1
|
Stephens GS, Park J, Eagle A, You J, Silva-Pérez M, Fu CH, Choi S, Romain CPS, Sugimoto C, Buffington SA, Zheng Y, Costa-Mattioli M, Liu Y, Robison AJ, Chin J. Persistent ∆FosB expression limits recurrent seizure activity and provides neuroprotection in the dentate gyrus of APP mice. Prog Neurobiol 2024; 237:102612. [PMID: 38642602 PMCID: PMC11406539 DOI: 10.1016/j.pneurobio.2024.102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer's disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.
Collapse
Affiliation(s)
| | - Jin Park
- Department of Neuroscience, Baylor College of Medicine, USA
| | - Andrew Eagle
- Department of Physiology, Michigan State University, USA
| | - Jason You
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Chia-Hsuan Fu
- Department of Neuroscience, Baylor College of Medicine, USA
| | - Sumin Choi
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Chiho Sugimoto
- Department of Physiology, Michigan State University, USA
| | - Shelly A Buffington
- Center for Precision Environmental Health, Department of Neuroscience, Baylor College of Medicine, USA
| | - Yi Zheng
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Yin Liu
- Department of Neurobiology and Anatomy, McGovern Medical School at UT Health, USA
| | - A J Robison
- Department of Physiology, Michigan State University, USA
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, USA.
| |
Collapse
|
2
|
Mardones MD, Rostam KD, Nickerson MC, Gupta K. Canonical Wnt activator Chir99021 prevents epileptogenesis in the intrahippocampal kainate mouse model of temporal lobe epilepsy. Exp Neurol 2024; 376:114767. [PMID: 38522659 PMCID: PMC11058011 DOI: 10.1016/j.expneurol.2024.114767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The Wnt signaling pathway mediates the development of dentate granule cell neurons in the hippocampus. These neurons are central to the development of temporal lobe epilepsy and undergo structural and physiological remodeling during epileptogenesis, which results in the formation of epileptic circuits. The pathways responsible for granule cell remodeling during epileptogenesis have yet to be well defined, and represent therapeutic targets for the prevention of epilepsy. The current study explores Wnt signaling during epileptogenesis and for the first time describes the effect of Wnt activation using Wnt activator Chir99021 as a novel anti-epileptogenic therapeutic approach. Focal mesial temporal lobe epilepsy was induced by intrahippocampal kainate (IHK) injection in wild-type and POMC-eGFP transgenic mice. Wnt activator Chir99021 was administered daily, beginning 3 h after seizure induction, and continued up to 21-days. Immature granule cell morphology was quantified in the ipsilateral epileptogenic zone and the contralateral peri-ictal zone 14 days after IHK, targeting the end of the latent period. Bilateral hippocampal electrocorticographic recordings were performed for 28-days, 7-days beyond treatment cessation. Hippocampal behavioral tests were performed after completion of Chir99021 treatment. Consistent with previous studies, IHK resulted in the development of epilepsy after a 14 day latent period in this well-described mouse model. Activation of the canonical Wnt pathway with Chir99021 significantly reduced bilateral hippocampal seizure number and duration. Critically, this effect was retained after treatment cessation, suggesting a durable antiepileptogenic change in epileptic circuitry. Morphological analyses demonstrated that Wnt activation prevented pathological remodeling of the primary dendrite in both the epileptogenic zone and peri-ictal zone, changes in which may serve as a biomarker of epileptogenesis and anti-epileptogenic treatment response in pre-clinical studies. These findings were associated with improved object location memory with Chir99021 treatment after IHK. This study provides novel evidence that canonical Wnt activation prevents epileptogenesis in the IHK mouse model of mesial temporal lobe epilepsy, preventing pathological remodeling of dentate granule cells. Wnt signaling may therefore play a key role in mesial temporal lobe epileptogenesis, and Wnt modulation may represent a novel therapeutic strategy in the prevention of epilepsy.
Collapse
Affiliation(s)
- Muriel D Mardones
- Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America; Indiana University, Department of Neurosurgery, W 16th St, Indianapolis, IN 46202, United States of America.
| | - Kevin D Rostam
- Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America.
| | - Margaret C Nickerson
- Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America.
| | - Kunal Gupta
- Medical College of Wisconsin, Department of Neurosurgery, 8701 Watertown Plank Rd, Milwaukee, WI 53226, United States of America; Medical College of Wisconsin, Neuroscience Research Center, 8701 Watertown Plank Rd, Milwaukee, WI 53226, United States of America; Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America; Indiana University, Department of Neurosurgery, W 16th St, Indianapolis, IN 46202, United States of America.
| |
Collapse
|
3
|
Ali SO, Ghaiad HR, Elmasry GF, Mehana NA. Sinapic Acid Mitigates Pentylenetetrazol-induced Acute Seizures By Modulating the NLRP3 Inflammasome and Regulating Calcium/calcineurin Signaling: In Vivo and In Silico Approaches. Inflammation 2024:10.1007/s10753-024-02019-0. [PMID: 38662166 DOI: 10.1007/s10753-024-02019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Sinapic acid (SA) is a naturally occurring carboxylic acid found in citrus fruits and cereals. Recent studies have shown that SA has potential anti-seizure properties due to its anti-inflammatory, antioxidant, and anti-apoptotic effects. The present study investigated the neuroprotective role of SA at two different dosages in a pentylenetetrazol (PTZ)-induced acute seizure model. Mice were divided into six groups: normal control, PTZ, SA (20 mg/kg), SA (20 mg/kg) + PTZ, SA (40 mg/kg), and SA (40 mg/kg) + PTZ. SA was orally administered for 21 days, followed by a convulsive dose of intraperitoneal PTZ (50 mg/kg). Seizures were estimated via the Racine scale, and animals were behaviorally tested using the Y-maze. Brain tissues were used to assess the levels of GABA, glutamate, oxidative stress markers, calcium, calcineurin, (Nod)-like receptor protein-3 (NLRP3), interleukin (IL)-1β, apoptosis-associated speck-like protein (ASC), Bcl-2-associated death protein (Bad) and Bcl-2. Molecular docking of SA using a multistep in silico protocol was also performed. The results showed that SA alleviated oxidative stress, restored the GABA/glutamate balance and calcium/calcineurin signaling, downregulated NLRP3 and apoptosis, and improved recognition and ambulatory activity in PTZ-treated mice. In silico results also revealed that SA strongly interacts with the target proteins NLRP3 and ASC. Overall, the results suggest that SA is a promising antiseizure agent and that both doses of SA are comparable, with 40 mg/kg SA being superior in normalizing glutathione, calcium and IL-1β, in addition to calcineurin, NLRP3, ASC and Bad.
Collapse
Affiliation(s)
- Shimaa O Ali
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Heba R Ghaiad
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Noha A Mehana
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Bedner P, Steinhäuser C. Role of Impaired Astrocyte Gap Junction Coupling in Epileptogenesis. Cells 2023; 12:1669. [PMID: 37371139 DOI: 10.3390/cells12121669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The gap-junction-coupled astroglial network plays a central role in the regulation of neuronal activity and synchronisation, but its involvement in the pathogenesis of neuronal diseases is not yet understood. Here, we present the current state of knowledge about the impact of impaired glial coupling in the development and progression of epilepsy and discuss whether astrocytes represent alternative therapeutic targets. We focus mainly on temporal lobe epilepsy (TLE), which is the most common form of epilepsy in adults and is characterised by high therapy resistance. Functional data from TLE patients and corresponding experimental models point to a complete loss of astrocytic coupling, but preservation of the gap junction forming proteins connexin43 and connexin30 in hippocampal sclerosis. Several studies further indicate that astrocyte uncoupling is a causal event in the initiation of TLE, as it occurs very early in epileptogenesis, clearly preceding dysfunctional changes in neurons. However, more research is needed to fully understand the role of gap junction channels in epilepsy and to develop safe and effective therapeutic strategies targeting astrocytes.
Collapse
Affiliation(s)
- Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
5
|
Henning L, Antony H, Breuer A, Müller J, Seifert G, Audinat E, Singh P, Brosseron F, Heneka MT, Steinhäuser C, Bedner P. Reactive microglia are the major source of tumor necrosis factor alpha and contribute to astrocyte dysfunction and acute seizures in experimental temporal lobe epilepsy. Glia 2023; 71:168-186. [PMID: 36373840 DOI: 10.1002/glia.24265] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Extensive microglia reactivity has been well described in human and experimental temporal lobe epilepsy (TLE). To date, however, it is not clear whether and based on which molecular mechanisms microglia contribute to the development and progression of focal epilepsy. Astroglial gap junction coupled networks play an important role in regulating neuronal activity and loss of interastrocytic coupling causally contributes to TLE. Here, we show in the unilateral intracortical kainate (KA) mouse model of TLE that reactive microglia are primary producers of tumor necrosis factor (TNF)α and contribute to astrocyte dysfunction and severity of status epilepticus (SE). Immunohistochemical analyses revealed pronounced and persistent microglia reactivity, which already started 4 h after KA-induced SE. Partial depletion of microglia using a colony stimulating factor 1 receptor inhibitor prevented early astrocyte uncoupling and attenuated the severity of SE, but increased the mortality of epileptic mice following surgery. Using microglia-specific inducible TNFα knockout mice we identified microglia as the major source of TNFα during early epileptogenesis. Importantly, microglia-specific TNFα knockout prevented SE-induced gap junction uncoupling in astrocytes. Continuous telemetric EEG recordings revealed that during the first 4 weeks after SE induction, microglial TNFα did not significantly contribute to spontaneous generalized seizure activity. Moreover, the absence of microglial TNFα did not affect the development of hippocampal sclerosis but attenuated gliosis. Taken together, these data implicate reactive microglia in astrocyte dysfunction and network hyperexcitability after an epileptogenic insult.
Collapse
Affiliation(s)
- Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Henrike Antony
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annika Breuer
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Shanker OR, Kumar S, Dixit AB, Banerjee J, Tripathi M, Sarat Chandra P. Epigenetics of neurological diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:165-184. [DOI: 10.1016/bs.pmbts.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
7
|
do Canto AM, Donatti A, Geraldis JC, Godoi AB, da Rosa DC, Lopes-Cendes I. Neuroproteomics in Epilepsy: What Do We Know so Far? Front Mol Neurosci 2021; 13:604158. [PMID: 33488359 PMCID: PMC7817846 DOI: 10.3389/fnmol.2020.604158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Epilepsies are chronic neurological diseases that affect approximately 2% of the world population. In addition to being one of the most frequent neurological disorders, treatment for patients with epilepsy remains a challenge, because a proportion of patients do not respond to the antiseizure medications that are currently available. This results in a severe economic and social burden for patients, families, and the healthcare system. A characteristic common to all forms of epilepsy is the occurrence of epileptic seizures that are caused by abnormal neuronal discharges, leading to a clinical manifestation that is dependent on the affected brain region. It is generally accepted that an imbalance between neuronal excitation and inhibition generates the synchronic electrical activity leading to seizures. However, it is still unclear how a normal neural circuit becomes susceptible to the generation of seizures or how epileptogenesis is induced. Herein, we review the results of recent proteomic studies applied to investigate the underlying mechanisms leading to epilepsies and how these findings may impact research and treatment for these disorders.
Collapse
Affiliation(s)
- Amanda M. do Canto
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Amanda Donatti
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Jaqueline C. Geraldis
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Alexandre B. Godoi
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Douglas C. da Rosa
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
8
|
Mathern GW, Bertram EH. Recurrent limbic seizures do not cause hippocampal neuronal loss: A prolonged laboratory study. Neurobiol Dis 2020; 148:105183. [PMID: 33207277 PMCID: PMC7855788 DOI: 10.1016/j.nbd.2020.105183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/02/2022] Open
Abstract
PURPOSE It remains controversial whether neuronal damage and synaptic reorganization found in some forms of epilepsy are the result of an initial injury and potentially contributory to the epileptic condition or are the cumulative affect of repeated seizures. A number of reports of human and animal pathology suggest that at least some neuronal loss precedes the onset of seizures, but there is debate over whether there is further damage over time from intermittent seizures. In support of this latter hypothesis are MRI studies in people that show reduced hippocampal volumes and cortical thickness with longer durations of the disease. In this study we addressed the question of neuronal loss from intermittent seizures using kindled rats (no initial injury) and rats with limbic epilepsy (initial injury). METHODS Supragranular mossy fiber sprouting, hippocampal neuronal densities, and subfield area measurements were determined in rats with chronic limbic epilepsy (CLE) that developed following an episode of limbic status epilepticus (n = 25), in kindled rats (n = 15), and in age matched controls (n = 20). To determine whether age or seizure frequency played a role in the changes, CLE and kindled rats were further classified by seizure frequency (low/high) and the duration of the seizure disorder (young/old). RESULTS Overall there was no evidence for progressive neuronal loss from recurrent seizures. Compared with control and kindled rats, CLE animals showed increased mossy fiber sprouting, decreased neuronal numbers in multiple regions and regional atrophy. In CLE, but not kindled rats: 1) Higher seizure frequency was associated with greater mossy fiber sprouting and granule cell dispersion; and 2) greater age with seizures was associated with decreased hilar densities, and increased hilar areas. There was no evidence for progressive neuronal loss, even with more than 1000 seizures. CONCLUSION These findings suggest that the neuronal loss associated with limbic epilepsy precedes the onset of the seizures and is not a consequence of recurrent seizures. However, intermittent seizures do cause other structural changes in the brain, the functional consequences of which are unclear.
Collapse
Affiliation(s)
- Gary W Mathern
- Division of Neurosurgery, The Mental Retardation Research Center, United States of America; Division of Neurosurgery, The Brain Research Institute, United States of America; University of California, Los Angeles, Los Angeles, California, United States of America
| | - Edward H Bertram
- Department of Neurology, University of Virginia, Charlottesville, Virginia, United States of America.
| |
Collapse
|
9
|
Goz RU, Akgül G, LoTurco JJ. BRAFV600E expression in neural progenitors results in a hyperexcitable phenotype in neocortical pyramidal neurons. J Neurophysiol 2020; 123:2449-2464. [PMID: 32401131 PMCID: PMC7311733 DOI: 10.1152/jn.00523.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Somatic mutations have emerged as the likely cause of focal epilepsies associated with developmental malformations and epilepsy-associated glioneuronal tumors (GNT). Somatic BRAFV600E mutations in particular have been detected in the majority of low-grade neuroepithelial tumors (LNETS) and in neurons in focal cortical dysplasias adjacent to epilepsy-associated tumors. Furthermore, conditional expression of an activating BRAF mutation in neocortex causes seizures in mice. In this study we characterized the cellular electrophysiology of layer 2/3 neocortical pyramidal neurons induced to express BRAFV600E from neural progenitor stages. In utero electroporation of a piggyBac transposase plasmid system was used to introduce transgenes expressing BRAF wild type (BRAFwt), BRAFV600E, and/or enhanced green fluorescent protein (eGFP) and monomeric red fluorescent protein (mRFP) into radial glia progenitors in mouse embryonic cortex. Whole cell patch-clamp recordings of pyramidal neurons in slices prepared from both juvenile and adult mice showed that BRAFV600E resulted in neurons with a distinct hyperexcitable phenotype characterized by depolarized resting membrane potentials, increased input resistances, lowered action potential (AP) thresholds, and increased AP firing frequencies. Some of the BRAFV600E-expressing neurons normally destined for upper cortical layers by their birthdate were stalled in their migration and occupied lower cortical layers. BRAFV600E-expressing neurons also displayed increased hyperpolarization-induced inward currents (Ih) and decreased sustained potassium currents. Neurons adjacent to BRAFV600E transgene-expressing neurons, and neurons with TSC1 genetically deleted by CRISPR or those induced to carry PIK3CAE545K transgenes, did not show an excitability phenotype similar to that of BRAFV600E-expressing neurons. Together, these results indicate that BRAFV600E leads to a distinct hyperexcitable neuronal phenotype.NEW & NOTEWORTHY This study is the first to report the cell autonomous effects of BRAFV600E mutations on the intrinsic neuronal excitability. We show that BRAFV600E alters multiple electrophysiological parameters in neocortical neurons. Similar excitability changes did not occur in cells neighboring BRAFV600E-expressing neurons, after overexpression of wild-type BRAF transgenes, or after introduction of mutations affecting the mammalian target of rapamycin (mTOR) or the catalytic subunit of phosphoinositide 3-kinase (PIK3CA). We conclude that BRAFV600E causes a distinct, cell autonomous, highly excitable neuronal phenotype when introduced somatically into neocortical neuronal progenitors.
Collapse
Affiliation(s)
- Roman U Goz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| | - Gülcan Akgül
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Joseph J LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
10
|
Deshpande T, Li T, Henning L, Wu Z, Müller J, Seifert G, Steinhäuser C, Bedner P. Constitutive deletion of astrocytic connexins aggravates kainate-induced epilepsy. Glia 2020; 68:2136-2147. [PMID: 32240558 DOI: 10.1002/glia.23832] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/08/2023]
Abstract
The astroglial gap junctional network formed by connexin (Cx) channels plays a central role in regulating neuronal activity and network synchronization. However, its involvement in the development and progression of epilepsy is not yet understood. Loss of interastrocytic gap junction (GJ) coupling has been observed in the sclerotic hippocampus of patients with mesial temporal lobe epilepsy (MTLE) and in mouse models of MTLE, leading to the suggestion that it plays a causative role in the pathogenesis. To further elucidate this clinically relevant question, we investigated consequences of astrocyte disconnection on the time course and severity of kainate-induced MTLE with hippocampal sclerosis (HS) by comparing mice deficient for astrocytic Cx proteins with wild-type mice (WT). Continuous telemetric EEG recordings and video monitoring performed over a period of 4 weeks after epilepsy induction revealed substantially higher seizure and interictal spike activity during the chronic phase in Cx deficient versus WT mice, while the severity of status epilepticus was not different. Immunohistochemical analysis showed that, despite the elevated chronic seizure activity, astrocyte disconnection did not aggravate the severity of HS. Indeed, the extent of CA1 pyramidal cell loss was similar between the experimental groups, while astrogliosis, granule cell dispersion, angiogenesis, and microglia activation were even reduced in Cx deficient as compared to WT mice. Interestingly, seizure-induced neurogenesis in the adult dentate gyrus was also independent of astrocytic Cxs. Together, our data indicate that constitutive loss of GJ coupling between astrocytes promotes neuronal hyperexcitability and attenuates seizure-induced histopathological outcomes.
Collapse
Affiliation(s)
- Tushar Deshpande
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tingsong Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Zhou Wu
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Laser microdissection-based microproteomics of the hippocampus of a rat epilepsy model reveals regional differences in protein abundances. Sci Rep 2020; 10:4412. [PMID: 32157145 PMCID: PMC7064578 DOI: 10.1038/s41598-020-61401-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/18/2020] [Indexed: 01/11/2023] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is a chronic neurological disorder affecting almost 40% of adult patients with epilepsy. Hippocampal sclerosis (HS) is a common histopathological abnormality found in patients with MTLE. HS is characterised by extensive neuronal loss in different hippocampus sub-regions. In this study, we used laser microdissection-based microproteomics to determine the protein abundances in different regions and layers of the hippocampus dentate gyrus (DG) in an electric stimulation rodent model which displays classical HS damage similar to that found in patients with MTLE. Our results indicate that there are differences in the proteomic profiles of different layers (granule cell and molecular), as well as different regions, of the DG (ventral and dorsal). We have identified new signalling pathways and proteins present in specific layers and regions of the DG, such as PARK7, RACK1, and connexin 31/gap junction. We also found two major signalling pathways that are common to all layers and regions: inflammation and energy metabolism. Finally, our results highlight the utility of high-throughput microproteomics and spatial-limited isolation of tissues in the study of complex disorders to fully appreciate the large biological heterogeneity present in different cell populations within the central nervous system.
Collapse
|
12
|
Chen Y, Feng Z, Shen M, Lin W, Wang Y, Wang S, Li C, Wang S, Chen M, Shan W, Xie XQ. Insight into Ginkgo biloba L. Extract on the Improved Spatial Learning and Memory by Chemogenomics Knowledgebase, Molecular Docking, Molecular Dynamics Simulation, and Bioassay Validations. ACS OMEGA 2020; 5:2428-2439. [PMID: 32064403 PMCID: PMC7017398 DOI: 10.1021/acsomega.9b03960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/16/2020] [Indexed: 05/08/2023]
Abstract
Epilepsy is a common cause of serious cognitive disorders and is known to have impact on patients' memory and executive functions. Therefore, the development of antiepileptic drugs for the improvement of spatial learning and memory in patients with epileptic cognitive dysfunction is important. In the present work, we systematically predicted and analyzed the potential effects of Ginkgo terpene trilactones (GTTL) on cognition and pathologic changes utilizing in silico and in vivo approaches. Based on our established chemogenomics knowledgebase, we first conducted the network systems pharmacology analysis to predict that ginkgolide A/B/C may target 5-HT 1A, 5-HT 1B, and 5-HT 2B. The detailed interactions were then further validated by molecular docking and molecular dynamics (MD) simulations. In addition, status epilepticus (SE) was induced by lithium-pilocarpine injection in adult Wistar male rats, and the results of enzyme-linked immunosorbent assay (ELISA) demonstrated that administration with GTTL can increase the expression of brain-derived neurotrophic factor (BDNF) when compared to the model group. Interestingly, recent studies suggest that the occurrence of a reciprocal involvement of 5-HT receptor activation along with the hippocampal BDNF-increased expression can significantly ameliorate neurologic changes and reverse behavioral deficits in status epilepticus rats while improving cognitive function and alleviating neuronal injury. Therefore, we evaluated the effects of GTTL (bilobalide, ginkgolide A, ginkgolide B, and ginkgolide C) on synergistic antiepileptic effect. Our experimental data showed that the spatial learning and memory abilities (e.g., electroencephalography analysis and Morris water maze test for behavioral assessment) of rats administrated with GTTL were significantly improved under the middle dose (80 mg/kg, GTTL) and high dose (160 mg/kg, GTTL). Moreover, the number of neurons in the hippocampus of the GTTL group increased when compared to the model group. Our studies showed that GTTL not only protected rat cerebral hippocampal neurons against epilepsy but also improved the learning and memory ability. Therefore, GTTL may be a potential drug candidate for the prevention and/or treatment of epilepsy.
Collapse
Affiliation(s)
- Yan Chen
- College
of Pharmacology Sciences, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
- Department of Pharmaceutical Sciences and Computational
Chemical
Genomics Screening Center, School of Pharmacy, National Center of Excellence for
Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology
and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational
Chemical
Genomics Screening Center, School of Pharmacy, National Center of Excellence for
Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology
and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mingzhe Shen
- Department of Pharmaceutical Sciences and Computational
Chemical
Genomics Screening Center, School of Pharmacy, National Center of Excellence for
Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology
and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Weiwei Lin
- Department of Pharmaceutical Sciences and Computational
Chemical
Genomics Screening Center, School of Pharmacy, National Center of Excellence for
Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology
and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yuanqiang Wang
- School of
Pharmacy and Bioengineering, Chongqing University
of Technology, Chongqing 400054, P. R. China
| | - Siyi Wang
- Department of Pharmaceutical Sciences and Computational
Chemical
Genomics Screening Center, School of Pharmacy, National Center of Excellence for
Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology
and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Caifeng Li
- College
of Pharmacology Sciences, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
| | - Shengfeng Wang
- College
of Pharmacology Sciences, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
| | - Maozi Chen
- Department of Pharmaceutical Sciences and Computational
Chemical
Genomics Screening Center, School of Pharmacy, National Center of Excellence for
Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology
and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Weiguang Shan
- College
of Pharmacology Sciences, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational
Chemical
Genomics Screening Center, School of Pharmacy, National Center of Excellence for
Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology
and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
13
|
Abstract
Psychiatric illnesses, including depression and anxiety, are highly comorbid with epilepsy (for review see Josephson and Jetté (Int Rev Psychiatry 29:409-424, 2017), Salpekar and Mula (Epilepsy Behav 98:293-297, 2019)). Psychiatric comorbidities negatively impact the quality of life of patients (Johnson et al., Epilepsia 45:544-550, 2004; Cramer et al., Epilepsy Behav 4:515-521, 2003) and present a significant challenge to treating patients with epilepsy (Hitiris et al., Epilepsy Res 75:192-196, 2007; Petrovski et al., Neurology 75:1015-1021, 2010; Fazel et al., Lancet 382:1646-1654, 2013) (for review see Kanner (Seizure 49:79-82, 2017)). It has long been acknowledged that there is an association between psychiatric illnesses and epilepsy. Hippocrates, in the fourth-fifth century B.C., considered epilepsy and melancholia to be closely related in which he writes that "melancholics ordinarily become epileptics, and epileptics, melancholics" (Lewis, J Ment Sci 80:1-42, 1934). The Babylonians also recognized the frequency of psychosis in patients with epilepsy (Reynolds and Kinnier Wilson, Epilepsia 49:1488-1490, 2008). Despite the fact that the relationship between psychiatric comorbidities and epilepsy has been recognized for thousands of years, psychiatric illnesses in people with epilepsy still commonly go undiagnosed and untreated (Hermann et al., Epilepsia 41(Suppl 2):S31-S41, 2000) and systematic research in this area is still lacking (Devinsky, Epilepsy Behav 4(Suppl 4):S2-S10, 2003). Thus, although it is clear that these are not new issues, there is a need for improvements in the screening and management of patients with psychiatric comorbidities in epilepsy (Lopez et al., Epilepsy Behav 98:302-305, 2019) and progress is needed to understand the underlying neurobiology contributing to these comorbid conditions. To that end, this chapter will raise awareness regarding the scope of the problem as it relates to comorbid psychiatric illnesses and epilepsy and review our current understanding of the potential mechanisms contributing to these comorbidities, focusing on both basic science and clinical research findings.
Collapse
|
14
|
Khan N, Schoenike B, Basu T, Grabenstatter H, Rodriguez G, Sindic C, Johnson M, Wallace E, Maganti R, Dingledine R, Roopra A. A systems approach identifies Enhancer of Zeste Homolog 2 (EZH2) as a protective factor in epilepsy. PLoS One 2019; 14:e0226733. [PMID: 31891591 PMCID: PMC6938365 DOI: 10.1371/journal.pone.0226733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Complex neurological conditions can give rise to large scale transcriptomic changes that drive disease progression. It is likely that alterations in one or a few transcription factors or cofactors underlie these transcriptomic alterations. Identifying the driving transcription factors/cofactors is a non-trivial problem and a limiting step in the understanding of neurological disorders. Epilepsy has a prevalence of 1% and is the fourth most common neurological disorder. While a number of anti-seizure drugs exist to treat seizures symptomatically, none is curative or preventive. This reflects a lack of understanding of disease progression. We used a novel systems approach to mine transcriptome profiles of rodent and human epileptic brain samples to identify regulators of transcriptional networks in the epileptic brain. We find that Enhancer of Zeste Homolog 2 (EZH2) regulates differentially expressed genes in epilepsy across multiple rodent models of acquired epilepsy. EZH2 undergoes a prolonged upregulation in the epileptic brain. A transient inhibition of EZH2 immediately after status epilepticus (SE) robustly increases spontaneous seizure burden weeks later. This suggests that EZH2 upregulation is a protective. These findings are the first to characterize a role for EZH2 in opposing epileptogenesis and debut a bioinformatic approach to identify nuclear drivers of complex transcriptional changes in disease.
Collapse
Affiliation(s)
- Nadia Khan
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Barry Schoenike
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Trina Basu
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Heidi Grabenstatter
- Department of Integrative Physiology, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Genesis Rodriguez
- College of Letters and Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Caleb Sindic
- College of Letters and Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Margaret Johnson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eli Wallace
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rama Maganti
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, United States of America
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
15
|
Baraban SC. Viral tracing of presynaptic inputs to newly born dentate granule cells in a rodent model of mesial temporal lobe epilepsy. Ann Neurol 2019; 81:769-771. [PMID: 28470692 DOI: 10.1002/ana.24945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/17/2017] [Accepted: 04/26/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Scott C Baraban
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco San Francisco, CA
| |
Collapse
|
16
|
Spallazzi M, Dobisch L, Becke A, Berron D, Stucht D, Oeltze-Jafra S, Caffarra P, Speck O, Düzel E. Hippocampal vascularization patterns: A high-resolution 7 Tesla time-of-flight magnetic resonance angiography study. NEUROIMAGE-CLINICAL 2018; 21:101609. [PMID: 30581106 PMCID: PMC6413539 DOI: 10.1016/j.nicl.2018.11.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/03/2018] [Accepted: 11/18/2018] [Indexed: 01/11/2023]
Abstract
Considerable evidence suggests a close relationship between vascular and degenerative pathology in the human hippocampus. Due to the intrinsic fragility of its vascular network, the hippocampus appears less able to cope with hypoperfusion and anoxia than other cortical areas. Although hippocampal blood supply is generally provided by the collateral branches of the posterior cerebral artery (PCA) and the anterior choroidal artery (AChA), different vascularization patterns have been detected postmortem. To date, a methodology that enables the classification of individual hippocampal vascularization patterns in vivo has not been established. In this study, using high-resolution 7 Tesla time-of-flight angiography data (0.3 mm isotropic resolution) in young adults, we classified individual variability in hippocampal vascularization patterns involved in medial temporal lobe blood supply in vivo. A strong concordance between our classification and previous autopsy findings was found, along with interesting anatomical observations, such as the variable contribution of the AChA to hippocampal supply, the relationships between hippocampal and PCA patterns, and the different distribution patterns of the right and left hemispheres. The approach presented here for determining hippocampal vascularization patterns in vivo may provide new insights into not only the vulnerability of the hippocampus to vascular and neurodegenerative diseases but also hippocampal vascular plasticity after exercise training. First attempt to classify human hippocampal vascularization in vivo using 7Tesla Angiography Good concordance between in vivo findings and autopsy studies A new avenue to investigate interindividual variability in hippocampal vascular plasticity A new avenue for linking individual vascular anatomical phenotypes to neurodegenerative and vascular pathology
Collapse
Affiliation(s)
| | - Laura Dobisch
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Andreas Becke
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - David Berron
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Daniel Stucht
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany
| | | | | | - Oliver Speck
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Emrah Düzel
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany; Institute of Cognitive Neuroscience, Univ. College London, London, United Kingdom.
| |
Collapse
|
17
|
Asadi S, Roohbakhsh A, Shamsizadeh A, Fereidoni M, Kordijaz E, Moghimi A. The effect of intracerebroventricular administration of orexin receptor type 2 antagonist on pentylenetetrazol-induced kindled seizures and anxiety in rats. BMC Neurosci 2018; 19:49. [PMID: 30103703 PMCID: PMC6090721 DOI: 10.1186/s12868-018-0445-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/17/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Current antiepileptic drugs are not able to prevent recurrent seizures in all patients. Orexins are excitatory hypothalamic neuropeptides that their receptors (Orx1R and Orx2R) are found almost in all major regions of the brain. Pentylenetetrazol (PTZ)-induced kindling is a known experimental model for epileptic seizures. The purpose of this study was to evaluate the effect of Orx2 receptor antagonist (TCS OX2 29) on seizures and anxiety of PTZ-kindled rats. RESULTS Our results revealed that similar to valproate, administration of 7 µg/rat of TCS OX2 29 increased the latency period and decreased the duration time of 3rd and 4th stages of epileptiform seizures. Besides, it significantly decreased mean of seizure scores. However, TCS OX2 29 did not modulate anxiety induced by repeated PTZ administration. CONCLUSION This study showed that blockade of Orx2 receptor reduced seizure-related behaviors without any significant effect on PTZ-induced anxiety.
Collapse
Affiliation(s)
- Saeedeh Asadi
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Masoud Fereidoni
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
| | - Elham Kordijaz
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
| | - Ali Moghimi
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran.
| |
Collapse
|
18
|
Mueller SG, Yushkevich PA, Das S, Wang L, Van Leemput K, Iglesias JE, Alpert K, Mezher A, Ng P, Paz K, Weiner MW. Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2. Neuroimage Clin 2017; 17:1006-1018. [PMID: 29527502 PMCID: PMC5842756 DOI: 10.1016/j.nicl.2017.12.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 12/25/2022]
Abstract
Objective Subfield-specific measurements provide superior information in the early stages of neurodegenerative diseases compared to global hippocampal measurements. The overall goal was to systematically compare the performance of five representative manual and automated T1 and T2 based subfield labeling techniques in a sub-set of the ADNI2 population. Methods The high resolution T2 weighted hippocampal images (T2-HighRes) and the corresponding T1 images from 106 ADNI2 subjects (41 controls, 57 MCI, 8 AD) were processed as follows. A. T1-based: 1. Freesurfer + Large-Diffeomorphic-Metric-Mapping in combination with shape analysis. 2. FreeSurfer 5.1 subfields using in-vivo atlas. B. T2-HighRes: 1. Model-based subfield segmentation using ex-vivo atlas (FreeSurfer 6.0). 2. T2-based automated multi-atlas segmentation combined with similarity-weighted voting (ASHS). 3. Manual subfield parcellation. Multiple regression analyses were used to calculate effect sizes (ES) for group, amyloid positivity in controls, and associations with cognitive/memory performance for each approach. Results Subfield volumetry was better than whole hippocampal volumetry for the detection of the mild atrophy differences between controls and MCI (ES: 0.27 vs 0.11). T2-HighRes approaches outperformed T1 approaches for the detection of early stage atrophy (ES: 0.27 vs.0.10), amyloid positivity (ES: 0.11 vs 0.04), and cognitive associations (ES: 0.22 vs 0.19). Conclusions T2-HighRes subfield approaches outperformed whole hippocampus and T1 subfield approaches. None of the different T2-HghRes methods tested had a clear advantage over the other methods. Each has strengths and weaknesses that need to be taken into account when deciding which one to use to get the best results from subfield volumetry.
Collapse
Affiliation(s)
- Susanne G Mueller
- Dept. of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory, Dept. of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandhitsu Das
- Penn Image Computing and Science Laboratory, Dept. of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lei Wang
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Koen Van Leemput
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA; Dept. of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
| | - Juan Eugenio Iglesias
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA; Translational Imaging Group, University College London, London, UK
| | - Kate Alpert
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Adam Mezher
- Center for Imaging of Neurodegenerative Diseases (CIND), VAMC San Francisco, San Francisco, CA, USA
| | - Peter Ng
- Center for Imaging of Neurodegenerative Diseases (CIND), VAMC San Francisco, San Francisco, CA, USA
| | - Katrina Paz
- Center for Imaging of Neurodegenerative Diseases (CIND), VAMC San Francisco, San Francisco, CA, USA
| | - Michael W Weiner
- Dept. of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
19
|
Minjarez B, Camarena H, Haramati J, Rodríguez-Yañez Y, Mena-Munguía S, Buriticá J, García-Leal O. Behavioral changes in models of chemoconvulsant-induced epilepsy: A review. Neurosci Biobehav Rev 2017; 83:373-380. [DOI: 10.1016/j.neubiorev.2017.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 11/25/2022]
|
20
|
Deshpande T, Li T, Herde MK, Becker A, Vatter H, Schwarz MK, Henneberger C, Steinhäuser C, Bedner P. Subcellular reorganization and altered phosphorylation of the astrocytic gap junction protein connexin43 in human and experimental temporal lobe epilepsy. Glia 2017; 65:1809-1820. [DOI: 10.1002/glia.23196] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Tushar Deshpande
- Institute of Cellular Neurosciences, Medical Faculty; University of Bonn Germany
| | - Tingsong Li
- Institute of Cellular Neurosciences, Medical Faculty; University of Bonn Germany
- Department of Neurology; Children's Hospital, Chongqing Medical University; Chongqing China
| | - Michel K. Herde
- Institute of Cellular Neurosciences, Medical Faculty; University of Bonn Germany
| | - Albert Becker
- Department of Neuropathology; Medical Faculty, University of Bonn; Bonn Germany
| | - Hartmut Vatter
- Department of Neurosurgery; Medical Faculty, University of Bonn; Bonn Germany
| | - Martin K. Schwarz
- Department of Epileptology, Medical Faculty; University of Bonn; Bonn Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty; University of Bonn Germany
- Institute of Neurology, University College London; London UK
- German Center for Degenerative Diseases (DZNE); Bonn Germany
| | | | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty; University of Bonn Germany
| |
Collapse
|
21
|
Liu X, Liao Y, Wang X, Zou D, Luo C, Jian C, Wu Y. MicroRNA expression profiles in chronic epilepsy rats and neuroprotection from seizures by targeting miR-344a. Neuropsychiatr Dis Treat 2017; 13:2037-2044. [PMID: 28814872 PMCID: PMC5546815 DOI: 10.2147/ndt.s141062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA) is believed to play a crucial role in the cause and treatment of epilepsy by controlling gene expression. However, it is still unclear how miRNA profiles change after multiple prolonged seizures and aggravation of brain injury in chronic epilepsy (CE). To investigate the role of miRNA in epilepsy, we utilized the CE rat models with pentylenetetrazol (PTZ) and miRNA profiles in the hippocampus. miRNA profiles were characterized using miRNA microarray analysis and were compared with the rats in the sham group, which received 0.9% physiological saline treatment at the same dose. Four up-regulated miRNAs (miR-139-3p, -770-5p, -127-5p, -331-3p) and 5 down-regulated miRNAs (miR-802-5p, -380-5p, -183-5p, -547-5p, -344a/-344a-5p) were found in the CE rats (fold change >1.5, P<0.05). Three of the dysregulated miRNAs were validated by quantitative real-time polymerase chain reaction, which revealed an outcome consistent with the initial results of the miRNA microarray analyses. Then, miR-344a agomir was intracerebroventricularly injected and followed by PTZ induction of CE models to investigate the effect of miR-344a in chronic neocortical epileptogenesis. After miRNA-344a agomir and scramble treatment, results showed a restoration of seizure behavior and a reduction in neuron damage in the cortex in miRNA-334a agomir treated rats. These data suggest that miRNA-344a might have a small modulatory effect on seizure-induced apoptosis signaling pathways in the cortex.
Collapse
Affiliation(s)
- Xixia Liu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University.,Department of Rehabilitation, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuhan Liao
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University
| | - Xiuxiu Wang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University
| | - Donghua Zou
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University
| | - Chun Luo
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University
| | - Chongdong Jian
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University
| | - Yuan Wu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University
| |
Collapse
|
22
|
Role of Matricellular Proteins in Disorders of the Central Nervous System. Neurochem Res 2016; 42:858-875. [DOI: 10.1007/s11064-016-2088-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022]
|
23
|
Study of the anti-seizure effects of low-frequency stimulation following kindling (a review of the cellular mechanism related to the anti-seizure effects of low-frequency electrical stimulation). Neurol Sci 2016; 38:19-26. [DOI: 10.1007/s10072-016-2694-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/17/2016] [Indexed: 02/04/2023]
|
24
|
Lateral hypothalamus orexinergic system modulates the stress effect on pentylenetetrazol induced seizures through corticotropin releasing hormone receptor type 1. Neuropharmacology 2016; 110:15-24. [PMID: 27395784 DOI: 10.1016/j.neuropharm.2016.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/22/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023]
Abstract
Stress is a trigger factor for seizure initiation which activates hypothalamic pituitary adrenal (HPA) axis as well other brain areas. In this respect, corticotropin releasing hormone (CRH) and lateral hypothalamus (LH) orexinergic system are involved in seizure occurrence. In this study, we investigated the role of LH area and orexin expression in (mediation of) stress effect on pentylenetetrazol (PTZ) -induced seizures with hippocampal involvement. Two mild foot shock stresses were applied to intact and adrenalectomized animals; with or without CRHr1 blocking (NBI 27914) in the LH area. Then, changes in orexin production were evaluated by RT-PCR. Intravenous PTZ infusion (25 mg/ml) -induced convulsions were scored upon modified Racine scale. Finally, hippocampal glutamate and GABA were evaluated to study excitability changes. We demonstrated that the duration and severity of convulsions in stress-induced as well as adrenalectomized group were increased. Plasma corticosterone (CRT) level and orexin mRNA expression were built up in the stress and/or seizure groups. Furthermore, glutamate and GABA content was increased and decreased respectively due to stress and seizures. In contrast, rats receiving CRHr1 inhibitor showed reduced severity and duration of seizures, increased GABA, decreased glutamate and corticosterone and also orexin mRNA compared to the inhibitor free rats. Stress and adrenalectomy induced augmenting effect on seizure severity and duration and the subsequent reduction due to CRHr1 blocking with parallel orexin mRNA changes, indicated the likely involvement of CRH1r induced orexin expression of the LH in gating stress effect on convulsions.
Collapse
|
25
|
Bernhardt BC, Bernasconi N, Hong SJ, Dery S, Bernasconi A. Subregional Mesiotemporal Network Topology Is Altered in Temporal Lobe Epilepsy. Cereb Cortex 2016; 26:3237-48. [PMID: 26223262 PMCID: PMC4898674 DOI: 10.1093/cercor/bhv166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most frequent drug-resistant epilepsy in adults and commonly associated with variable degrees of mesiotemporal atrophy on magnetic resonance imaging (MRI). Analyses of inter-regional connectivity have unveiled disruptions in large-scale cortico-cortical networks; little is known about the topological organization of the mesiotemporal lobe, the limbic subnetwork central to the disorder. We generated covariance networks based on high-resolution MRI surface-shape descriptors of the hippocampus, entorhinal cortex, and amygdala in 134 TLE patients and 45 age- and sex-matched controls. Graph-theoretical analysis revealed increased path length and clustering in patients, suggesting a shift toward a more regularized arrangement; findings were reproducible after split-half assessment and across 2 parcellation schemes. Analysis of inter-regional correlations and module participation showed increased within-structure covariance, but decreases between structures, particularly with regards to the hippocampus and amygdala. While higher clustering possibly reflects topological consequences of axonal sprouting, decreases in interstructure covariance may be a consequence of disconnection within limbic circuitry. Preoperative network parameters, specifically the segregation of the ipsilateral hippocampus, predicted long-term seizure freedom after surgery.
Collapse
Affiliation(s)
- Boris C. Bernhardt
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, McGill University, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
- Deparment of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, McGill University, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Seok-Jun Hong
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, McGill University, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Sebastian Dery
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, McGill University, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, McGill University, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Hubbard JA, Szu JI, Yonan JM, Binder DK. Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy. Exp Neurol 2016; 283:85-96. [PMID: 27155358 DOI: 10.1016/j.expneurol.2016.05.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/23/2016] [Accepted: 05/01/2016] [Indexed: 12/31/2022]
Abstract
Astrocytes regulate extracellular glutamate and water homeostasis through the astrocyte-specific membrane proteins glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4), respectively. The role of astrocytes and the regulation of GLT1 and AQP4 in epilepsy are not fully understood. In this study, we investigated the expression of GLT1 and AQP4 in the intrahippocampal kainic acid (IHKA) model of temporal lobe epilepsy (TLE). We used real-time polymerase chain reaction (RT-PCR), Western blot, and immunohistochemical analysis at 1, 4, 7, and 30days after kainic acid-induced status epilepticus (SE) to determine hippocampal glial fibrillary acidic protein (GFAP, a marker for reactive astrocytes), GLT1, and AQP4 expression changes during the development of epilepsy (epileptogenesis). Following IHKA, all mice had SE and progressive increases in GFAP immunoreactivity and GFAP protein expression out to 30days post-SE. A significant initial increase in dorsal hippocampal GLT1 immunoreactivity and protein levels were observed 1day post SE and followed by a marked downregulation at 4 and 7days post SE with a return to near control levels by 30days post SE. AQP4 dorsal hippocampal protein expression was significantly downregulated at 1day post SE and was followed by a gradual return to baseline levels with a significant increase in ipsilateral protein levels by 30days post SE. Transient increases in GFAP and AQP4 mRNA were also observed. Our findings suggest that specific molecular changes in astrocyte glutamate transporters and water channels occur during epileptogenesis in this model, and suggest the novel therapeutic strategy of restoring glutamate and water homeostasis.
Collapse
Affiliation(s)
- Jacqueline A Hubbard
- Department of Biochemistry and Molecular Biology, University of California, Riverside, USA
| | - Jenny I Szu
- Neuroscience Graduate Program, University of California, Riverside, USA
| | - Jennifer M Yonan
- Neuroscience Graduate Program, University of California, Riverside, USA
| | - Devin K Binder
- Neuroscience Graduate Program, University of California, Riverside, USA; Center for Glial-Neuronal Interactions, University of California, Riverside, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside.
| |
Collapse
|
27
|
Jefferys J, Steinhäuser C, Bedner P. Chemically-induced TLE models: Topical application. J Neurosci Methods 2016; 260:53-61. [DOI: 10.1016/j.jneumeth.2015.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 12/26/2022]
|
28
|
Rocha AKADA, de Lima E, do Amaral FG, Peres R, Cipolla-Neto J, Amado D. Pilocarpine-induced epilepsy alters the expression and daily variation of the nuclear receptor RORα in the hippocampus of rats. Epilepsy Behav 2016; 55:38-46. [PMID: 26731717 DOI: 10.1016/j.yebeh.2015.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/16/2015] [Accepted: 11/24/2015] [Indexed: 11/24/2022]
Abstract
It is widely known that there is an increase in the inflammatory responses and oxidative stress in temporal lobe epilepsy (TLE). Further, the seizures follow a circadian rhythmicity. Retinoic acid receptor-related orphan receptor alpha (RORα) is related to anti-inflammatory and antioxidant enzyme expression and is part of the machinery of the biological clock and circadian rhythms. However, the participation of RORα in this neurological disorder has not been studied. The aim of this study was to evaluate the RORα mRNA and protein content profiles in the hippocampus of rats submitted to a pilocarpine-induced epilepsy model at different time points throughout the 24-h light-dark cycle analyzing the influence of the circadian rhythm in the expression pattern during the acute, silent, and chronic phases of the experimental model. Real-time PCR and immunohistochemistry results showed that RORα mRNA and protein expressions were globally reduced in both acute and silent phases of the pilocarpine model. However, 60days after the pilocarpine-induced status epilepticus (chronic phase), the mRNA expression was similar to the control except for the time point 3h after the lights were turned off, and no differences were found in immunohistochemistry. Our results indicate that the status epilepticus induced by pilocarpine is able to change the expression and daily variation of RORα in the rat hippocampal area during the acute and silent phases. These findings enhance our understanding of the circadian pattern present in seizures as well as facilitate strategies for the treatment of seizures.
Collapse
Affiliation(s)
| | - Eliangela de Lima
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fernanda Gaspar do Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Rafael Peres
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Débora Amado
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
29
|
Abstract
Seizure activity in the hippocampal region strongly affects stem cell-associated plasticity in the adult dentate gyrus. Here, we describe how seizures in rodent models of mesial temporal lobe epilepsy (mTLE) affect multiple steps in the developmental course from the dividing neural stem cell to the migrating and integrating newborn neuron. Furthermore, we discuss recent evidence indicating either that seizure-induced aberrant neurogenesis may contribute to the epileptic disease process or that altered neurogenesis after seizures may represent an attempt of the injured brain to repair itself. Last, we describe how dysfunction of adult neurogenesis caused by chronic seizures may play an important role in the cognitive comorbidities associated with mTLE.
Collapse
Affiliation(s)
| | - Jack M Parent
- Department of Neurology, University of Michigan Medical Center and VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48109
| |
Collapse
|
30
|
Hippocampal orexin receptors inactivation reduces PTZ induced seizures of male rats. Pharmacol Biochem Behav 2015; 130:77-83. [DOI: 10.1016/j.pbb.2015.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 11/23/2022]
|
31
|
Landgrave-Gómez J, Mercado-Gómez O, Guevara-Guzmán R. Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci 2015; 9:58. [PMID: 25774124 PMCID: PMC4343006 DOI: 10.3389/fncel.2015.00058] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/06/2015] [Indexed: 11/13/2022] Open
Abstract
The role of epigenetic mechanisms in the function and homeostasis of the central nervous system (CNS) and its regulation in diseases is one of the most interesting processes of contemporary neuroscience. In the last decade, a growing body of literature suggests that long-term changes in gene transcription associated with CNS's regulation and neurological disorders are mediated via modulation of chromatin structure. "Epigenetics", introduced for the first time by Waddington in the early 1940s, has been traditionally referred to a variety of mechanisms that allow heritable changes in gene expression even in the absence of DNA mutation. However, new definitions acknowledge that many of these mechanisms used to perpetuate epigenetic traits in dividing cells are used by neurons to control a variety of functions dependent on gene expression. Indeed, in the recent years these mechanisms have shown their importance in the maintenance of a healthy CNS. Moreover, environmental inputs that have shown effects in CNS diseases, such as nutrition, that can modulate the concentration of a variety of metabolites such as acetyl-coenzyme A (acetyl-coA), nicotinamide adenine dinucleotide (NAD(+)) and beta hydroxybutyrate (β-HB), regulates some of these epigenetic modifications, linking in a precise way environment with gene expression. This manuscript will portray what is currently understood about the role of epigenetic mechanisms in the function and homeostasis of the CNS and their participation in a variety of neurological disorders. We will discuss how the machinery that controls these modifications plays an important role in processes involved in neurological disorders such as neurogenesis and cell growth. Moreover, we will discuss how environmental inputs modulate these modifications producing metabolic and physiological alterations that could exert beneficial effects on neurological diseases. Finally, we will highlight possible future directions in the field of epigenetics and neurological disorders.
Collapse
Affiliation(s)
- Jorge Landgrave-Gómez
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de MéxicoMéxico, D.F., México
| | - Octavio Mercado-Gómez
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de MéxicoMéxico, D.F., México
| | - Rosalinda Guevara-Guzmán
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de MéxicoMéxico, D.F., México
| |
Collapse
|
32
|
Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:293689. [PMID: 25614776 PMCID: PMC4295154 DOI: 10.1155/2014/293689] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/07/2014] [Indexed: 11/17/2022]
Abstract
Epilepsy is considered one of the most common neurological disorders worldwide. Oxidative stress produced by free radicals may play a role in the initiation and progression of epilepsy; the changes in the mitochondrial and the oxidative stress state can lead mechanism associated with neuronal death pathway. Bioenergetics state failure and impaired mitochondrial function include excessive free radical production with impaired synthesis of antioxidants. This review summarizes evidence that suggest what is the role of oxidative stress on induction of apoptosis in experimental models of epilepsy.
Collapse
|
33
|
Brandt C, Töllner K, Klee R, Bröer S, Löscher W. Effective termination of status epilepticus by rational polypharmacy in the lithium-pilocarpine model in rats: Window of opportunity to prevent epilepsy and prediction of epilepsy by biomarkers. Neurobiol Dis 2014; 75:78-90. [PMID: 25549873 DOI: 10.1016/j.nbd.2014.12.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 11/30/2022] Open
Abstract
The pilocarpine rat model, in which status epilepticus (SE) leads to epilepsy with spontaneous recurrent seizures (SRS), is widely used to study the mechanisms of epileptogenesis and develop strategies for epilepsy prevention. SE is commonly interrupted after 30-90min by high-dose diazepam or other anticonvulsants to reduce mortality. It is widely believed that SE duration of 30-60min is sufficient to induce hippocampal damage and epilepsy. However, resistance to diazepam develops during SE, so that an SE that is longer than 30min is difficult to terminate, and SE typically recurs several hours after diazepam, thus forming a bias for studies on epileptogenesis or antiepileptogenesis. We developed a drug cocktail, consisting of diazepam, phenobarbital, and scopolamine that allows complete and persistent SE termination in the lithium-pilocarpine model. A number of novel findings were obtained with this cocktail. (a) In contrast to previous reports with incomplete SE suppression, a SE of 60min duration did not induce epilepsy, whereas epilepsy with SRS developed after 90 or 120min SE; (b) by comparing groups of rats with 60 and 90min of SE, development of epilepsy could be predicted by behavioral hyperexcitability and decrease in seizure threshold, indicating that these read-outs are suited as biomarkers of epileptogenesis; (c) CA1 damage was prevented by the cocktail, but rats exhibited cell loss in the dentate hilus, which was related to development of epilepsy. These data demonstrate that the duration of SE needed for induction of epileptogenesis in this model is longer than previously thought.
Collapse
Affiliation(s)
- Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Rebecca Klee
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
34
|
Yi F, Xu HW, Long LL, Feng L, Zhou L, Li SY, Jiang HY, Xiao B. Vulnerability of calbindin-positive interneurons to status epilepticus varies in different regions of rat hippocampus. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414040126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Role of TGF-β signaling pathway on Tenascin C protein upregulation in a pilocarpine seizure model. Epilepsy Res 2014; 108:1694-704. [PMID: 25445237 DOI: 10.1016/j.eplepsyres.2014.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 08/29/2014] [Accepted: 09/21/2014] [Indexed: 02/03/2023]
Abstract
Seizures have been shown to upregulate the expression of numerous extracellular matrix molecules. Tenascin C (TNC) is an extracellular matrix protein involved in several physiological roles and in pathological conditions. Though TNC upregulation has been described after excitotoxins injection, to date there is no research work on the signal transduction pathway(s) participating in TNC protein overproduction. The aim of this study was to evaluate the role of TGF-β signaling pathway on TNC upregulation. In this study, we used male rats, which were injected with saline or pilocarpine to induce status epilepticus (SE) and killed 24h, 3 and 7 days after pilocarpine administration. For evaluating biochemical changes, we measured protein content of TNC, TGF-β1 and phospho-Smad2/3 for localization of TNC in coronal brain hippocampus at 24h, 3 and 7 days after pilocarpine-caused SE. We found a significant increase of TNC protein content in hippocampal homogenates after 1, 3, and 7 days of pilocarpine-caused SE, together with an enhancement of TNC immunoreactivity in several hippocampal layers and the dentate gyrus field where more dramatic changes occurred. We also observed a significant enhancement of protein content of both the TGF-β1 and the critical downstream transduction effector phospho-Smad2/3 throughout the chronic exposure. Interestingly, animals injected with SB-431542, a TGF-β-type I receptor inhibitor, decreased TNC content in cytosolic fraction and diminished phospho-Smad2/3 content in both cytoplasmic and nuclear fraction compared with pilocarpine vehicle-injected. These findings suggest the participation of TGF-β signaling pathway on upregulation of TNC which in turn support the idea that misregulation of this signaling pathway produces changes that may contribute to disease.
Collapse
|
36
|
Kovacs SK, Leonessa F, Ling GSF. Blast TBI Models, Neuropathology, and Implications for Seizure Risk. Front Neurol 2014; 5:47. [PMID: 24782820 PMCID: PMC3988378 DOI: 10.3389/fneur.2014.00047] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/26/2014] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) due to explosive blast exposure is a leading combat casualty. It is also implicated as a key contributor to war related mental health diseases. A clinically important consequence of all types of TBI is a high risk for development of seizures and epilepsy. Seizures have been reported in patients who have suffered blast injuries in the Global War on Terror but the exact prevalence is unknown. The occurrence of seizures supports the contention that explosive blast leads to both cellular and structural brain pathology. Unfortunately, the exact mechanism by which explosions cause brain injury is unclear, which complicates development of meaningful therapies and mitigation strategies. To help improve understanding, detailed neuropathological analysis is needed. For this, histopathological techniques are extremely valuable and indispensable. In the following we will review the pathological results, including those from immunohistochemical and special staining approaches, from recent preclinical explosive blast studies.
Collapse
Affiliation(s)
- S Krisztian Kovacs
- Laboratory of Neurotrauma, Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Fabio Leonessa
- Laboratory of Neurotrauma, Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Geoffrey S F Ling
- Laboratory of Neurotrauma, Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
37
|
Hubbard JA, Hsu MS, Fiacco TA, Binder DK. Glial cell changes in epilepsy: Overview of the clinical problem and therapeutic opportunities. Neurochem Int 2013; 63:638-51. [DOI: 10.1016/j.neuint.2013.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/20/2022]
|
38
|
Caboclo LOSF, Neves RS, Jardim AP, Hamad APA, Centeno RS, Lancellotti CLP, Scorza CA, Cavalheiro EA, Yacubian EMT, Sakamoto AC. Surgical and postmortem pathology studies: contribution for the investigation of temporal lobe epilepsy. ARQUIVOS DE NEURO-PSIQUIATRIA 2013; 70:945-52. [PMID: 23295424 DOI: 10.1590/s0004-282x2012001200009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/17/2012] [Indexed: 11/21/2022]
Abstract
Pathology studies in epilepsy patients bring useful information for comprehending the physiopathology of various forms of epilepsy, as well as aspects related to response to treatment and long-term prognosis. These studies are usually restricted to surgical specimens obtained from patients with refractory focal epilepsies. Therefore, most of them pertain to temporal lobe epilepsy (TLE) with mesial temporal sclerosis (MTS) and malformations of cortical development (MCD), thus providing information of a selected group of patients and restricted regions of the brain. Postmortem whole brain studies are rarely performed in epilepsy patients, however they may provide extensive information on brain pathology, allowing the analysis of areas beyond the putative epileptogenic zone. In this article, we reviewed pathology studies performed in epilepsy patients with emphasis on neuropathological findings in TLE with MTS and MCD. Furthermore, we reviewed data from postmortem studies and discussed the importance of performing these studies in epilepsy populations.
Collapse
|
39
|
Beheshti Nasr SM, Moghimi A, Mohammad-Zadeh M, Shamsizadeh A, Noorbakhsh SM. The effect of minocycline on seizures induced by amygdala kindling in rats. Seizure 2013; 22:670-4. [PMID: 23743172 DOI: 10.1016/j.seizure.2013.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Minocycline is known as a chemical with neuroprotective, anti-inflammatory, and antimicrobial properties. In this study, the effects of minocycline on seizures induced by amygdala kindling in rats were studied. METHODS Kindled Wistar rats were injected intraperitoneally with saline and, on the following day, with minocycline (50, 25, and 12.5mg/kg for the three groups (1-3), respectively). The animals in groups 1-3 had similar protocols. Groups 4 and 5 were given for the rotarod test and received 25 or 50mg/kg minocycline, respectively, without any kindling stimulation. The animals in groups 6 and 7 (seven each) received 25mg/kg minocycline or saline, respectively. All the injections were carried out 1h before kindling stimulation. Seizure parameters, including after discharge duration (ADD), stage 4 latency (S4L), stage 5 duration (S5D), and seizure duration (SD), were recorded and compared with those of the saline groups. RESULTS Minocycline (50mg/kg) significantly reduced ADD, 1/S4L, S5D, and SD (P<0.001, P<0.05, P<0.001, and P<0.001, respectively) in group 1. While the administration of 25mg/kg of minocycline decreased the ADD and S5D (P<0.05), in group 2. The injection of 12.5mg/kg resulted in decreased S5D (P<0.001) in group 3. The daily injection of minocycline (25mg/kg) significantly decreased ADD, S5D, and SD (P<0.001) in group 6. CONCLUSION The obtained results revealed that minocycline has anticonvulsant effect on seizures induced by amygdala kindling. Thus, it may be useful for epilepsy treatment.
Collapse
|
40
|
Jinde S, Zsiros V, Nakazawa K. Hilar mossy cell circuitry controlling dentate granule cell excitability. Front Neural Circuits 2013; 7:14. [PMID: 23407806 PMCID: PMC3569840 DOI: 10.3389/fncir.2013.00014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/23/2013] [Indexed: 12/27/2022] Open
Abstract
Glutamatergic hilar mossy cells of the dentate gyrus can either excite or inhibit distant granule cells, depending on whether their direct excitatory projections to granule cells or their projections to local inhibitory interneurons dominate. However, it remains controversial whether the net effect of mossy cell loss is granule cell excitation or inhibition. Clarifying this controversy has particular relevance to temporal lobe epilepsy, which is marked by dentate granule cell hyperexcitability and extensive loss of dentate hilar mossy cells. Two diametrically opposed hypotheses have been advanced to explain this granule cell hyperexcitability—the “dormant basket cell” and the “irritable mossy cell” hypotheses. The “dormant basket cell” hypothesis proposes that mossy cells normally exert a net inhibitory effect on granule cells and therefore their loss causes dentate granule cell hyperexcitability. The “irritable mossy cell” hypothesis takes the opposite view that mossy cells normally excite granule cells and that the surviving mossy cells in epilepsy increase their activity, causing granule cell excitation. The inability to eliminate mossy cells selectively has made it difficult to test these two opposing hypotheses. To this end, we developed a transgenic toxin-mediated, mossy cell-ablation mouse line. Using these mutants, we demonstrated that the extensive elimination of hilar mossy cells causes granule cell hyperexcitability, although the mossy cell loss observed appeared insufficient to cause clinical epilepsy. In this review, we focus on this topic and also suggest that different interneuron populations may mediate mossy cell-induced translamellar lateral inhibition and intralamellar recurrent inhibition. These unique local circuits in the dentate hilar region may be centrally involved in the functional organization of the dentate gyrus.
Collapse
Affiliation(s)
- Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | | | | |
Collapse
|
41
|
van der Hel WS, van Eijsden P, Bos IWM, de Graaf RA, Behar KL, van Nieuwenhuizen O, de Graan PNE, Braun KPJ. In vivo MRS and histochemistry of status epilepticus-induced hippocampal pathology in a juvenile model of temporal lobe epilepsy. NMR IN BIOMEDICINE 2013; 26:132-140. [PMID: 22806932 DOI: 10.1002/nbm.2828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 06/01/2023]
Abstract
Childhood status epilepticus (SE) initiates an epileptogenic process that leads to spontaneous seizures and hippocampal pathology characterized by neuronal loss, gliosis and an imbalance between excitatory and inhibitory neurotransmission. It remains unclear whether these changes are a cause or consequence of chronic epilepsy. In this study, in vivo MRS was used in a post-SE juvenile rat model of temporal lobe epilepsy (TLE) to establish the temporal evolution of hippocampal injury and neurotransmitter imbalance. SE was induced in P21 rats by injection of lithium and pilocarpine. Four and eight weeks after SE, in vivo (1) H and γ-aminobutyric acid (GABA)-edited MRS of the hippocampus was performed in combination with dedicated ex vivo immunohistochemistry for the interpretation and validation of MRS findings. MRS showed a 12% decrease (p<0.0001) in N-acetylaspartate and a 15% increase (p=0.0226) in choline-containing compound concentrations, indicating neuronal death and gliosis, respectively. These results were confirmed by FluoroJade and vimentin staining. Furthermore, severe and progressive decreases in GABA (-41%, p<0.001) and glutamate (Glu) (-17%, p<0.001) were found. The specific severity of GABAergic cell death was confirmed by parvalbumin immunoreactivity (-68%, p<0.001). Unexpectedly, we found changes in glutamine (Gln), the metabolic precursor of both GABA and Glu. Gln increased at 4 weeks (+36%, p<0.001), but returned to control levels at 8 weeks. This decrease was consistent with the simultaneous decrease in glutamine synthase immunoreactivity (-32%, p=0.037). In vivo MRS showed gliosis and (predominantly GABAergic) neuronal loss. In addition, an increase in Gln was detected, accompanied by a decrease in glutamine synthase immunoreactivity. This may reflect glutamine synthase downregulation in order to normalize Gln levels. These changes occurred before spontaneous recurrent seizures were present but, by creating a pre-epileptic state, may play a role in epileptogenesis. MRS can be applied in a clinical setting and may be used as a noninvasive tool to monitor the development of TLE.
Collapse
Affiliation(s)
- W Saskia van der Hel
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
42
|
The presynaptic active zone protein RIM1α controls epileptogenesis following status epilepticus. J Neurosci 2012; 32:12384-95. [PMID: 22956829 DOI: 10.1523/jneurosci.0223-12.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To ensure operation of synaptic transmission within an appropriate dynamic range, neurons have evolved mechanisms of activity-dependent plasticity, including changes in presynaptic efficacy. The multidomain protein RIM1α is an integral component of the cytomatrix at the presynaptic active zone and has emerged as key mediator of presynaptically expressed forms of synaptic plasticity. We have therefore addressed the role of RIM1α in aberrant cellular plasticity and structural reorganization after an episode of synchronous neuronal activity pharmacologically induced in vivo [status epilepticus (SE)]. Post-SE, all animals developed spontaneous seizure events, but their frequency was dramatically increased in RIM1α-deficient mice (RIM1α(-/-)). We found that in wild-type mice (RIM1α(+/+)) SE caused an increase in paired-pulse facilitation in the CA1 region of the hippocampus to the level observed in RIM1α(-/-) mice before SE. In contrast, this form of short-term plasticity was not further enhanced in RIM1α-deficient mice after SE. Intriguingly, RIM1α(-/-) mice showed a unique pattern of selective hilar cell loss (i.e., endfolium sclerosis), which so far has not been observed in a genetic epilepsy animal model, as well as less severe astrogliosis and attenuated mossy fiber sprouting. These findings indicate that the decrease in release probability and altered short- and long-term plasticity as present in RIM1α(-/-) mice result in the formation of a hyperexcitable network but act in part neuroprotectively with regard to neuropathological alterations associated with epileptogenesis. In summary, our results suggest that presynaptic plasticity and proper function of RIM1α play an important part in a neuron's adaptive response to aberrant electrical activity.
Collapse
|
43
|
Karádi K, Janszky J, Gyimesi C, Horváth Z, Lucza T, Dóczi T, Kállai J, Abrahám H. Correlation between calbindin expression in granule cells of the resected hippocampal dentate gyrus and verbal memory in temporal lobe epilepsy. Epilepsy Behav 2012; 25:110-9. [PMID: 22796338 DOI: 10.1016/j.yebeh.2012.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 01/06/2023]
Abstract
Calbindin expression of granule cells of the dentate gyrus is decreased in temporal lobe epilepsy (TLE) regardless of its etiology. In this study, we examined the relation between reduction of calbindin immunoreactivity and the verbal and visuo-spatial memory function of patients with TLE of different etiologies. Significant linear correlation was shown between calbindin expression and short-term and long-term percent retention and retroactive interference in auditory verbal learning test (AVLT) of patients including those with hippocampal sclerosis. In addition, we found significant linear regression between calbindin expression and short-term and long-term percent retention of AVLT in patients whose epilepsy was caused by malformation of cortical development or tumor and when no hippocampal sclerosis and substantial neuronal loss were detected. Together with the role of calbindin in memory established in previous studies on calbindin knock-out mice, our results suggest that reduction of calbindin expression may contribute to memory impairments of patients with TLE, particularly, when neuronal loss is not significant.
Collapse
Affiliation(s)
- Kázmér Karádi
- Department of Behavioral Sciences, Faculty of Medicine, University of Pécs, Szigeti u. 12., Pécs 7624, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Binder DK, Nagelhus EA, Ottersen OP. Aquaporin-4 and epilepsy. Glia 2012; 60:1203-14. [DOI: 10.1002/glia.22317] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/09/2012] [Indexed: 12/17/2022]
|
45
|
Venugopal AK, Sameer Kumar GS, Mahadevan A, Selvan LDN, Marimuthu A, Dikshit JB, Tata P, Ramachandra Y, Chaerkady R, Sinha S, Chandramouli B, Arivazhagan A, Satishchandra P, Shankar S, Pandey A. Transcriptomic Profiling of Medial Temporal Lobe Epilepsy. ACTA ACUST UNITED AC 2012; 5. [PMID: 23483634 DOI: 10.4172/jpb.1000210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epilepsy is one of the most prevalent neurological disorders affecting ~1% of the population. Medial temporal lobe epilepsy (MTLE) is the most frequent type of epilepsy observed in adults who do not respond to pharmacological treatment. The reason for intractability in these patients has not been systematically studied. Further, no markers are available that can predict the subset of patients who will not respond to pharmacotherapy. To identify potential biomarkers of epileptogenicity, we compared the mRNA profiles of surgically resected tissue from seizure zones with non-seizure zones from cases of intractable MTLE. We identified 413 genes that exhibited ≥2-fold change that were statistically significant across these two groups. Several of these differentially expressed genes have not been previously described in the context of MTLE including claudin 11 (CLDN11) and bone morphogenetic protein receptor, type IB (BMPR1B). In addition, we found significant downregulation of a subset of gamma-aminobutyric acid (GABA) associated genes. We also identified molecules such as BACH2 and ADAMTS15, which are already known to be associated with epilepsy. We validated one upregulated molecule, serine/threonine kinase 31 (STK31) and one downregulated molecule, SMARCA4, by immunohistochemical labeling of tissue sections. These molecules need to be further confirmed in large-scale studies to determine their potential use as diagnostic as well as prognostic markers in intractable MTLE.
Collapse
Affiliation(s)
- Abhilash K Venugopal
- Institute of Bioinformatics, International Technology Park, Bangalore, India ; Department of Biotechnology, Kuvempu University, Shimoga, India ; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA ; Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Damaye CA, Wu L, Peng J, He F, Zhang C, Lan Y, Walijee SM, Yin F. An Experimental Study on Dynamic Morphological Changes and Expression Pattern of GFAP and Synapsin I in the Hippocampus of MTLE Models for Immature Rats. Int J Neurosci 2011; 121:575-88. [DOI: 10.3109/00207454.2011.598979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
47
|
Venturin GT, Greggio S, Marinowic DR, Zanirati G, Cammarota M, Machado DC, DaCosta JC. Bone marrow mononuclear cells reduce seizure frequency and improve cognitive outcome in chronic epileptic rats. Life Sci 2011; 89:229-34. [PMID: 21718708 DOI: 10.1016/j.lfs.2011.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/10/2011] [Accepted: 06/03/2011] [Indexed: 11/27/2022]
Abstract
AIMS Epilepsy affects 0.5-1% of the world's population, and approximately a third of these patients are refractory to current medication. Given their ability to proliferate, differentiate and regenerate tissues, stem cells could restore neural circuits lost during the course of the disease and reestablish the physiological excitability of neurons. This study verified the therapeutic potential of bone marrow mononuclear cells (BMMCs) on seizure control and cognitive impairment caused by experimentally induced epilepsy. MAIN METHODS Status epilepticus (SE) was induced by lithium-pilocarpine injection and controlled with diazepam 90 min after SE onset. Lithium-pilocarpine-treated rats were intravenously transplanted 22 days after SE with BMMCs obtained from enhanced green fluorescent protein (eGFP) transgenic C57BL/6 mice. Control epileptic animals were given an equivalent volume of saline or fibroblast injections. Animals were video-monitored for the presence of spontaneous recurrent seizures prior to and following the cell administration procedure. In addition, rats underwent cognitive evaluation using a Morris water maze. KEY FINDINGS Our data show that BMMCs reduced the frequency of seizures and improved the learning and long-term spatial memory impairments of epileptic rats. EGFP-positive cells were detected in the brains of transplanted animals by PCR analysis. SIGNIFICANCE The positive behavioral effects observed in our study indicate that BMMCs could represent a promising therapeutic option in the management of chronic temporal lobe epilepsy.
Collapse
Affiliation(s)
- Gianina Teribele Venturin
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
48
|
Schijns OEMG, Bien CG, Majores M, von Lehe M, Urbach H, Becker A, Schramm J, Elger CE, Clusmann H. Presence of Temporal Gray-White Matter Abnormalities Does Not Influence Epilepsy Surgery Outcome in Temporal Lobe Epilepsy With Hippocampal Sclerosis. Neurosurgery 2011; 68:98-106; discussion 107. [DOI: 10.1227/neu.0b013e3181fc60ff] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Temporal lobe gray-white matter abnormalities (GWMA) are frequent morphological aberrances observed on MRI in patients with temporal lobe epilepsy (TLE) in addition to hippocampal sclerosis (HS).
OBJECTIVE:
To study the influence of temporal pole GWMA on clinical characteristics and seizure outcome in patients with HS operated on for TLE.
METHODS:
A cohort of 370 patients undergoing surgery for intractable TLE was prospectively collected in an epilepsy surgery data base. Clinical characteristics and seizure outcome of all 58 TLE patients with identified HS and GWMA (group 1) were compared with those of a matched control group of 58 HS patients without GWMA (group 2). Both groups were further subdivided into patients undergoing transsylvian selective amygdalohippocampectomy (sAH) and anterior temporal lobectomy with amygdalohippocampectomy (ATL).
RESULTS:
The HS plus GWMA patients were significantly younger at epilepsy onset than those without GWMA. In the HS plus GWMA group, 41% of patients were younger than 2 years when they experienced their first seizure in contrast to only 17% of patients with pure HS (P = .004). Seizure outcome was not statistically different between the 2 groups: 75.9% of the patients in group 1 were seizure free (Engel class I) compared with 81% of patients in group 2. Seizure outcome in both groups was about equally successful with selective amygdalohippocampectomy and anterior temporal lobectomy (ns).
CONCLUSION:
Limited and standard resections in TLE patients with HS are equally successful regardless of the presence of GWMA.
Collapse
Affiliation(s)
- Olaf E M G. Schijns
- Department of Neurosurgery, University of Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital, Maastricht, Maastricht, the Netherlands
| | | | | | - Marec. von Lehe
- Department of Neurosurgery, University of Bonn, Bonn, Germany
| | - Horst. Urbach
- Department of Radiology, University of Bonn, Bonn, Germany
| | - Albert. Becker
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | | | | | - Hans. Clusmann
- Department of Neurosurgery, Technical University Aachen, Aachen, Germany
| |
Collapse
|
49
|
Baram TZ, Jensen FE, Brooks-Kayal A. Does acquired epileptogenesis in the immature brain require neuronal death. Epilepsy Curr 2011; 11:21-6. [PMID: 21461261 PMCID: PMC3063568 DOI: 10.5698/1535-7511-11.1.21] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Because epilepsy often occurs during development, understanding the mechanisms by which this process takes place (epileptogenesis) is important. In addition, the age-specificity of seizures and epilepsies of the neonatal, infancy, and childhood periods suggests that the processes and mechanisms that culminate in epilepsy might be age specific as well. Here we provide an updated review of recent and existing literature and discuss evidence that neuronal loss may occur during epileptogenesis in the developing brain, but is not required for the epileptogenic process. We speculate about the mechanisms for the resilience of neurons in immature limbic structures to epileptogenic insults, and propose that the type, duration and severity of these insults influence the phenomenology of the resulting spontaneous seizures.
Collapse
Affiliation(s)
- Tallie Z Baram
- Departments of Anatomy/Neurobiology and Pediatrics, University of California Irvine, Irvine, CA
| | - Frances E Jensen
- Children's Hospital Boston and Harvard Medical School, Neurology, Boston, MA
| | - Amy Brooks-Kayal
- Pediatrics and Neurology, University of Colorado Denver School of Medicine and The Children's Hospital Denver and Aurora, CO
| |
Collapse
|
50
|
Yang T, Zhou D, Stefan H. Why mesial temporal lobe epilepsy with hippocampal sclerosis is progressive: uncontrolled inflammation drives disease progression? J Neurol Sci 2010; 296:1-6. [PMID: 20663517 DOI: 10.1016/j.jns.2010.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/28/2010] [Accepted: 06/02/2010] [Indexed: 02/05/2023]
Abstract
Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is a group of chronic disorders characterized by prominent neuronal loss and gliosis in the hippocampus and amygdala. Newly published data indicate that it may be a progressive disease, but the mechanism underlying the progressive nature remains unknown. Recently, substantial evidence for an inflammatory mechanism in MTLE has been documented. We are therefore presenting a review of literature concerning the effects of uncontrolled inflammation on the disease progression of MTLE-HS. We found that increasing amounts of evidence support the association between uncontrolled inflammation and progression of the disease. Uncontrolled inflammatory processes may be a main mechanism underlying the self-propagating cycle of uncontrolled inflammation, blood-brain barrier damage, and seizures that drive the progressive nature. Thus it is important to unravel the principles of communication between the different factors in this cycle. The dynamic modulation of inflammatory processes aimed at preventing or interrupting this cycle has the potential to emerge as a novel therapeutic strategy. This line of therapy might offer new perspectives on the pharmacologic treatment of seizures, and possibly on delaying disease progression or retarding epileptogenesis as well.
Collapse
Affiliation(s)
- Tianhua Yang
- Department of Neurology, West China Hospital, Si Chuan University, Cheng du, Sichuan, China
| | | | | |
Collapse
|