1
|
Lehr AB, Hitti FL, Deibel SH, Stöber TM. Silencing hippocampal CA2 reduces behavioral flexibility in spatial learning. Hippocampus 2023; 33:759-768. [PMID: 36938702 DOI: 10.1002/hipo.23521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/21/2023]
Abstract
The hippocampus is a key structure involved in learning and remembering spatial information. However, the extent to which hippocampal region CA2 is involved in these processes remains unclear. Here, we show that chronically silencing dorsal CA2 impairs reversal learning in the Morris water maze. After platform relocation, CA2-silenced mice spent more time in the vicinity of the old platform location and less time in the new target quadrant. Accordingly, behavioral strategy analysis revealed increased perseverance in navigating to the old location during the first day and an increased use of non-spatial strategies during the second day of reversal learning. Confirming previous indirect indications, these results demonstrate that CA2 is recruited when mice must flexibly adapt their behavior as task contingencies change. We discuss how these findings can be explained by recent theories of CA2 function and outline testable predictions to understand the underlying neural mechanisms. Demonstrating a direct involvement of CA2 in spatial learning, this work lends further support to the notion that CA2 plays a fundamental role in hippocampal information processing.
Collapse
Affiliation(s)
- Andrew B Lehr
- Department of Computational Synaptic Physiology, University of Göttingen, Göttingen, Germany
| | - Frederick L Hitti
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Scott H Deibel
- Department of Psychology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Tristan M Stöber
- Institute for Neuroinformatics, Ruhr University Bochum, Bochum, Germany.,Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany.,Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| |
Collapse
|
2
|
Faraz M, Kosarmadar N, Rezaei M, Zare M, Javan M, Barkley V, Shojaei A, Mirnajafi-Zadeh J. Deep brain stimulation effects on learning, memory and glutamate and GABA A receptor subunit gene expression in kindled rats. Acta Neurobiol Exp (Wars) 2021; 81:43-57. [PMID: 33949168 DOI: 10.21307/ane-2021-006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/14/2021] [Indexed: 11/11/2022]
Abstract
Epileptic seizures are accompanied by learning and memory impairments. In this study, the effect of low frequency stimulation (LFS) on spatial learning and memory was assessed in kindled animals and followed for one month. Fully kindled rats received LFS at 4 times (immediately, 6 h, 24 h and 30 h following the final kindling stimulation). Applying LFS improved kindled animals' performance in the Barnes maze test. This LFS action was accompanied by a decrease in NR2B gene expression, an increase in the gene expression of the α subunit of calcineurin A and an increased NR2A/NR2B ratio in kindled animals. In addition, the gene expression of the GABAA receptor γ2 subunit increased at 2-3 h after applying LFS. The increase in NR2A/NR2B ratio was also observed 1 week after LFS. No significant changes were observed one month after LFS administration. Field potential recordings in the hippocampal CA1 area showed that kindling-induced potentiation of the field EPSP slope returned to near baseline when measured 2-3 h after applying LFS. Therefore, it may be postulated that applying LFS in kindled animals reduced the seizure-induced learning and memory impairments, albeit time-dependently. In tandem, LFS prevented kindling-induced alterations in gene expression of the described proteins, which are potentially important for synaptic transmission and/or potentiation. Moreover, a depotentiation-like phenomenon may be a possible mechanism underlying the LFS action. Epileptic seizures are accompanied by learning and memory impairments. In this study, the effect of low frequency stimulation (LFS) on spatial learning and memory was assessed in kindled animals and followed for one month. Fully kindled rats received LFS at 4 times (immediately, 6 h, 24 h and 30 h following the final kindling stimulation). Applying LFS improved kindled animals’ performance in the Barnes maze test. This LFS action was accompanied by a decrease in NR2B gene expression, an increase in the gene expression of the α subunit of calcineurin A and an increased NR2A/NR2B ratio in kindled animals. In addition, the gene expression of the GABAA receptor γ2 subunit increased at 2–3 h after applying LFS. The increase in NR2A/NR2B ratio was also observed 1 week after LFS. No significant changes were observed one month after LFS administration. Field potential recordings in the hippocampal CA1 area showed that kindling-induced potentiation of the field EPSP slope returned to near baseline when measured 2–3 h after applying LFS. Therefore, it may be postulated that applying LFS in kindled animals reduced the seizure-induced learning and memory impairments, albeit time-dependently. In tandem, LFS prevented kindling-induced alterations in gene expression of the described proteins, which are potentially important for synaptic transmission and/or potentiation. Moreover, a depotentiation-like phenomenon may be a possible mechanism underlying the LFS action.
Collapse
Affiliation(s)
- Mona Faraz
- Department of Physiology , Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Nastaran Kosarmadar
- Department of Physiology , Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Mahmoud Rezaei
- Department of Physiology , Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Meysam Zare
- Department of Physiology , Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Mohammad Javan
- Department of Physiology , Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran ; Institute for Brain Sciences and Cognition , Tarbiat Modares University , Tehran , Iran
| | - Victoria Barkley
- Krembil Research Institute , University Health Network , Toronto , Canada
| | - Amir Shojaei
- Department of Physiology , Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran ; Institute for Brain Sciences and Cognition , Tarbiat Modares University , Tehran , Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology , Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran ; Institute for Brain Sciences and Cognition , Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
3
|
Bohlouli S, Mahmoodi G. Investigation of the effects of Satureja edmondi on memory impairment caused by chemical kindling in adult male rats. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2021. [DOI: 10.4103/jrptps.jrptps_89_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Yang H, Zhang R, Jia C, Chen M, Yin W, Wei L, Jiao H. Neuronal protective effect of Songling Xuemaikang capsules alone and in combination with carbamazepine on epilepsy in kainic acid-kindled rats. PHARMACEUTICAL BIOLOGY 2019; 57:22-28. [PMID: 30724642 PMCID: PMC6366425 DOI: 10.1080/13880209.2018.1563619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/19/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
CONTEXT Epilepsy is a common life-threatening neurological disorder that is often drug-resistant and associated with cognitive impairment. The traditional Chinese patent medicine Songling Xuemaikang capsules (SXC) is clinically used for epilepsy therapy and alleviation of cognitive impairment. OBJECTIVE This study investigates the neuronal protective effect of SXC combined with carbamazepine (CBZ) on epilepsy and cognitive impairment in kainic acid-kindled SD rats. MATERIALS AND METHODS Kainic acid-kindled rats were established by injection of 0.45 μg kainic acid and randomly divided into 5 groups (n = 14): saline (sham-operated), control, CBZ, SXC and CBZ + SXC combined group. Rats in the treatment groups received CBZ (50 mg/kg/d), SXC (600 mg/kg/d) or combined CBZ (50 mg/kg/d) + SXC (600 mg/kg/d) via intragastric injection for 60 days. Epileptic behaviours, cognitive impairment, neuronal apoptosis and expression of p-Akt, Akt and caspase-9 were measured, and the alleviation of cognitive damage and neuronal apoptosis was analyzed. RESULTS The combined administration of SXC and CBZ significantly decreased the frequency of seizures (1.2 ± 0.3) and the number of episodes (1.3 ± 0.5) above stage III (p < 0.05). Neuronal apoptosis was improved (p < 0.01), and cognitive damage was ameliorated (p < 0.05).The level of p-Akt was enhanced (p < 0.01) whereas the expression of caspase-9 was evidently inhibited (p < 0.01) in the combined group. CONCLUSIONS The present findings confirm that the combined use of SXC with CBZ can effectively control epileptic seizures, alleviate damage to hippocampal neurons and protect against cognitive impairment. The mechanism of action might be related to the upregulation of p-Akt and inhibition of caspase-9 expression.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Rui Zhang
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Chen Jia
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Mengyu Chen
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Wen Yin
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Liming Wei
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Haisheng Jiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
5
|
Liu H, Stover KR, Sivanenthiran N, Chow J, Cheng C, Liu Y, Lim S, Wu C, Weaver DF, Eubanks JH, Song H, Zhang L. Impaired Spatial Learning and Memory in Middle-Aged Mice with Kindling-Induced Spontaneous Recurrent Seizures. Front Pharmacol 2019; 10:1077. [PMID: 31611787 PMCID: PMC6768971 DOI: 10.3389/fphar.2019.01077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Temporal lobe epilepsy is the most common and often drug-resistant type of epilepsy in the adult and aging populations and has great diversity in etiology, electro-clinical manifestations, and comorbidities. Kindling through repeated brief stimulation of limbic structures is a commonly used model of temporal lobe epilepsy. Particularly, extended kindling can induce spontaneous recurrent seizures in several animal species. However, kindling studies in middle-aged, aging, or aged animals remain scarce, and currently, little is known about kindling-induced behavioral changes in middle-aged/aging animals. We therefore attempted to provide more information in this area using a mouse model of extended hippocampal kindling. We conducted experiments in middle-aged mice (C57BL/6, male, 12-14 months of age) to model new-onset epilepsy in adult/aging populations. Mice experienced twice daily hippocampal stimulations or handling manipulations for 60-70 days and then underwent continuous electroencephalogram (EEG)-video monitoring to detect spontaneous recurrent seizures. Extended kindled mice consistently exhibited spontaneous recurrent seizures with mean incidences of 6-7 events per day, and these seizures featured EEG discharges and corresponding convulsions. The handling control mice showed neither seizure nor aberrant EEG activity. The two groups of mice underwent the Morris water maze test of spatial learning and memory 1-2 weeks after termination of the kindling stimulation or handling manipulation. During visible platform trials, the kindled mice took a longer distance and required more time than the control mice to find the platform. During hidden platform trials, the kindled mice showed no improvement over 5-day trials in finding the platform whereas the control mice improved significantly. During probe tests in which the hidden platform was removed, the kindled mice spent less time than the controls searching in the correct platform location. There were no significant differences between the kindled and control mice with respect to swim speed or total locomotor activity in an open-field test. Together, these observations indicate that the extended kindled mice with spontaneous recurrent seizures are impaired in spatial learning and memory as assessed by the Morris water maze test. We postulate that the extended hippocampal kindling in middle-aged mice may help explore epileptogenic mechanisms and comorbidities potentially relevant to new-onset temporal lobe epilepsy in adult and aging patients. Limitations and confounds of our present experiments are discussed to improve future examinations of epileptic comorbidities in extended kindled mice.
Collapse
Affiliation(s)
- Haiyu Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Kurt R. Stover
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nila Sivanenthiran
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jonathan Chow
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Chloe Cheng
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yapeng Liu
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Stellar Lim
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Chiping Wu
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - James H. Eubanks
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Hongmei Song
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Abnormal Microglia and Enhanced Inflammation-Related Gene Transcription in Mice with Conditional Deletion of Ctcf in Camk2a-Cre-Expressing Neurons. J Neurosci 2017; 38:200-219. [PMID: 29133437 DOI: 10.1523/jneurosci.0936-17.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/21/2017] [Accepted: 11/09/2017] [Indexed: 01/22/2023] Open
Abstract
CCCTC-binding factor (CTCF) is an 11 zinc finger DNA-binding domain protein that regulates gene expression by modifying 3D chromatin structure. Human mutations in CTCF cause intellectual disability and autistic features. Knocking out Ctcf in mouse embryonic neurons is lethal by neonatal age, but the effects of CTCF deficiency in postnatal neurons are less well studied. We knocked out Ctcf postnatally in glutamatergic forebrain neurons under the control of Camk2a-Cre. CtcfloxP/loxP;Camk2a-Cre+ (Ctcf CKO) mice of both sexes were viable and exhibited profound deficits in spatial learning/memory, impaired motor coordination, and decreased sociability by 4 months of age. Ctcf CKO mice also had reduced dendritic spine density in the hippocampus and cerebral cortex. Microarray analysis of mRNA from Ctcf CKO mouse hippocampus identified increased transcription of inflammation-related genes linked to microglia. Separate microarray analysis of mRNA isolated specifically from Ctcf CKO mouse hippocampal neurons by ribosomal affinity purification identified upregulation of chemokine signaling genes, suggesting crosstalk between neurons and microglia in Ctcf CKO hippocampus. Finally, we found that microglia in Ctcf CKO mouse hippocampus had abnormal morphology by Sholl analysis and increased immunostaining for CD68, a marker of microglial activation. Our findings confirm that Ctcf KO in postnatal neurons causes a neurobehavioral phenotype in mice and provide novel evidence that CTCF depletion leads to overexpression of inflammation-related genes and microglial dysfunction.SIGNIFICANCE STATEMENT CCCTC-binding factor (CTCF) is a DNA-binding protein that organizes nuclear chromatin topology. Mutations in CTCF cause intellectual disability and autistic features in humans. CTCF deficiency in embryonic neurons is lethal in mice, but mice with postnatal CTCF depletion are less well studied. We find that mice lacking Ctcf in Camk2a-expressing neurons (Ctcf CKO mice) have spatial learning/memory deficits, impaired fine motor skills, subtly altered social interactions, and decreased dendritic spine density. We demonstrate that Ctcf CKO mice overexpress inflammation-related genes in the brain and have microglia with abnormal morphology that label positive for CD68, a marker of microglial activation. Our findings suggest that inflammation and dysfunctional neuron-microglia interactions are factors in the pathology of CTCF deficiency.
Collapse
|
7
|
What is more harmful, seizures or epileptic EEG abnormalities? Is there any clinical data? Epileptic Disord 2016; 16 Spec No 1:S12-22. [PMID: 25323031 DOI: 10.1684/epd.2014.0686] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cognitive impairment is a common and often devastating co-morbidity of childhood epilepsy. While the aetiology of the epilepsy is a critical determinant of cognitive outcome, there is considerable evidence from both rodent and human studies that indicate that seizures and interictal epileptiform abnormalities can contribute to cognitive impairment. A critical feature of childhood epilepsy is that the seizures and epileptiform activity occur in a brain with developing, plastic neuronal circuits. The consequences of seizures and interictal epileptiform activity in the developing brain differ from similar paroxysmal events occurring in the relatively fixed circuitry of the mature brain. In animals, it is possible to study interictal spikes independently from seizures, and it has been demonstrated that interictal spikes are as detrimental as seizures during brain development. In the clinic, distinguishing the differences between interictal spikes and seizures is more difficult, since both typically occur together. However, both seizures and interictal spikes result in transient cognitive impairment. Recurrent seizures, particularly when frequent, can lead to cognitive regression. While the clinical data linking interictal spikes to persistent cognitive impairment is limited, interictal spikes occurring during the formation and stabilization of neuronal circuits likely contribute to aberrant connectivity. There is insufficient clinical literature to indicate whether interictal spikes are more detrimental than seizures during brain development.
Collapse
|
8
|
Holley AJ, Lugo JN. Effects of an acute seizure on associative learning and memory. Epilepsy Behav 2016; 54:51-7. [PMID: 26655449 PMCID: PMC4724501 DOI: 10.1016/j.yebeh.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 01/31/2023]
Abstract
Past studies have demonstrated that inducing several seizures or continuous seizures in neonatal or adult rats results in impairments in learning and memory. The impact of a single acute seizure on learning and memory has not been investigated in mice. In this study, we exposed adult 129SvEvTac mice to the inhalant flurothyl until a behavioral seizure was induced. Our study consisted of 4 experiments where we examined the effect of one seizure before or after delay fear conditioning. We also included a separate cohort of animals that was tested in the open field after a seizure to rule out changes in locomotor activity influencing the results of memory tests. Mice that had experienced a single seizure 1h, but not 6h, prior to training showed a significant impairment in associative conditioning to the conditioned stimulus when compared with controls 24h later. There were no differences in freezing one day later for animals that experienced a single seizure 1h after associative learning. We also found that an acute seizure reduced activity levels in an open-field test 2h but not 24h later. These findings suggest that an acute seizure occurring immediately before learning can have an effect on the recall of events occurring shortly after that seizure. In contrast, an acute seizure occurring shortly after learning appears to have little or no effect on long-term memory. These findings have implications for understanding the acute effects of seizures on the acquisition of new knowledge.
Collapse
Affiliation(s)
- Andrew J. Holley
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA,Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
9
|
Singh S, Kaur H, Sandhir R. Fractal dimensions: A new paradigm to assess spatial memory and learning using Morris water maze. Behav Brain Res 2015; 299:141-6. [PMID: 26592165 DOI: 10.1016/j.bbr.2015.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/16/2022]
Abstract
Morris water maze has been widely used for analysis of cognitive functions and relies on the time taken by animal to find the platform i.e. escape latency as a parameter to quantify spatial memory and learning. However, escape latency is confounded by swimming speed which is not necessarily a cognitive factor. Rather, path length may be a more appropriate and reliable parameter to assess spatial learning. This paper presents fractal dimension as a new paradigm to assess spatial memory and learning in animals. Male wistar rats were administrated with pentylenetetrazole and scopolamine to induce chronic epilepsy and dementia respectively. Fractal dimension of the random path followed by the animals on Morris water maze was analyzed and statistically compared among different experimental groups; the results suggest that fractal dimension is more reliable and accurate parameter to assess cognitive deficits compared to escape latency. Thus, the present study suggests that fractal dimensions could be used as an independent parameter to assess spatial memory and learning in animals using Morris water maze.
Collapse
Affiliation(s)
- Surjeet Singh
- Department of Governance Reforms, Government of Punjab, India
| | - Harpreet Kaur
- Department of Biochemistry, Panjab University, Sector-25, Chandigarh 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
10
|
Seghatoleslam M, Alipour F, Shafieian R, Hassanzadeh Z, Edalatmanesh MA, Sadeghnia HR, Hosseini M. The effects of Nigella sativa on neural damage after pentylenetetrazole induced seizures in rats. J Tradit Complement Med 2015; 6:262-8. [PMID: 27419091 PMCID: PMC4936772 DOI: 10.1016/j.jtcme.2015.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/07/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023] Open
Abstract
Nigella sativa (NS) has been suggested to have neuroprotective and anti-seizures properties. The aim of current study was to investigate the effects of NS hydro-alcoholic extract on neural damage after pentylenetetrazole (PTZ) - induced repeated seizures. The rats were divided into five groups: (1) control (saline), (2) PTZ (50 mg/kg, i.p.), (3-5) PTZ-NS 100, PTZ-NS 200 and PTZ-NS 400 (100, 200 and 400 mg/kg of NS extract respectively, 30 min prior to each PTZ injection on 5 consecutive days). The passive avoidance (PA) test was done and the brains were then removed for histological measurements. The PTZ-NS 100, PTZ-NS 200 and PTZ-NS 400 groups had lower seizure scores than PTZ group (P < 0.01 and P < 0.001). The latency to enter the dark compartment by the animals of PTZ group was lower than control in PA test (P < 0.01). Pre-treatment by 400 mg/kg of the extract increased the latency to enter the dark compartment (P < 0.05). Meanwhile, different doses of the extract inhibited production of dark neurons in different regions of hippocampus (P < 0.001). The present study allows us to suggest that the NS possesses a potential ability to prevent hippocampal neural damage which is accompanied with improving effects on memory.
Collapse
Affiliation(s)
- Masoumeh Seghatoleslam
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Hassanzadeh
- Neurogenic Inflammation Research Center and Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Dhaher R, Wang H, Gruenbaum SE, Tu N, Lee TSW, Zaveri HP, Eid T. Effects of site-specific infusions of methionine sulfoximine on the temporal progression of seizures in a rat model of mesial temporal lobe epilepsy. Epilepsy Res 2015. [PMID: 26220375 DOI: 10.1016/j.eplepsyres.2015.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glutamine synthetase (GS) in astrocytes is critical for metabolism of glutamate and ammonia in the brain, and perturbations in the anatomical distribution and activity of the enzyme are likely to adversely affect synaptic transmission. GS is deficient in discrete regions of the hippocampal formation in patients with mesial temporal lobe epilepsy (MTLE), a disorder characterized by brain glutamate excess and recurrent seizures. To investigate the role of site-specific inhibition of GS in MTLE, we chronically infused the GS inhibitor methionine sulfoximine (MSO) into one of the following areas of adult laboratory rats: (1) the angular bundle, n=6; (2) the deep entorhinal cortex (EC), n=7; (3) the stratum lacunosum-moleculare of CA1, n=7; (4) the molecular layer of the subiculum, n=10; (5) the hilus of the dentate gyrus, n=6; and (6) the lateral ventricle, n=6. Twelve animals were infused with phosphate buffered saline (PBS) into the same areas to serve as controls. All infusions were unilateral, and animals were monitored by continuous video-intracranial EEG recordings for 3 weeks to capture seizure activity. All animals infused with MSO into the entorhinal-hippocampal area exhibited recurrent seizures that were particularly frequent during the first 3 days of infusion and that continued to recur for the entire 3 week recording period. Only a fraction of animals infused with MSO into the lateral ventricle had recurrent seizures, which occurred at a lower frequency compared with the other MSO infused group. Infusion of MSO into the hilus of the dentate gyrus resulted in the highest total number of seizures over the 3-week recording period. Infusion of MSO into all brain regions studied, with the exception of the lateral ventricle, led to a change in the composition of seizure severity over time. Low-grade (stages 1-3) seizures were more prevalent early during infusion, while severe (stages 4-5) seizures were more prevalent later. Thus, the site of GS inhibition within the brain determines the pattern and temporal evolution of recurrent seizures in the MSO model of MTLE.
Collapse
Affiliation(s)
- Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar St., PO Box 208083, New Haven, CT 06520-8035, USA
| | - Helen Wang
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar St., PO Box 208083, New Haven, CT 06520-8035, USA
| | - Shaun E Gruenbaum
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar St., PO Box 208083, New Haven, CT 06520-8035, USA
| | - Nathan Tu
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar St., PO Box 208083, New Haven, CT 06520-8035, USA
| | - Tih-Shih W Lee
- Department of Psychiatry Yale School of Medicine, New Haven, CT 06520, USA
| | - Hitten P Zaveri
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar St., PO Box 208083, New Haven, CT 06520-8035, USA.
| |
Collapse
|
12
|
Gorter JA, van Vliet EA, Lopes da Silva FH. Which insights have we gained from the kindling and post-status epilepticus models? J Neurosci Methods 2015; 260:96-108. [PMID: 25842270 DOI: 10.1016/j.jneumeth.2015.03.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/24/2022]
Abstract
Experimental animal epilepsy research got a big boost since the discovery that daily mild and short (seconds) tetanic stimulations in selected brain regions led to seizures with increasing duration and severity. This model that was developed by Goddard (1967) became known as the kindling model for epileptogenesis and has become a widely used model for temporal lobe epilepsy with complex partial seizures. During the late ninety-eighties the number of publications related to electrical kindling reached its maximum. However, since the kindling procedure is rather labor intensive and animals only develop spontaneous seizures (epilepsy) after hundreds of stimulations, research has shifted toward models in which the animals exhibit spontaneous seizures after a relatively short latent period. This led to post-status epilepticus (SE) models in which animals experience SE after injection of pharmacological compounds (e.g. kainate or pilocarpine) or via electrical stimulation of (limbic) brain regions. These post-SE models are the most widely used models in epilepsy research today. However, not all aspects of mesial temporal lobe epilepsy (MTLE) are reproduced and the widespread brain damage is often a caricature of the situation in the patient. Therefore, there is a need for models that can better replicate the disease. Kindling, although already a classic model, can still offer valid clues in this context. In this paper, we review different aspects of the kindling model with emphasis on experiments in the rat. Next, we review characteristic properties of the post-SE models and compare the neuropathological, electrophysiological and molecular differences between kindling and post-SE epilepsy models. Finally, we shortly discuss the advantages and disadvantages of these models.
Collapse
Affiliation(s)
- Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Fernando H Lopes da Silva
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| |
Collapse
|
13
|
Abbas Zaid S, Ahmad Path S, Singh S, Ahmad F, Jamil S, Khar R. Effect of Repeated Administration of Paeonia emodi Wall Root Extract in Experimental Models of Epilepsy and Behavior. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/jpt.2012.64.77] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Cardoso A, Lukoyanova EA, Madeira MD, Lukoyanov NV. Seizure-induced structural and functional changes in the rat hippocampal formation: Comparison between brief seizures and status epilepticus. Behav Brain Res 2011; 225:538-46. [DOI: 10.1016/j.bbr.2011.07.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/28/2011] [Accepted: 07/30/2011] [Indexed: 12/28/2022]
|
15
|
IGF-I ameliorates hippocampal neurodegeneration and protects against cognitive deficits in an animal model of temporal lobe epilepsy. Exp Neurol 2011; 231:223-35. [PMID: 21756906 DOI: 10.1016/j.expneurol.2011.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/11/2011] [Accepted: 06/23/2011] [Indexed: 12/26/2022]
Abstract
Epilepsy is a major neurological disease, and patients often show spatial memory deficits. Thus, there is a need of effective new therapeutic approaches. IGF-I has been shown to be neuroprotective following a number of experimental insults to the nervous system, and in a variety of animal models of neurodegenerative diseases. In the present work, we investigated the possible neuroprotective effects of IGF-I following unilateral intrahippocampal administration of kainic acid (KA), an animal model of temporal lobe epilepsy (TLE). KA induced cell death, as shown by FluoroJade B, and extensive cell loss in both the ipsilateral and contralateral CA3 and CA4 areas, as well as granule cell dispersal in the DG, as revealed by Cresyl violet staining. KA also resulted in intense astrogliosis and microgliosis, as assessed by the number of GFAP and CD11b immunopositive cells, respectively, and increased hippocampal neurogenesis. Exposure to the Morris Water Maze task revealed that mice injected with KA were deficient in spatial learning and both short- and long-term memories, when tested in a larger diameter pool, which requires the use of allocentric strategies. When tested in a smaller pool, only long-term memory was impaired. Administration of IGF-I decreased seizure severity, hippocampal neurogenesis, and protected against neurodegeneration at the cellular level as assessed by FluoroJade B and Cresyl violet staining, as well as the number of GFAP and CD11b immunopositive cells. Furthermore, IGF-I abolished the cognitive deficits. Our results support that IGF-I could have a possible therapeutic potential in TLE.
Collapse
|
16
|
Effect of prenatal pentylenetetrazol-induced kindling on learning and memory of male offspring. Neuroscience 2011; 172:205-11. [DOI: 10.1016/j.neuroscience.2010.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 11/18/2022]
|
17
|
Liu X, Wen F, Yang J, Chen L, Wei YQ. A review of current applications of mass spectrometry for neuroproteomics in epilepsy. MASS SPECTROMETRY REVIEWS 2010; 29:197-246. [PMID: 19598206 DOI: 10.1002/mas.20243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The brain is unquestionably the most fascinating organ, and the hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In temporal lobe epilepsy (TLE), the seizure origin typically involves the hippocampal formation. Despite tremendous progress, current knowledge falls short of being able to explain its function. An emerging approach toward an improved understanding of the complex molecular mechanisms that underlie functions of the brain and hippocampus is neuroproteomics. Mass spectrometry has been widely used to analyze biological samples, and has evolved into an indispensable tool for proteomics research. In this review, we present a general overview of the application of mass spectrometry in proteomics, summarize neuroproteomics and systems biology-based discovery of protein biomarkers for epilepsy, discuss the methodology needed to explore the epileptic hippocampus proteome, and also focus on applications of ingenuity pathway analysis (IPA) in disease research. This neuroproteomics survey presents a framework for large-scale protein research in epilepsy that can be applied for immediate epileptic biomarker discovery and the far-reaching systems biology understanding of the protein regulatory networks. Ultimately, knowledge attained through neuroproteomics could lead to clinical diagnostics and therapeutics to lessen the burden of epilepsy on society.
Collapse
Affiliation(s)
- Xinyu Liu
- National Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
18
|
Mao RR, Tian M, Yang YX, Zhou QX, Xu L, Cao J. Effects of pentylenetetrazol-induced brief convulsive seizures on spatial memory and fear memory. Epilepsy Behav 2009; 15:441-4. [PMID: 19570727 DOI: 10.1016/j.yebeh.2009.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/27/2009] [Accepted: 05/31/2009] [Indexed: 10/20/2022]
Abstract
Previous studies have demonstrated that in the pentylenetetrazol (PTZ) kindling model, recurrent seizures either impair or have no effect on learning and memory. However, the effects of brief seizures on learning and memory remain unknown. Here, we found that a single injection of a convulsive dose of PTZ (50 mg/kg, ip) induced brief seizures in Sprague-Dawley rats. Administration of PTZ before training impaired the acquisition of spatial memory in the Morris water maze (MWM) and fear memory in contextual fear conditioning. However, the administration of PTZ immediately after training did not affect memory consolidation in either task. These findings suggest that brief seizures have different effects on acquisition and consolidation of spatial and fear memory.
Collapse
Affiliation(s)
- Rong-Rong Mao
- Key Laboratory of Animal Models and Human Disease Mechanisms and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Henry LC, Goertzen CD, Lee A, Teskey GC. Repeated seizures lead to altered skilled behaviour and are associated with more highly efficacious excitatory synapses. Eur J Neurosci 2008; 27:2165-76. [PMID: 18412634 DOI: 10.1111/j.1460-9568.2008.06153.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
People with epilepsy have a high incidence of interictal behavioural problems that appear to be related to the location of their seizure focus. This study investigated a novel test of the hypotheses that repeated seizures result in behavioural deficits and altered performance during the interictal state, and that those behaviours are related to the presence of more highly efficacious excitatory synapses. We tested these hypotheses by first repeatedly eliciting seizures with electric current through indwelling electrodes in the corpus callosum at the level of the caudal forelimb area of sensorimotor neocortex in the rat. We then assessed learned skilled behaviours that primarily utilize the forelimbs on tasks that are sensitive to the functional integrity of that structure. We observed both behavioural deficits and altered kinematic performance in rats that experienced repeated neocortical seizures relative to an electrode-implanted control group. From a separate set of rats, tissue was prepared for quantification of thickness and excitatory synaptic subtypes from neocortical layer V. We observed significantly increased numbers of perforated synapses that make their connections directly onto the dendritic shaft at 3 weeks following the last seizure. Altered reaching behaviours are likely due to neural reorganization in the neocortex including more efficacious synapses.
Collapse
Affiliation(s)
- Luke C Henry
- Behavioural Neuroscience Research Group, Department of Psychology, Epilepsy and Brain Circuits Program, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
20
|
Hidaka N, Suemaru K, Li B, Araki H. Effects of Repeated Electroconvulsive Seizures on Spontaneous Alternation Behavior and Locomotor Activity in Rats. Biol Pharm Bull 2008; 31:1928-32. [DOI: 10.1248/bpb.31.1928] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Katsuya Suemaru
- Division of Pharmacy, Ehime University Hospital
- Department of Clinical Pharmacology and Pharmacy, Neuroscience, Ehime University Graduate School of Medicine
| | - Bingjin Li
- Department of Clinical Pharmacology and Pharmacy, Neuroscience, Ehime University Graduate School of Medicine
| | - Hiroaki Araki
- Division of Pharmacy, Ehime University Hospital
- Department of Clinical Pharmacology and Pharmacy, Neuroscience, Ehime University Graduate School of Medicine
| |
Collapse
|
21
|
López-Velázquez L, Aguirre E, Paredes RG. Kindling increases aversion to saccharin in taste aversion learning. Neuroscience 2007; 144:808-14. [PMID: 17140739 DOI: 10.1016/j.neuroscience.2006.09.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 09/20/2006] [Accepted: 09/29/2006] [Indexed: 11/27/2022]
Abstract
Kindling is a model in which an initially subconvulsive electrical stimulation of certain brain areas eventually develops a generalized seizure that produces behavioral and long term neuronal changes. In the present study we evaluated if kindling can modify conditioning taste aversion (CTA). In this paradigm animals acquire aversion to saccharin when it is presented as the conditioned stimulus (CS) followed by an injection of lithium chloride (LiCl) that induces a gastric irritation as the unconditioned stimulus (US). Male Wistar rats were implanted with bipolar electrodes aimed at the right amygdala (AMG) or at the right insular cortex (IC). The animals were stimulated daily until they reached stages 2-4 (intermediate) or until kindling was fully established (three consecutive stage 5 seizures). At least two weeks after kindling stimulation had ceased the animals were deprived of water for 24 h and given 10-min drinking sessions twice a day for 4 days. On day 5 (morning session) tap water was replaced by saccharin solution (0.1%), 20 min later the animals were injected with LiCl (7.5 ml/kg i.p., 0.2 M) to induce gastric malaise or taste aversion. After three more days of baseline consumption, water was substituted by a fresh 0.1% saccharin solution to test the aversion. AMG-kindling delayed the extinction of CTA. Animals with kindling in the IC had a higher retention than the sham kindling group; that is, they drank significantly less saccharin solution than the other groups. The results of the present experiment show that local modification of brain function induced by kindling stimulation can prolong the aversive effects of CTA.
Collapse
Affiliation(s)
- L López-Velázquez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Apartado Postal 1-1141, Querétaro, Qro. C.P. 76001, Mexico
| | | | | |
Collapse
|
22
|
Okaichi Y, Amano S, Ihara N, Hayase Y, Tazumi T, Okaichi H. Open-field behaviors and water-maze learning in the F substrain of Ihara epileptic rats. Epilepsia 2006; 47:55-63. [PMID: 16417532 DOI: 10.1111/j.1528-1167.2006.00370.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Genetically epileptic model rats, Ihara epileptic rat (IER/F substrain), have neuropathologic abnormalities and develop generalized convulsive seizures when they reach the age of approximately 5 months. Because the neuromorphologic abnormalities are centered in the hippocampus, we expected to observe spatial cognitive deficits. The present study aimed to evaluate emotionality and learning ability of the F substrain of IER. METHODS To determine whether deficits are caused by inborn neuropathologic abnormalities or by repeated generalized convulsions, we tested nine 6- to 12-week-old IER/F rats that had not yet experienced seizures (experiment 1) and nine 7- to 9-month-old IER/F rats that had repeatedly experienced seizures (experiment 2) with identical tasks: an open-field test and the Morris water-maze place and cue tasks. RESULTS Both groups of IER/Fs showed behaviors that were different from those of control rats in the open-field test, and extensive learning impairments were seen in both the place task, which requires spatial cognition, and the cue task, which does not require spatial cognition but requires simple association learning. Their impaired performance of the cue task indicates that their deficiency was not limited to spatial cognition. CONCLUSIONS Because young IER/F rats without seizure experiences also showed severe learning impairments, genetically programmed microdysgenesis in the hippocampus was suspected as a cause of the severe learning deficits of IER/Fs.
Collapse
Affiliation(s)
- Yoko Okaichi
- Department of Psychology, Doshisha University, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Stafstrom CE, Sutula TP. Models of epilepsy in the developing and adult brain: implications for neuroprotection. Epilepsy Behav 2005; 7 Suppl 3:S18-24. [PMID: 16242383 DOI: 10.1016/j.yebeh.2005.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 08/17/2005] [Indexed: 11/26/2022]
Abstract
Repeated seizures cause a sequence of molecular and cellular changes in both the developing and adult brain, which may lead to intractable epilepsy. This article reviews this sequence of neuronal alterations, with emphasis on the kindling model. At each step, the opportunity exists for strategic intervention to prevent or reduce the downstream consequences of epileptogenesis and seizure-induced adverse plasticity. The concept of seizure-induced brain damage must be expanded to include behavioral and cognitive deficits, as well as structural neuronal damage and increased predisposition to seizures.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Department of Neurology, University of Wisconsin, Madison, WI 53792, USA.
| | | |
Collapse
|
24
|
Vatury O, Barg J, Slotkin TA, Yanai J. Altered localization of choline transporter sites in the mouse hippocampus after prenatal heroin exposure. Brain Res Bull 2004; 63:25-32. [PMID: 15121236 DOI: 10.1016/j.brainresbull.2003.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2003] [Revised: 11/15/2003] [Accepted: 11/30/2003] [Indexed: 10/26/2022]
Abstract
Prenatal heroin exposure disrupts hippocampal cholinergic synaptic function and related behaviors. Biochemical studies indicate an increase in the number of presynaptic high-affinity choline transporter (HACT) sites, as assessed by [3H]hemicholinium-3 (HC-3) binding. The present study was designed to assess whether this effect involves global upregulation of the transporter, or whether disruption occurs with a specific tempero-spatial distribution. Pregnant mice were given 10mg/kg per day of heroin subcutaneously on gestational days (GD) 9-18. Autoradiographic distribution of HC-3 binding sites was evaluated in the hippocampus of the offspring at postnatal days 15, 25, and 53. These results, suggestive of hippocampal "miswiring," are likely to explain the net impairment of cholinergic synaptic function after prenatal heroin exposure, despite the simultaneous upregulation of both presynaptic cholinergic activity and postsynaptic receptors. Understanding the subregional selectivity of hippocampal defects can lead to the development of strategies that may potentially enable therapeutic interventions to offset or reverse the neurobehavioral defects.
Collapse
Affiliation(s)
- Ori Vatury
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy and Cell Biology, The Hebrew University-Hadassah Medical School, Box 12272, 91120 Jerusalem, Israel
| | | | | | | |
Collapse
|
25
|
Sutula TP. Mechanisms of epilepsy progression: current theories and perspectives from neuroplasticity in adulthood and development. Epilepsy Res 2004; 60:161-71. [PMID: 15380560 DOI: 10.1016/j.eplepsyres.2004.07.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 06/05/2004] [Accepted: 07/01/2004] [Indexed: 11/17/2022]
Abstract
Clinical and epidemiological studies have repeatedly demonstrated that a subset of patients with epilepsy have progressive syndromes with increasing seizure frequency and cumulative adverse effects despite optimal anticonvulsant therapy. Recent longitudinal imaging studies and long-term neuropsychological studies have confirmed that a substantial subset of people with epilepsy undergo progressive brain atrophy accompanied by functional declines that worsen with duration of epilepsy. As further evidence of the progressive and adverse effects of inadequately controlled epilepsy, chronic experimental models of epilepsy and the phenomenon of kindling have provided abundant evidence that neural circuits undergo long-term progressive structural and functional alterations in response to seizures. This long-term seizure-induced plasticity in neural circuits appears to be "bidirectional", inducing progressive damage while also inducing resistance to additional damage, as a function of timing or inter-seizure interval. Seizure-induced plasticity has pronounced age-dependence, and influences long-term cognitive consequences of seizures during early life and acquired susceptibility to epilepsy in adulthood. While it is clear from clinical and epidemiological studies that human epilepsy is a heterogeneous disorder and that not all epileptic syndromes are progressive, emerging results from studies of activity-dependent and seizure-induced plasticity and perspectives from "complex systems" analysis are providing new insights into systematic neurobiological processes that are likely to influence the progressive features of epileptic syndromes and patterns of progression in individual patients. The emerging perspective is that phenomena of plasticity and genetic background exert powerful effects in development and adulthood through regulation of activity-dependent structural and functional remodeling of neural circuitry, and that these effects not only influence progression and consequences of seizures, but also offer new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas P Sutula
- Departments of Neurology and Anatomy, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA.
| |
Collapse
|
26
|
Abstract
Data from experimental models provide evidence that both prolonged and brief seizures can cause irreversible impairment in spatial and emotional learning and memory. Factors related to the severity of the behavioral impairments include genetic background, age at the time of the epileptogenic insult, extent of brain lesion, location of seizure focus, seizure duration, seizure number, brain reserve, and environmental and social living conditions. Further, as in humans, the interval between the last seizure and behavioral testing as well as treatment with antiepileptic drugs can affect the test results.
Collapse
Affiliation(s)
- Katarzyna Majak
- Epilepsy Research Laboratory, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | | |
Collapse
|
27
|
|