other treatments in a preventative capacity, especially those that may address the underlying pathophysiology of TSC, including everolimus, cannabidiol and the ketogenic diet (KD). Everolimus is an mTOR inhibitor approved for the adjunctive treatment of refractory TSC-associated seizures that has demonstrated significant reductions in seizure frequency compared with placebo, improvements that were sustained after 2 years of treatment. Highly purified cannabidiol, recently approved in the US as Epidiolex® for TSC-associated seizures in patients ⩾1 years of age, and the KD, may also participate in the regulation of the mTOR pathway. This review focusses on the pivotal clinical evidence surrounding these potential targeted therapies that may form the foundation of precision medicine for TSC-associated epilepsy, as well as other current treatments including anti-seizure drugs, vagus nerve stimulation and surgery. New future therapies are also discussed, together with the potential for preventative treatment with targeted therapies. Due to advances in understanding the molecular genetics and pathophysiology, TSC represents a prototypic clinical syndrome for studying epileptogenesis and the impact of precision medicine.
Collapse
Affiliation(s)
- Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt, Schleusenweg 2-16, Frankfurt am Main, 60528, Germany
| |
Collapse
|
19
|
Kolbjer S, Martin DA, Pettersson M, Dahlin M, Anderlid BM. Lissencephaly in an epilepsy cohort: Molecular, radiological and clinical aspects. Eur J Paediatr Neurol 2021; 30:71-81. [PMID: 33453472 DOI: 10.1016/j.ejpn.2020.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Lissencephaly is a rare malformation of cortical development due to abnormal transmantle migration resulting in absent or reduced gyration. The lissencephaly spectrum consists of agyria, pachygyria and subcortical band heterotopia. In this study we compared genetic aetiology, neuroradiology, clinical phenotype and response to antiepileptic drugs in patients with epilepsy and lissencephaly spectrum malformations. METHODS The study group consisted of 20 patients - 13 males and 7 females, aged 18 months to 21 years at the time of data collection. Genetic testing was performed by oligonucleotide array comparative genomic hybridization (microarray), multiplex ligation-dependent probe amplification (MLPA), targeted gene panels and whole exome/genome sequencing. All neuroradiological investigations were re-evaluated and the malformations were classified by the same neuroradiologist. Clinical features and response to anti-epileptic drugs (AEDs) were evaluated by retrospective review of medical records. RESULTS In eleven patients (55%) mutations in PAFAH1B1 (LIS1) or variable microdeletions of 17p13.3 including the PAFAH1B1 gene were detected. Four patients (20%) had tubulin encoding gene mutations (TUBA1A, TUBG1 and TUBGCP6). Mutations in DCX, DYNC1H1, ADGRG1 and WDR62 were identified in single patients. In one patient, a possibly pathogenic intragenic deletion in TRIO was detected. A clear radiologic distinction could be made between tubulinopathies and PAFAH1B1 related lissencephaly. The majority of the patients had therapy resistant epilepsy and epileptic spasms was the most prominent seizure type. The best therapeutic response to seizure control in our cohort was obtained by the ketogenic diet, vigabatrin, clobazam, phenobarbital and valproate. CONCLUSION The most common genetic aetiologies in our cohort of 20 individuals with epilepsy and lissencephaly spectrum were intragenic deletions or single nucleotide mutations in PAFAH1B1 or larger deletions in 17p13.3, encompassing PAFAH1B1, followed by mutations in tubulin encoding genes. Radiological findings could reliably predict molecular results only in agyria with a posterior to anterior gradient. Radiological and molecular findings did not correlate consistently with severity of clinical outcome or therapeutic response.
Collapse
Affiliation(s)
- Sintia Kolbjer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Neuropaediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| | - Daniel A Martin
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Department of Paediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Dahlin
- Department of Neuropaediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Abstract
Pediatric epilepsy is a highly variable condition due to age-related expression of syndromes that require specific diagnosis, evaluations, and treatments. Children with epilepsy differ from their adult counterparts in many important ways, mostly related to the age-related expression of specific epilepsy syndromes. This results in many important considerations related to the epilepsy diagnosis, classification, evaluations to determine an etiology, as well as treatment guidelines. A good understanding of these factors will help to establish an accurate epilepsy diagnosis, which in turn will guide appropriate testing and treatment decisions. In this way, patients will have improved seizure outcomes, and families will be educated appropriately and provided with the most accurate prognostic information available. The purpose of this article is to review the diagnosis, work-up, and management of pediatric epilepsy.
Collapse
Affiliation(s)
- Jeffrey R Tenney
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
21
|
Abstract
Children with infantile spasms are likely to have a poor outcome. Outcome measures for infantile spasms include primary response to treatment, relapse of spasms, neurological development, death, and progression to another type of epilepsy (Consensus Statements of the WEST Delphi Group 2004). This review is based mainly on prospective studies and emphasizes data about the current first-line drugs, adrenocorticotropic hormone, vigabatrin, and prednisolone, taking into account the proportion of patients with known and unknown etiology, which has a very strong effect on seizure outcome. In most studies, hormonal treatment (adrenocorticotropic hormone or prednisolone) is the optimal monotherapy, except for patients with tuberous sclerosis complex, in whom vigabatrin appears superior. Combination therapy (hormones plus vigabatrin) may well be more effective than either agent alone. The underlying etiology is the most important prognostic factor. In studies with a long follow-up (up to 50 years), a favorable cognitive outcome has been observed in approximately one quarter of patients and complete seizure freedom in one-third. Autism is relatively frequent, and premature mortality is high throughout life. Modifiable prognostic factors include early recognition of the spasms with prompt treatment, short duration of hypsarrhythmia, prompt treatment of relapses of spasms and multifocal epileptic discharges, and early treatment of adverse effects. It is hoped that eventually advanced genetics and molecular data will allow an understanding of the pathogenetic mechanisms of many specific etiologies to allow disease-specific treatment such as is emerging for tuberous sclerosis.
Collapse
Affiliation(s)
- Raili Riikonen
- Children's Hospital, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
22
|
Specchio N, Pietrafusa N, Ferretti A, De Palma L, Santarone ME, Pepi C, Trivisano M, Vigevano F, Curatolo P. Treatment of infantile spasms: why do we know so little? Expert Rev Neurother 2020; 20:551-566. [PMID: 32316776 DOI: 10.1080/14737175.2020.1759423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Infantile spasm (IS) is an epileptic syndrome with typical onset within the first 2 years of life. This condition might be caused by several etiologies. IS is associated with pathological neuronal networks; however, definite hypotheses on neurobiological processes are awaited. AREAS COVERED Changes in NMDA and GABAB receptors and increase of Ca2+ conductance are some of the possible pathophysiological mechanisms. Animal models can help, but most have only some features of IS. Outcome is strongly affected by etiology and the timing of treatment, which relies still on ACTH, oral steroids, and vigabatrin. No significant differences in terms of efficacy have been documented, though a combination of ACTH and vigabatrin seems to be associated with better long-term outcomes. Despite the increasing knowledge about the etiology and pathophysiology of IS, in the last years, no new treatment approaches have been recognized to be able to modify the neurobiological process underlying IS. Precision medicine has far to come in IS. EXPERT OPINION Recently, no new therapeutic options for IS have emerged, probably due to the lack of reliable animal models and to the extreme variability in etiologies. Consequently, the outlook for patients and families is poor and early recognition and intervention remain research priorities.
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , Rome, 00165, Italy.,Member of European Reference Network EpiCARE
| | - Nicola Pietrafusa
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , Rome, 00165, Italy
| | - Alessandro Ferretti
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , Rome, 00165, Italy
| | - Luca De Palma
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , Rome, 00165, Italy
| | - Marta Elena Santarone
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , 00165, Rome, Italy
| | - Chiara Pepi
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , Rome, 00165, Italy.,Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University , 00133, Rome, Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , Rome, 00165, Italy
| | - Federico Vigevano
- Member of European Reference Network EpiCARE.,Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS , 00165, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University , 00133, Rome, Italy
| |
Collapse
|
23
|
van der Poest Clement E, Jansen FE, Braun KPJ, Peters JM. Update on Drug Management of Refractory Epilepsy in Tuberous Sclerosis Complex. Paediatr Drugs 2020; 22:73-84. [PMID: 31912454 DOI: 10.1007/s40272-019-00376-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic neurocutaneous disorder with epilepsy as a common and early presenting symptom. The neurological phenotype, however, is variable and unpredictable. Early and refractory seizures, infantile spasms in particular, are associated with a poor neurological outcome. Preliminary data suggests early and aggressive seizure control may mitigate the detrimental neurodevelopmental effects of epilepsy. For infantile spasms, vigabatrin is the first line of treatment, and steroids and classic antiepileptic drugs (AEDs) are suitable for second line. Based on retrospective data, vigabatrin should be considered for other indications, especially in infants with focal seizures, as this may prevent infantile spasms, but also in children and adults with epileptic spasms and tonic seizures. Otherwise, for most seizure types, treatment is similar to that for patients without TSC, including the use of novel AEDs, although limited data are available. Three major developments are changing the field of epilepsy management in TSC. First, final recommendations on preventive treatment with vigabatrin will result from two multicenter trials in the US (PREVeNT, clinicaltrials.gov #NCT02849457) and Europe (EPISTOP, clinicaltrials.gov #NCT02098759). Second, treatment with everolimus, an inhibitor of the mechanistic target of rapamycin (mTOR), reduced seizures when compared to placebo. Further, mTOR inhibitors may have an overall disease-modifying effect. Third, the role of cannabidiol in the treatment of refractory seizures in TSC is yet to be established. With treatment recommendations in TSC, we keep an eye on the prize for the broader field of pediatric epilepsy: the lessons learned from TSC are likely applicable to other epileptic encephalopathies.
Collapse
Affiliation(s)
| | - Floor E Jansen
- Department of Child Neurology, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Kees P J Braun
- Department of Child Neurology, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, FE9, Boston, 02115, USA.
| |
Collapse
|
24
|
Abstract
Infantile spasms of unknown cause: predictors of outcome and genotype-phenotype correlation Yuskaitis CJ, Ruzhnikov MRZ, Howell KB, et al. Pediatr Neurol. 2018;87:48–56. doi:10.1016/j.pediatrneurol.2018.04.012. Epub 2018 May 7. Background: No large-scale studies have specifically evaluated the outcomes of infantile spasms (IS) of unknown cause, previously known as cryptogenic or idiopathic. The Epilepsy Phenome/Genome Project (EPGP) aimed to characterize IS of unknown cause by phenotype and genotype analysis. Methods: We undertook a retrospective multicenter observational cohort of 133 individuals within the EPGP database met criteria for IS of unknown cause with at least 6 months of follow-up data. Clinical medical records, imaging, and electroencephalography were examined. Results: Normal development occurred in only 15% of IS of unknown cause. The majority (85%) had clinically documented developmental delay (15% mild, 20% moderate, and 50% severe) at last assessment (median 2.7 years; interquartile interval 1.71-6.25 years). Predictors of positive developmental outcomes included no delay prior to IS (P < .001), older age of IS onset (median 6 months old), and resolution of IS after initial treatment (P < .001). Additional seizures after IS occurred in 67%, with predictors being seizures prior to IS (P = .018), earlier age of IS onset (median 5 months old), and refractory IS (P = .008). On a research basis, whole exome sequencing identified 15% with de novo variants in known epilepsy genes. Individuals with a genetic finding were more likely to have poor developmental outcomes (P = .035). Conclusions: The current study highlights the predominately unfavorable developmental outcomes and that subsequent seizures are common in children with IS of unknown cause. Ongoing genetic evaluation of IS of seemingly unknown cause is likely to yield a diagnosis and provide valuable prognostic information.
Collapse
|
25
|
Hand-held, dilation-free, electroretinography in children under 3 years of age treated with vigabatrin. Doc Ophthalmol 2019; 138:195-203. [DOI: 10.1007/s10633-019-09684-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
|
26
|
Abstract
Although the majority of seizures in neonates are related to acute brain injury, a substantial minority are the first symptom of a neonatal-onset epilepsy often linked to a pathogenic genetic variant. Historically, studies on neonatal seizures including treatment response and long-term consequences have lumped all etiologies together. However, etiology has been consistently shown to be the most important determinant of outcome. In the past few years, an increasing number of monogenic disorders have been described and might explain up to a third of neonatal-onset epilepsy syndromes previously included under the umbrella of Ohtahara syndrome and early myoclonic encephalopathy. In this chapter, we define the concept of genetic epilepsy and review the classification. Then, we review the most relevant monogenic neonatal-onset epilepsies, detail their underlying pathophysiologic mechanisms, and present their electroclinical phenotypes. We highlight that, in some cases, such as neonates with KCNQ2 or KCNT1 gene mutations, the early recognition of the electroclinical phenotype can lead to targeted diagnostic testing and precision medicine treatment, enabling the possibility of improved outcome.
Collapse
|
27
|
Abstract
The treatment of infantile spasms is challenging, especially in the context of the following: (1) a severe phenotype with high morbidity and mortality; (2) the urgency of diagnosis and successful early response to therapy; and (3) the paucity of effective, safe, and well-tolerated therapies. Even after initially successful treatment, relapse risk is substantial and the most effective therapies pose considerable risk with long-term administration. In evaluating any treatment for infantile spasms, the key short-term outcome measure is freedom from both epileptic spasms and hypsarrhythmia. In contrast, the most important long-term outcomes are enduring seizure-freedom and measures of intellectual performance in later childhood and adulthood. First-line treatment options-namely hormonal therapy and vigabatrin-display moderate to high efficacy but also exhibit substantial side-effect burdens. Data on efficacy and safety of each class of therapy, as well as the combination of these therapies, are reviewed in detail. Specific hormonal therapies (adrenocorticotropic hormone and various corticosteroids) are contrasted. Those etiologies that prompt specific therapies are reviewed briefly, as are an array of second-line therapies supported by less-compelling data. The ketogenic diet is discussed in greater detail, with a focus on the limitations of numerous available studies that generally suggest that it is efficacious. Special discussion is allocated to cannabidiol-the investigational therapy that has received the most attention, and which is already in use in the form of various artisanal cannabis extracts. Finally, a treatment algorithm reflecting the concepts and controversies discussed in this review is presented.
Collapse
Affiliation(s)
- Shaun A. Hussain
- Division of Pediatric NeurologyDavid Geffen School of MedicineUCLA Mattel Children's HospitalLos AngelesCaliforniaU.S.A.
| |
Collapse
|
28
|
Hussain SA, Schmid E, Peters JM, Goyal M, Bebin EM, Northrup H, Sahin M, Krueger DA, Wu JY. High vigabatrin dosage is associated with lower risk of infantile spasms relapse among children with tuberous sclerosis complex. Epilepsy Res 2018; 148:1-7. [PMID: 30296632 DOI: 10.1016/j.eplepsyres.2018.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/07/2018] [Accepted: 09/28/2018] [Indexed: 11/16/2022]
Abstract
After initially successful treatment of infantile spasms, the long-term cumulative risk of relapse approaches 50%, and there is no established protocol to mitigate this risk. Although vigabatrin may be an effective means to prevent relapse, there is little guidance as to ideal duration and dosage. Using a cohort of children with infantile spasms and tuberous sclerosis complex (TSC), we evaluated the potential association of post-response VGB treatment and the rate of infantile spasms relapse. Patients with infantile spasms and clinical response to vigabatrin were identified among a multicenter prospective observational cohort of children with TSC. For each patient we recorded dates of infantile spasms onset, response to vigabatrin, relapse (if any), and quantified duration and dosage of vigabatrin after response. Time to relapse as a function of vigabatrin exposure was evaluated using survival analyses. We identified 50 children who responded to VGB. During a median follow-up of 16.6 months (IQR 10.3-22.9), 12 (24%) patients subsequently relapsed after a median of 7.8 months (IQR 3.1-9.6). Relapse occurred after VGB discontinuation in four patients, and during continued VGB treatment in the remaining eight cases. In survival analyses, risk of relapse was unaffected by the presence or absence of VGB treatment (HR 0.31, 95%CI 0.01-28.4, P = 0.61), but weighted-average dosage was associated with marked reduction in relapse risk: Each 50 mg/kg/d increment in dosage was associated with 61% reduction in risk (HR 0.39, 95%CI 0.17 - 0.90, P = 0.026). This study suggests that the risk of infantile spasms relapse in TSC may be reduced by high-dose vigabatrin treatment.
Collapse
Affiliation(s)
- Shaun A Hussain
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital and David Geffen School of Medicine, Los Angeles, California, United States.
| | - Ernst Schmid
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital and David Geffen School of Medicine, Los Angeles, California, United States
| | - Jurriaan M Peters
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Monisha Goyal
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Hope Northrup
- University of Texas Houston, Houston, Texas, United States
| | - Mustafa Sahin
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital, Cincinnati, Ohio, United States
| | - Joyce Y Wu
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital and David Geffen School of Medicine, Los Angeles, California, United States
| | | |
Collapse
|
29
|
Management of epilepsy associated with tuberous sclerosis complex: Updated clinical recommendations. Eur J Paediatr Neurol 2018; 22:738-748. [PMID: 29880258 DOI: 10.1016/j.ejpn.2018.05.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/12/2018] [Accepted: 05/20/2018] [Indexed: 11/23/2022]
Abstract
Patients with tuberous sclerosis complex (TSC) are at very high risk for developing epilepsy, and the majority experience seizure onset during the first year of life. Early targeted interventions increase the probability of seizure-freedom and may protect neurodevelopment. In 2012, clinical recommendations for the management of epilepsy in patients with TSC were published by a panel of European experts. Since that time novel studies, reports, and expert opinions in preclinical and clinical TSC-related sciences prompted the need for updated recommendations, including epileptogenesis in TSC, the potential role of predictive biomarkers, the possible benefits of presymptomatic diagnosis and preventive treatment, and new treatment options including mTOR inhibitors. A reconvened panel reviewed the current literature to answer specific questions and five panelists discussed the findings, followed by a general discussion during which all issues were debated to achieve consensus regarding recommendations. A draft manuscript based on these discussions and recommendations was then circulated several times among the panelists, who added their own comments. All the panelists/authors agreed with the final manuscript, which was then submitted for publication. The panel concluded that the need for early diagnosis of TSC-associated seizures is now established, electroencephalographic monitoring has good predictive value for epilepsy before seizure onset in TSC, and, until conclusive data from the EPISTOP trial are available, administration of vigabatrin may be considered in children with subclinical epileptiform EEG discharges. The panel also supported the role of adjunctive everolimus for TSC-associated drug-refractory seizures and emphasized the necessity of early surgical evaluation.
Collapse
|
30
|
Abstract
West syndrome (WS), also known as infantile spasms, occurs in infancy with a peak between 4 and 7 months. Spasms, neurodevelopmental regression and hypsarrhythmia on electroencephalogram (EEG) basically define WS. The International League Against Epilepsy commission classifies the aetiologies of WS into genetic, structural, metabolic and unknown. Early diagnosis and a shorter lag time to treatment are essential for the overall outcome of WS patients. These goals are feasible with the addition of brain magnetic resonance imaging (MRI) and genetic and metabolic testing. The present work analysed the medical literature on WS and reports the principal therapeutic protocols of its management. Adrenocorticotropic hormone (ACTH), vigabatrin (VGB) and corticosteroids are the first-line treatments for WS. There is no unique therapeutic protocol for ACTH, but most of the evidence suggests that low doses are as effective as high doses for short-term treatment, which is generally 2 weeks followed by dose tapering. VGB is generally administered at doses from 50 to 150 mg/kg/day, but its related retinal toxicity, which occurs in 21-34% of infants, is most frequently observed when treatment periods last longer than 6 months. Among corticosteroids, a treatment of 14 days of oral prednisolone (40-60 mg/day) has been considered effective and well tolerated. Considering that an early diagnosis and a shorter lag time to treatment are essential for successful outcomes in these patients, further studies on efficacy of the different therapeutic approaches with evaluation of final outcome after cessation of therapy are needed.
Collapse
|
31
|
Abstract
Whereas the majority of seizures in neonates are related to acute brain injury, a substantial minority are the first symptom of a neonatal-onset epilepsy, often linked to a pathogenic genetic variant. This defect may disrupt cortical development (e.g., lissencephaly, focal cortical dysplasia), lead to metabolic changes (e.g., pyridoxine-dependent epilepsy, sulfite oxidase deficiency) or lead to cortical dysfunction without metabolic or macroscopic structural changes (e.g., channelopathies, STXBP1). Historically, studies on treatment response and long-term consequences of neonatal seizures have lumped all etiologies together. However, etiology has been consistently shown to be the most important determinant of outcome. Here, we address the elements differentiating neonatal-onset epilepsies from acute symptomatic seizures. We review some common neonatal-onset epilepsies and emphasize how pathognomonic electro-clinical phenotypes such as the ones associated with KCNQ2 or KCNT1 gene mutation, when recognized early, can lead to targeted diagnostic testing and precision medicine treatment, enabling the possibility of improved outcome.
Collapse
Affiliation(s)
| | - Tristan T Sands
- Department of Neurology, Columbia University, New York, NY, USA
| | - Maria Roberta Cilio
- Department of Pediatrics, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA.
| |
Collapse
|
32
|
Curatolo P, Moavero R, van Scheppingen J, Aronica E. mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Rev Neurother 2018; 18:185-201. [DOI: 10.1080/14737175.2018.1428562] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital, Rome, Italy
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital, Rome, Italy
- Child Neurology Unit, Neuroscience and Neurorehabilitation Department, “Bambino Gesù” Children’s Hospital, IRCCS, Rome, Italy
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| |
Collapse
|
33
|
Nickels KC, Wirrell EC. Cognitive and Social Outcomes of Epileptic Encephalopathies. Semin Pediatr Neurol 2017; 24:264-275. [PMID: 29249506 DOI: 10.1016/j.spen.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The term "epileptic encephalopathy" denotes a disorder in which seizures or frequent interictal discharges exacerbate neurocognitive dysfunction beyond what would be expected on the basis of underlying etiology. However, many underlying causes of epileptic encephalopathy also result in neurocognitive deficits, and it can be challenging to discern to what extent these deficits can be improved with better seizure control. Additionally, as seizures in these conditions are typically refractory, children are often exposed to high doses of multiple antiepileptic drugs which further exacerbate these comorbidities. This review will summarize the neurocognitive and social outcomes in children with various epileptic encephalopathies. Prompt, accurate diagnosis of epilepsy syndrome and etiology allows selection of optimal therapy to maximize seizure control, limiting the impact of ongoing seizures and frequent epileptiform abnormalities on the developing brain. Furthermore, mandatory screening for comorbidities allows early recognition and focused therapy for these commonly associated conditions to maximize neurocognitive outcome.
Collapse
Affiliation(s)
- Katherine C Nickels
- Divisions of Child and Adolescent Neurology and Epilepsy, Mayo Clinic, Rochester, MN
| | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Mayo Clinic, Rochester, MN.
| |
Collapse
|
34
|
Jackson MC, Jafarpour S, Klehm J, Thome-Souza S, Coughlin F, Kapur K, Loddenkemper T. Effect of vigabatrin on seizure control and safety profile in different subgroups of children with epilepsy. Epilepsia 2017; 58:1575-1585. [PMID: 28691157 DOI: 10.1111/epi.13836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of vigabatrin in pediatric epilepsy. METHODS We retrospectively reviewed patients with epilepsy treated with vigabatrin over a 2-year period at a pediatric tertiary center. We assessed the relationship between seizure frequency, etiology, vigabatrin dose, adverse events, medication discontinuation reasons, and electroencephalography (EEG) characteristics. RESULTS One hundred three patients followed at Boston Children's Hospital were treated with vigabatrin and had complete medical records. Within the follow-up interval, 69 (67%) of 103 patients had discontinued vigabatrin therapy. Two patients (1.9%) died during therapy for unknown reasons. Median age at vigabatrin initiation was 8 months (interquartile range [IQR] 5-15). Median starting dose was 48.1 mg/kg per day (IQR 29.8-52.3) with a median target of 100 mg/kg (IQR 81.9-107.9). Median treatment duration was 12.1 months (n = 89, IQR 5.0-22.9) overall, and 13.3 months (IQR 5.2-23.2) for patients who discontinued vigabatrin. The most common reasons for discontinuation were controlled seizures in 31 (43.7%) of 71 and unsatisfactory therapeutic effect in 23 (32.4%) of 71. Median percent seizure reduction from baseline to first follow-up was 83.3% (IQR 27.4-99.8) and 96.7% (IQR 43.3-100) to last follow-up. Twenty-four (38.7%) of 62 patients with a follow-up posttreatment remained seizure-free. Four patients who had initially achieved seizure freedom relapsed. Patients with structural/metabolic etiology had greater median percent seizure reduction at first follow-up than patients with genetic etiology (98.7% vs. 61.4%, respectively, p = 0.001). Hypsarrhythmia resolved after therapy in 18 of 20 (90%, 95% confidence interval [CI] 70-97) patients with pretreatment hypsarrhythmia, and 2 patients presented with hypsarrhythmia posttreatment. Risk of having hypsarrhythmia was reduced by 32% (95% CI 14.9-49.1) posttreatment. SIGNIFICANCE Vigabatrin is efficacious in all seizure types and resolved hypsarrhythmia in most patients. In this series with a median treatment duration of 12.1 months, vigabatrin had a good safety profile with a low rate of discontinuation due to nonophthalmologic and ophthalmologic adverse effects.
Collapse
Affiliation(s)
- Michele C. Jackson
- Division of Epilepsy and Clinical Neurophysiology; Department of Neurology; Boston Children's Hospital; Harvard Medical School; Boston Massachusetts U.S.A
| | - Saba Jafarpour
- Division of Epilepsy and Clinical Neurophysiology; Department of Neurology; Boston Children's Hospital; Harvard Medical School; Boston Massachusetts U.S.A
| | - Jacquelyn Klehm
- Division of Epilepsy and Clinical Neurophysiology; Department of Neurology; Boston Children's Hospital; Harvard Medical School; Boston Massachusetts U.S.A
| | - Sigride Thome-Souza
- Division of Epilepsy and Clinical Neurophysiology; Department of Neurology; Boston Children's Hospital; Harvard Medical School; Boston Massachusetts U.S.A
- Psychiatry Department; Clinics Hospital-School of Medicine-University of Sao Paulo; Sao Paulo Brazil
| | - Francesca Coughlin
- Division of Epilepsy and Clinical Neurophysiology; Department of Neurology; Boston Children's Hospital; Harvard Medical School; Boston Massachusetts U.S.A
| | - Kush Kapur
- Division of Epilepsy and Clinical Neurophysiology; Department of Neurology; Boston Children's Hospital; Harvard Medical School; Boston Massachusetts U.S.A
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology; Department of Neurology; Boston Children's Hospital; Harvard Medical School; Boston Massachusetts U.S.A
| |
Collapse
|
35
|
Treatment issues for children with epilepsy transitioning to adult care. Epilepsy Behav 2017; 69:153-160. [PMID: 28188045 DOI: 10.1016/j.yebeh.2016.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022]
Abstract
This is the third of three papers that summarize the second symposium on Transition in Epilepsies held in Paris in June 2016. This paper focuses on treatment issues that arise during the course of childhood epilepsy and make the process of transition to adult care more complicated. Some AEDs used during childhood, such as stiripentol, vigabatrin, and cannabidiol, are unfamiliar to adult epilepsy specialists. In addition, new drugs are being developed for treatment of specific childhood onset epilepsy syndromes and have no indication yet for adults. The ketogenic diet may be effective during childhood but is difficult to continue in adult care. Regional adult epilepsy diet clinics could be helpful. Polytherapy is common for patients transitioning to adult care. Although these complex AED regimes are difficult, they are often possible to simplify. AEDs used in childhood may need to be reconsidered in adulthood. Rescue medications to stop prolonged seizures and clusters of seizures are in wide home use in children and can be continued in adulthood. Adherence/compliance is notoriously difficult for adolescents, but there are simple clinical approaches that should be helpful. Mental health issues including depression and anxiety are not always diagnosed and treated in children and young adults even though effective treatments are available. Attention deficit hyperactivity disorder and aggressive behavior disorders may interfere with transition and successful adulthood but these can be treated. For the majority, the adult social outcome of children with epilepsy is unsatisfactory with few proven interventions. The interface between pediatric and adult care for children with epilepsy is becoming increasingly complicated with a need for more comprehensive transition programs and adult epileptologists who are knowledgeable about special treatments that benefit this group of patients.
Collapse
|
36
|
An Updated, Evidence-Based Clinician’s Guide to the Evaluation and Treatment of West Syndrome. CURRENT PEDIATRICS REPORTS 2017. [DOI: 10.1007/s40124-017-0123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Wilmshurst JM, Ibekwe RC, O’Callaghan FJ. Epileptic spasms — 175 years on: Trying to teach an old dog new tricks. Seizure 2017; 44:81-86. [DOI: 10.1016/j.seizure.2016.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022] Open
|
38
|
Matsuura R, Hamano SI, Hirata Y, Oba A, Suzuki K, Kikuchi K. Intravenous immunoglobulin therapy is rarely effective as the initial treatment in West syndrome: A retrospective study of 70 patients. J Neurol Sci 2016; 368:140-4. [PMID: 27538618 DOI: 10.1016/j.jns.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE To evaluate factors influencing the efficacy and safety of intravenous immunoglobulins (IVIG) therapy for West syndrome. METHODS We investigated seizure outcomes in 70 patients who received IVIG treatment for West Syndrome during the first 3months after the onset of epileptic spasms. IVIG was administered for 3 consecutive days (initial IVIG treatment) at dosages ranging from 100 to 500mg/kg/day. If spasms disappeared within 2weeks of the initial treatment, maintenance IVIG treatment was commenced. We evaluated seizure outcomes at 2weeks (initial evaluation), at 2years (long-term evaluation), and the last visit (last follow-up evaluation) after the initial IVIG treatment. We analyzed dosages of IVIG, age at onset of spasms, treatment lag, and etiologies between responders and non-responders. RESULTS Among the patients, 7/70 (10.0%) had cessation of spasms and resolution of hypsarrhythmia at the initial evaluation. Another 6/70 patients (8.6%) were found to have cessation of spasms at the long-term evaluations. The treatment lag in responders was shorter than that in non-responders (P<0.01). There were no significant differences between responders and non-responders in IVIG dosages, age at onset of spasms, and etiologies. Two patients had relapse of partial seizures after cessation of spasms at the last follow-up evaluation. Adverse effects occurred in 2/70 patients. CONCLUSIONS The efficacy of IVIG was so low that it should not be considered as first-line treatment in West syndrome. IVIG therapy has a good safety profile and we would recommend it for West syndrome cases with drug resistance, severe complications associated with profound brain damage, severe brain atrophy, and in immunocompromised patients.
Collapse
Affiliation(s)
- Ryuki Matsuura
- Division of Neurology, Saitama Children's Medical Center, 2100, Magome, Iwatsuki-ku, Saitama-city, Saitama, 339-8551, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Shin-Ichiro Hamano
- Division of Neurology, Saitama Children's Medical Center, 2100, Magome, Iwatsuki-ku, Saitama-city, Saitama, 339-8551, Japan.
| | - Yuko Hirata
- Division of Neurology, Saitama Children's Medical Center, 2100, Magome, Iwatsuki-ku, Saitama-city, Saitama, 339-8551, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Atsuko Oba
- Division of Neurology, Saitama Children's Medical Center, 2100, Magome, Iwatsuki-ku, Saitama-city, Saitama, 339-8551, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Kotoko Suzuki
- Division of Neurology, Saitama Children's Medical Center, 2100, Magome, Iwatsuki-ku, Saitama-city, Saitama, 339-8551, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Kenjiro Kikuchi
- Division of Neurology, Saitama Children's Medical Center, 2100, Magome, Iwatsuki-ku, Saitama-city, Saitama, 339-8551, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
39
|
Hébert-Lalonde N, Carmant L, Major P, Roy MS, Lassonde M, Saint-Amour D. Electrophysiological Evidences of Visual Field Alterations in Children Exposed to Vigabatrin Early in Life. Pediatr Neurol 2016; 59:47-53. [PMID: 27105764 DOI: 10.1016/j.pediatrneurol.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND We assessed central and peripheral visual field processing in children with epilepsy who were exposed to vigabatrin during infancy. METHODS Steady-state visual evoked potentials and pattern electroretinograms to field-specific radial checkerboards flickering at two cycle frequencies (7.5 and 6 Hz for central and peripheral stimulations, respectively) were recorded from Oz and at the eye in seven school-age children (10.1 ± 3.5 years) exposed to vigabatrin early in life, compared with children early exposed to other antiepileptic drugs (n = 9) and healthy children (n = 8). The stimulation was made of two concentric circles (0 to 5 and 30 to 60 degrees of angle) and presented at four contrast levels (96%, 64%, 32%, and 16%). RESULTS Ocular responses were similar in all groups for central but not for the peripheral stimulations, which were significantly lower in the vigabatrin-exposed group at high contrast level. This peripheral retinal response was negatively correlated to vigabatrin exposure duration. Cortical responses to central stimulations, including contrast response functions in the children with epilepsy in both groups, were lower than those in normally developing children. CONCLUSIONS Alteration of ocular processing was found only in the vigabatrin-exposed children. Central cortical processing, however, was impaired in both epileptic groups, with more pronounced effects in vigabatrin-exposed children. Our study suggests that asymptomatic long-term visual toxicity may still be present at school age, even several years after discontinuation of drug therapy.
Collapse
Affiliation(s)
- Noémie Hébert-Lalonde
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada; Research Center, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Lionel Carmant
- Research Center, CHU Sainte-Justine, Montreal, Quebec, Canada; Division of Neurology, Department of Pediatrics, Sainte-Justine Hospital, Université de Montréal, Montreal, Quebec, Canada
| | - Philippe Major
- Research Center, CHU Sainte-Justine, Montreal, Quebec, Canada; Division of Neurology, Department of Pediatrics, Sainte-Justine Hospital, Université de Montréal, Montreal, Quebec, Canada
| | | | - Maryse Lassonde
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada; Research Center, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Dave Saint-Amour
- Research Center, CHU Sainte-Justine, Montreal, Quebec, Canada; Department of Ophtalmology, Université de Montréal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
40
|
Abstract
Purpose
– The purpose of this paper is to provide a brief, descriptive overview of Tuberous Sclerosis Complex (TSC) research with particular reference to studies on Autism Spectrum Disorder (ASD).
Design/methodology/approach
– A search of electronic databases was carried out to identify English language articles on TSC. The literature was explored in more detail with a focus on neurodevelopmental disorders associated with TSC such as ASD.
Findings
– The review included 3,679 references. The earliest articles identified were published in the early twentieth century. Since then research on TSC has advanced rapidly and is being carried out worldwide. Just 62 studies have focused on ASD in TSC, although the number of publications is increasing over time.
Research limitations/implications
– More research on ASD in TSC is needed to benefit those affected by TSC and the broader ASD scientific community.
Practical implications
– Practitioners working with children and adults with ASD should be aware of the wider health issues experienced by those with genetic conditions such as TSC. Similarly, clinicians working with those who have TSC should be aware of the high prevalence of ASD in the group and implications for the way they work with their patients.
Originality/value
– This is the first paper to map and characterise the scientific literature on TSC. There remains a focus on the biomedical aspects of TSC with fewer studies on psychosocial/educational or family impacts. The review concludes with recommended research questions for the future.
Collapse
|
41
|
Abstract
INTRODUCTION Stiripentol and vigabatrin are the two anticonvulsant drugs currently approved in severe infantile-onset epilepsies, respectively Dravet syndrome and infantile spasms. AREAS COVERED For both, the indication was discovered by chance thanks to an exploratory study. Both demonstrated indisputable efficacy through randomized-controlled trials. Stiripentol as adjunctive therapy to clobazam and valproate performed better than placebo, and vigabatrin as first-line monotherapy better than the reference steroid therapy in spasms due to tuberous sclerosis. At one-year treatment vigabatrin and steroids were equally efficient in the other etiologies of spasms. However, it took more than 20 years for both drugs to be approved world-wide. EXPERT OPINION Stiripentol suffered from pharmacokinetic potentiation of clobazam, thus raising the question whether it was efficient per se. Finally, animal models and pharmacogenetic data on CYP2C19 confirmed its specific anticonvulsant effect. Stiripentol (in comedication with clobazam and valproate) is therefore to be recommended for Dravet patients. Vigabatrin was found to have a frequent and irreversible retinal toxicity, which required an alternative visual testing to be detected in young children. Today the benefit/risk ratio of vigabatrin as first-line is considered to be positive in infantile spasms, given the severity of this epilepsy and the lack of a safer alternative therapy.
Collapse
Affiliation(s)
- Catherine Chiron
- a INSERM U1129, Neuropediatric Department , Necker Enfants-Malades Hospital , Paris , France
| |
Collapse
|
42
|
Abstract
Investigators from the National Infantile Spasms Consortium (NISC) in the USA studied the etiology of new-onset infantile spasms (IS) in 251 infants (mean age at onset, 7.1, range, 0.1-22.7 months).
Collapse
Affiliation(s)
- Richard E Appleton
- The Roald Dahl EEG Unit, Paediatric Neurosciences Foundation, Alder Hey Children's Hospital, Liverpool, UK
| |
Collapse
|
43
|
Franco V, French JA, Perucca E. Challenges in the clinical development of new antiepileptic drugs. Pharmacol Res 2016; 103:95-104. [DOI: 10.1016/j.phrs.2015.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/13/2015] [Accepted: 11/18/2015] [Indexed: 12/26/2022]
|
44
|
Kotagal P. Limiting Retinal Toxicity of Vigabatrin in Children With Infantile Spasms. Epilepsy Curr 2015; 15:327-9. [PMID: 26633952 PMCID: PMC4657771 DOI: 10.5698/1535-7511-15.6.327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Gataullina S, Dulac O. Current and future treatment of infantile spasms. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1086332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Curatolo P, Moavero R, de Vries PJ. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol 2015; 14:733-45. [PMID: 26067126 DOI: 10.1016/s1474-4422(15)00069-1] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 01/22/2023]
Abstract
Tuberous sclerosis (also known as tuberous sclerosis complex [TSC]) is a multisystem genetic disorder that affects almost every organ in the body. Mutations in the TSC1 or TSC2 genes lead to disruption of the TSC1-TSC2 intracellular protein complex, causing overactivation of the mammalian target of rapamycin (mTOR) protein complex. The surveillance and management guidelines and clinical criteria for tuberous sclerosis were revised in 2012, and mTOR inhibitors are now recommended as treatment options for subependymal giant cell astrocytomas and renal angiomyolipomas-two common features of the disease. However, most morbidity and mortality caused by tuberous sclerosis is associated with neurological and neuropsychiatric manifestations. Treatment of epilepsy associated with tuberous sclerosis remains a major challenge, with more than 60% of patients having ongoing seizures. Tuberous-sclerosis-associated neuropsychiatric disorders (TAND) are multilevel and occur in most individuals with the disorder, but are rarely assessed and treated. Clinical trials of mTOR inhibitors to treat seizures and TAND are underway. Management of the neurological and neuropsychiatric manifestations of the disorder should be coordinated with treatment of other organ systems. In view of the age-related expression of manifestations from infancy to adulthood, continuity of clinical care and ongoing monitoring is paramount, and particular attention is needed to plan transition of patient care from childhood to adult services.
Collapse
Affiliation(s)
- Paolo Curatolo
- Neuroscience Department, Child Neurology and Psychiatry Division, University Hospital of Tor Vergata, Rome, Italy.
| | - Romina Moavero
- Neuroscience Department, Child Neurology and Psychiatry Division, University Hospital of Tor Vergata, Rome, Italy; Neuroscience Department, Child Neurology Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Petrus J de Vries
- Division of Child and Adolescent Psychiatry, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
47
|
Davis PE, Peters JM, Krueger DA, Sahin M. Tuberous Sclerosis: A New Frontier in Targeted Treatment of Autism. Neurotherapeutics 2015; 12:572-83. [PMID: 25986747 PMCID: PMC4489948 DOI: 10.1007/s13311-015-0359-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder with a high prevalence of autism spectrum disorder (ASD). Tremendous progress in understanding the pathogenesis of TSC has been made in recent years, along with initial trials of medical treatment aimed specifically at the underlying mechanism of the disorder. At the cellular level, loss of TSC1 or TSC2 results in upregulation of the mechanistic target of rapamycin (mTOR) pathway. At the circuitry level, TSC and mTOR play crucial roles in axonal, dendritic, and synaptic development and function. In this review, we discuss the molecular mechanism underlying TSC, and how this disease results in aberrant neural connectivity at multiple levels in the central nervous system, leading to ASD symptoms. We then review recent advances in mechanism-based treatments of TSC, and the promise that these treatments provide for future mechanism-based treatment of ASD. Because of these recent advances, TSC represents an ideal model for how to make progress in understanding and treating the mechanisms that underlie ASD in general.
Collapse
Affiliation(s)
- Peter E. Davis
- />Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, 02115 MA USA
| | - Jurriaan M. Peters
- />Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, 02115 MA USA
| | - Darcy A. Krueger
- />Division of Neurology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Mustafa Sahin
- />Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, 02115 MA USA
- />F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
48
|
Abstract
Tuberous sclerosis complex is an autosomal-dominant, neurocutaneous, multisystem disorder characterized by cellular hyperplasia and tissue dysplasia. The genetic cause is mutations in the TSC1 gene, found on chromosome 9q34, and TSC2 gene, found on chromosome 16p13. The clinical phenotypes resulting from mutations in either of the 2 genes are variable in each individual. Herein, advances in the understanding of molecular mechanisms in tuberous sclerosis complex are reviewed, and current guidelines for diagnosis, treatment, follow-up, and management are summarized.
Collapse
Affiliation(s)
- Francis J DiMario
- Department of Pediatrics, Neurogenetics-Tuberous Sclerosis Clinic, Connecticut Children's Medical Center, 282 Washington Street, Hartford, CT 06070, USA.
| | - Mustafa Sahin
- Multidisciplinary Tuberous Sclerosis Program, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
49
|
Abstract
Most children with new-onset epilepsy achieve seizure freedom with appropriate antiepileptic drugs (AEDs). However, nearly 20 % will continue to have seizures despite AEDs, as either monotherapy or in combination. Despite the growing market of new molecules over the last 20 years, the proportion of drug-resistant epilepsies has not changed. In this review, we report the evidence of efficacy and safety based on phase III randomized controlled clinical trials (RCTs) of AEDs currently used in the paediatric population. We conducted a literature search using the PubMed database and the Cochrane Database of Systematic Reviews. We also analysed the RCTs of newer AEDs whose efficacy in adolescents and adults might suggest possible use in children. Most of the phase III trials on AEDs in children have major methodological limitations that considerably limit meaningful conclusions about comparative efficacy between old and new molecules. Since the efficacy of new drugs has only been reported versus placebo, the commonly held opinion that new and newer AEDs have a better safety profile than old ones does not appear to be supported by evidence. Despite limited solid evidence, pharmacological management has improved over the years as a consequence of increased awareness of some degree of specificity of treatment in relation to different epilepsy syndromes and attention to adverse events. Future research should be directed taking these factors, as well as the diversity of epilepsy, into consideration.
Collapse
Affiliation(s)
- Anna Rosati
- Paediatric Neurology Unit, Children's Hospital A. Meyer, University of Firenze, Viale Pieraccini 24, 50139, Florence, Italy
| | - Salvatore De Masi
- Clinical Trial Office, Children's Hospital A. Meyer, Viale Pieraccini 24, 50139, Florence, Italy
| | - Renzo Guerrini
- Paediatric Neurology Unit, Children's Hospital A. Meyer, University of Firenze, Viale Pieraccini 24, 50139, Florence, Italy.
| |
Collapse
|
50
|
Chiron C, Dulac O. Analysis of vigabatrin treatment causing visual field defects in infantile spasms. Dev Med Child Neurol 2015; 57:9-10. [PMID: 25109842 DOI: 10.1111/dmcn.12558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Catherine Chiron
- Inserm U1129, University Paris Descartes, Paris, France; CEA, Gif sur Yvette, Paris, France; APHP, Necker Hospital, Paris, France
| | | |
Collapse
|