1
|
Mojumdar A, Granger C, Lunke M, Cobb JA. Loss of Dna2 fidelity results in decreased Exo1-mediated resection at DNA double-strand breaks. J Biol Chem 2024; 300:105708. [PMID: 38311177 PMCID: PMC10909748 DOI: 10.1016/j.jbc.2024.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/13/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
A DNA double-strand break (DSB) is one of the most dangerous types of DNA damage that is repaired largely by homologous recombination or nonhomologous end-joining (NHEJ). The interplay of repair factors at the break directs which pathway is used, and a subset of these factors also function in more mutagenic alternative (alt) repair pathways. Resection is a key event in repair pathway choice and extensive resection, which is a hallmark of homologous recombination, and it is mediated by two nucleases, Exo1 and Dna2. We observed differences in resection and repair outcomes in cells harboring nuclease-dead dna2-1 compared with dna2Δ pif1-m2 that could be attributed to the level of Exo1 recovered at DSBs. Cells harboring dna2-1 showed reduced Exo1 localization, increased NHEJ, and a greater resection defect compared with cells where DNA2 was deleted. Both the resection defect and the increased rate of NHEJ in dna2-1 mutants were reversed upon deletion of KU70 or ectopic expression of Exo1. By contrast, when DNA2 was deleted, Exo1 and Ku70 recovery levels did not change; however, Nej1 increased as did the frequency of alt-end joining/microhomology-mediated end-joining repair. Our findings demonstrate that decreased Exo1 at DSBs contributed to the resection defect in cells expressing inactive Dna2 and highlight the complexity of understanding how functionally redundant factors are regulated in vivo to promote genome stability.
Collapse
Affiliation(s)
- Aditya Mojumdar
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Courtney Granger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Martine Lunke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Jennifer A Cobb
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
2
|
Liu W, Polaczek P, Roubal I, Meng Y, Choe WC, Caron MC, Sedgeman C, Xi Y, Liu C, Wu Q, Zheng L, Masson JY, Shen B, Campbell J. FANCD2 and RAD51 recombinase directly inhibit DNA2 nuclease at stalled replication forks and FANCD2 acts as a novel RAD51 mediator in strand exchange to promote genome stability. Nucleic Acids Res 2023; 51:9144-9165. [PMID: 37526271 PMCID: PMC10516637 DOI: 10.1093/nar/gkad624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/17/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
FANCD2 protein, a key coordinator and effector of the interstrand crosslink repair pathway, is also required to prevent excessive nascent strand degradation at hydroxyurea-induced stalled forks. The RAD51 recombinase has also been implicated in regulation of resection at stalled replication forks. The mechanistic contributions of these proteins to fork protection are not well understood. Here, we used purified FANCD2 and RAD51 to study how each protein regulates DNA resection at stalled forks. We characterized three mechanisms of FANCD2-mediated fork protection: (1) The N-terminal domain of FANCD2 inhibits the essential DNA2 nuclease activity by directly binding to DNA2 accounting for over-resection in FANCD2 defective cells. (2) Independent of dimerization with FANCI, FANCD2 itself stabilizes RAD51 filaments to inhibit multiple nucleases, including DNA2, MRE11 and EXO1. (3) Unexpectedly, we uncovered a new FANCD2 function: by stabilizing RAD51 filaments, FANCD2 acts to stimulate the strand exchange activity of RAD51. Our work biochemically explains non-canonical mechanisms by which FANCD2 and RAD51 protect stalled forks. We propose a model in which the strand exchange activity of FANCD2 provides a simple molecular explanation for genetic interactions between FANCD2 and BRCA2 in the FA/BRCA fork protection pathway.
Collapse
Affiliation(s)
- Wenpeng Liu
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Piotr Polaczek
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ivan Roubal
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuan Meng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Won-chae Choe
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Carl A Sedgeman
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yu Xi
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Changwei Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qiong Wu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
3
|
Mojumdar A, Adam N, Cobb JA. Nej1 interacts with Sae2 at DNA double-stranded breaks to inhibit DNA resection. J Biol Chem 2022; 298:101937. [PMID: 35429499 PMCID: PMC9117546 DOI: 10.1016/j.jbc.2022.101937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The two major pathways of DNA double-strand break repair, nonhomologous end-joining and homologous recombination, are highly conserved from yeast to mammals. The regulation of 5′-DNA resection controls repair pathway choice and influences repair outcomes. Nej1 was first identified as a canonical NHEJ factor involved in stimulating the ligation of broken DNA ends, and more recently, it was shown to participate in DNA end-bridging and in the inhibition of 5′-resection mediated by the nuclease/helicase complex Dna2–Sgs1. Here, we show that Nej1 interacts with Sae2 to impact DSB repair in three ways. First, we show that Nej1 inhibits interaction of Sae2 with the Mre11–Rad50–Xrs2 complex and Sae2 localization to DSBs. Second, we found that Nej1 inhibits Sae2-dependent recruitment of Dna2 independently of Sgs1. Third, we determined that NEJ1 and SAE2 showed an epistatic relationship for end-bridging, an event that restrains broken DNA ends and reduces the frequency of genomic deletions from developing at the break site. Finally, we demonstrate that deletion of NEJ1 suppressed the synthetic lethality of sae2Δ sgs1Δ mutants, and that triple mutant viability was dependent on Dna2 nuclease activity. Taken together, these findings provide mechanistic insight to how Nej1 functionality inhibits the initiation of DNA resection, a role that is distinct from its involvement in end-joining repair at DSBs.
Collapse
Affiliation(s)
- Aditya Mojumdar
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary; 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
| | - Nancy Adam
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary; 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
| | - Jennifer A Cobb
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary; 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
4
|
Zheng L, Meng Y, Campbell JL, Shen B. Multiple roles of DNA2 nuclease/helicase in DNA metabolism, genome stability and human diseases. Nucleic Acids Res 2020; 48:16-35. [PMID: 31754720 PMCID: PMC6943134 DOI: 10.1093/nar/gkz1101] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022] Open
Abstract
DNA2 nuclease/helicase is a structure-specific nuclease, 5'-to-3' helicase, and DNA-dependent ATPase. It is involved in multiple DNA metabolic pathways, including Okazaki fragment maturation, replication of 'difficult-to-replicate' DNA regions, end resection, stalled replication fork processing, and mitochondrial genome maintenance. The participation of DNA2 in these different pathways is regulated by its interactions with distinct groups of DNA replication and repair proteins and by post-translational modifications. These regulatory mechanisms induce its recruitment to specific DNA replication or repair complexes, such as DNA replication and end resection machinery, and stimulate its efficient cleavage of various structures, for example, to remove RNA primers or to produce 3' overhangs at telomeres or double-strand breaks. Through these versatile activities at replication forks and DNA damage sites, DNA2 functions as both a tumor suppressor and promoter. In normal cells, it suppresses tumorigenesis by maintaining the genomic integrity. Thus, DNA2 mutations or functional deficiency may lead to cancer initiation. However, DNA2 may also function as a tumor promoter, supporting cancer cell survival by counteracting replication stress. Therefore, it may serve as an ideal target to sensitize advanced DNA2-overexpressing cancers to current chemo- and radiotherapy regimens.
Collapse
Affiliation(s)
- Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Yuan Meng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Judith L Campbell
- Divisions of Chemistry and Chemical Engineering and Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Kahli M, Osmundson JS, Yeung R, Smith DJ. Processing of eukaryotic Okazaki fragments by redundant nucleases can be uncoupled from ongoing DNA replication in vivo. Nucleic Acids Res 2019; 47:1814-1822. [PMID: 30541106 PMCID: PMC6393292 DOI: 10.1093/nar/gky1242] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Prior to ligation, each Okazaki fragment synthesized on the lagging strand in eukaryotes must be nucleolytically processed. Nuclease cleavage takes place in the context of 5′ flap structures generated via strand-displacement synthesis by DNA polymerase delta. At least three DNA nucleases: Rad27 (Fen1), Dna2 and Exo1, have been implicated in processing Okazaki fragment flaps. However, neither the contributions of individual nucleases to lagging-strand synthesis nor the structure of the DNA intermediates formed in their absence have been fully defined in vivo. By conditionally depleting lagging-strand nucleases and directly analyzing Okazaki fragments synthesized in vivo in Saccharomyces cerevisiae, we conduct a systematic evaluation of the impact of Rad27, Dna2 and Exo1 on lagging-strand synthesis. We find that Rad27 processes the majority of lagging-strand flaps, with a significant additional contribution from Exo1 but not from Dna2. When nuclease cleavage is impaired, we observe a reduction in strand-displacement synthesis as opposed to the widespread generation of long Okazaki fragment 5′ flaps, as predicted by some models. Further, using cell cycle-restricted constructs, we demonstrate that both the nucleolytic processing and the ligation of Okazaki fragments can be uncoupled from DNA replication and delayed until after synthesis of the majority of the genome is complete.
Collapse
Affiliation(s)
- Malik Kahli
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Rani Yeung
- Department of Biology, New York University, New York, NY 10003, USA
| | - Duncan J Smith
- Department of Biology, New York University, New York, NY 10003, USA
- To whom correspondence should be addressed. Tel: +1 212 992 6595;
| |
Collapse
|
6
|
Yeo NC, Chavez A, Lance-Byrne A, Chan Y, Menn D, Milanova D, Kuo CC, Guo X, Sharma S, Tung A, Cecchi RJ, Tuttle M, Pradhan S, Lim ET, Davidsohn N, Ebrahimkhani MR, Collins JJ, Lewis NE, Kiani S, Church GM. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat Methods 2018; 15:611-616. [PMID: 30013045 PMCID: PMC6129399 DOI: 10.1038/s41592-018-0048-5] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/03/2018] [Indexed: 01/12/2023]
Abstract
The RNA-guided endonuclease Cas9 can be converted into a programmable transcriptional repressor, but inefficiencies in target-gene silencing have limited its utility. Here we describe an improved Cas9 repressor based on the C-terminal fusion of a rationally designed bipartite repressor domain, KRAB-MeCP2, to nuclease-dead Cas9. We demonstrate the system's superiority in silencing coding and noncoding genes, simultaneously repressing a series of target genes, improving the results of single and dual guide RNA library screens, and enabling new architectures of synthetic genetic circuits.
Collapse
Affiliation(s)
- Nan Cher Yeo
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | - Alissa Lance-Byrne
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Yingleong Chan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - David Menn
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Denitsa Milanova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chih-Chung Kuo
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, San Diego, CA, USA
| | - Xiaoge Guo
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sumana Sharma
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Angela Tung
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Ryan J Cecchi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Marcelle Tuttle
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Swechchha Pradhan
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Elaine T Lim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Noah Davidsohn
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mo R Ebrahimkhani
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
- Division of Gastroenterology and Hematology, Mayo Clinic College of Medicine and Science, Phoenix, AZ, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, San Diego, CA, USA
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Samira Kiani
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA.
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Pawłowska E, Szczepanska J, Blasiak J. DNA2-An Important Player in DNA Damage Response or Just Another DNA Maintenance Protein? Int J Mol Sci 2017; 18:ijms18071562. [PMID: 28718810 PMCID: PMC5536050 DOI: 10.3390/ijms18071562] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 02/01/2023] Open
Abstract
The human DNA2 (DNA replication helicase/nuclease 2) protein is expressed in both the nucleus and mitochondria, where it displays ATPase-dependent nuclease and helicase activities. DNA2 plays an important role in the removing of long flaps in DNA replication and long-patch base excision repair (LP-BER), interacting with the replication protein A (RPA) and the flap endonuclease 1 (FEN1). DNA2 can promote the restart of arrested replication fork along with Werner syndrome ATP-dependent helicase (WRN) and Bloom syndrome protein (BLM). In mitochondria, DNA2 can facilitate primer removal during strand-displacement replication. DNA2 is involved in DNA double strand (DSB) repair, in which it is complexed with BLM, RPA and MRN for DNA strand resection required for homologous recombination repair. DNA2 can be a major protein involved in the repair of complex DNA damage containing a DSB and a 5' adduct resulting from a chemical group bound to DNA 5' ends, created by ionizing radiation and several anticancer drugs, including etoposide, mitoxantrone and some anthracyclines. The role of DNA2 in telomere end maintenance and cell cycle regulation suggests its more general role in keeping genomic stability, which is impaired in cancer. Therefore DNA2 can be an attractive target in cancer therapy. This is supported by enhanced expression of DNA2 in many cancer cell lines with oncogene activation and premalignant cells. Therefore, DNA2 can be considered as a potential marker, useful in cancer therapy. DNA2, along with PARP1 inhibition, may be considered as a potential target for inducing synthetic lethality, a concept of killing tumor cells by targeting two essential genes.
Collapse
Affiliation(s)
- Elzbieta Pawłowska
- Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| |
Collapse
|
8
|
Levikova M, Pinto C, Cejka P. The motor activity of DNA2 functions as an ssDNA translocase to promote DNA end resection. Genes Dev 2017; 31:493-502. [PMID: 28336515 PMCID: PMC5393063 DOI: 10.1101/gad.295196.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/13/2017] [Indexed: 11/25/2022]
Abstract
Here, Levikova et al. show that the motor activity of both recombinant yeast and human DNA2 promotes efficient degradation of long stretches of ssDNA, particularly in the presence of the replication protein A. Their results support a model of DNA2 and the RecQ family helicase partner forming a bidirectional motor machine in which the RecQ family helicase is the lead helicase, and the motor of DNA2 functions as a ssDNA translocase to promote degradation of 5′-terminated DNA. DNA2 nuclease–helicase functions in DNA replication and recombination. This requires the nuclease of DNA2, while, in contrast, the role of the helicase activity has been unclear. We now show that the motor activity of both recombinant yeast and human DNA2 promotes efficient degradation of long stretches of ssDNA, particularly in the presence of the replication protein A. This degradation is further stimulated by a direct interaction with a cognate RecQ family helicase, which functions with DNA2 in DNA end resection to initiate homologous recombination. Consequently, helicase-deficient yeast dna2 K1080E cells display reduced resection speed of HO-induced DNA double-strand breaks. These results support a model of DNA2 and the RecQ family helicase partner forming a bidirectional motor machine, where the RecQ family helicase is the lead helicase, and the motor of DNA2 functions as a ssDNA translocase to promote degradation of 5′-terminated DNA.
Collapse
Affiliation(s)
- Maryna Levikova
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Cosimo Pinto
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Petr Cejka
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland.,Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| |
Collapse
|
9
|
Kwon B, Munashingha PR, Shin YK, Lee CH, Li B, Seo YS. Physical and functional interactions between nucleosomes and Rad27, a critical component of DNA processing during DNA metabolism. FEBS J 2016; 283:4247-4262. [DOI: 10.1111/febs.13934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/22/2016] [Accepted: 10/17/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Buki Kwon
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu Daejeon Korea
| | - Palinda Ruvan Munashingha
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu Daejeon Korea
| | - Yong-Keol Shin
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu Daejeon Korea
| | - Chul-Hwan Lee
- Department of Molecular Biology; UT Southwestern Medical Center; Dallas TX USA
| | - Bing Li
- Department of Molecular Biology; UT Southwestern Medical Center; Dallas TX USA
| | - Yeon-Soo Seo
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu Daejeon Korea
| |
Collapse
|
10
|
Replication intermediates that escape Dna2 activity are processed by Holliday junction resolvase Yen1. Nat Commun 2016; 7:13157. [PMID: 27779184 PMCID: PMC5093310 DOI: 10.1038/ncomms13157] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
Cells have evolved mechanisms to protect, restart and repair perturbed replication forks, allowing full genome duplication, even under replication stress. Interrogating the interplay between nuclease-helicase Dna2 and Holliday junction (HJ) resolvase Yen1, we find the Dna2 helicase activity acts parallel to homologous recombination (HR) in promoting DNA replication and chromosome detachment at mitosis after replication fork stalling. Yen1, but not the HJ resolvases Slx1-Slx4 and Mus81-Mms4, safeguards chromosome segregation by removing replication intermediates that escape Dna2. Post-replicative DNA damage checkpoint activation in Dna2 helicase-defective cells causes terminal G2/M arrest by precluding Yen1-dependent repair, whose activation requires progression into anaphase. These findings explain the exquisite replication stress sensitivity of Dna2 helicase-defective cells, and identify a non-canonical role for Yen1 in the processing of replication intermediates that is distinct from HJ resolution. The involvement of Dna2 helicase activity in completing replication may have implications for DNA2-associated pathologies, including cancer and Seckel syndrome.
DNA replication stress drives genome instability and cancer. Here, Ölmezer and colleagues show that the helicase activity of multifunctional enzyme Dna2 suppresses dead-end replication structures that impair chromosome segregation if not removed by Holliday junction resolvase Yen1 in yeast.
Collapse
|
11
|
Jia N, Liu X, Gao H. A DNA2 Homolog Is Required for DNA Damage Repair, Cell Cycle Regulation, and Meristem Maintenance in Plants. PLANT PHYSIOLOGY 2016; 171:318-33. [PMID: 26951435 PMCID: PMC4854720 DOI: 10.1104/pp.16.00312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 03/04/2016] [Indexed: 05/18/2023]
Abstract
Plant meristem cells divide and differentiate in a spatially and temporally regulated manner, ultimately giving rise to organs. In this study, we isolated the Arabidopsis jing he sheng 1 (jhs1) mutant, which exhibited retarded growth, an abnormal pattern of meristem cell division and differentiation, and morphological defects such as fasciation, an irregular arrangement of siliques, and short roots. We identified JHS1 as a homolog of human and yeast DNA Replication Helicase/Nuclease2, which is known to be involved in DNA replication and damage repair. JHS1 is strongly expressed in the meristem of Arabidopsis. The jhs1 mutant was sensitive to DNA damage stress and had an increased DNA damage response, including increased expression of genes involved in DNA damage repair and cell cycle regulation, and a higher frequency of homologous recombination. In the meristem of the mutant plants, cell cycle progression was delayed at the G2 or late S phase and genes essential for meristem maintenance were misregulated. These results suggest that JHS1 plays an important role in DNA replication and damage repair, meristem maintenance, and development in plants.
Collapse
Affiliation(s)
- Ning Jia
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China (N.J., X.L., H.G.)
| | - Xiaomin Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China (N.J., X.L., H.G.)
| | - Hongbo Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China (N.J., X.L., H.G.)
| |
Collapse
|
12
|
Liu W, Zhou M, Li Z, Li H, Polaczek P, Dai H, Wu Q, Liu C, Karanja KK, Popuri V, Shan SO, Schlacher K, Zheng L, Campbell JL, Shen B. A Selective Small Molecule DNA2 Inhibitor for Sensitization of Human Cancer Cells to Chemotherapy. EBioMedicine 2016; 6:73-86. [PMID: 27211550 PMCID: PMC4856754 DOI: 10.1016/j.ebiom.2016.02.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/31/2022] Open
Abstract
Cancer cells frequently up-regulate DNA replication and repair proteins such as the multifunctional DNA2 nuclease/helicase, counteracting DNA damage due to replication stress and promoting survival. Therefore, we hypothesized that blocking both DNA replication and repair by inhibiting the bifunctional DNA2 could be a potent strategy to sensitize cancer cells to stresses from radiation or chemotherapeutic agents. We show that homozygous deletion of DNA2 sensitizes cells to ionizing radiation and camptothecin (CPT). Using a virtual high throughput screen, we identify 4-hydroxy-8-nitroquinoline-3-carboxylic acid (C5) as an effective and selective inhibitor of DNA2. Mutagenesis and biochemical analysis define the C5 binding pocket at a DNA-binding motif that is shared by the nuclease and helicase activities, consistent with structural studies that suggest that DNA binding to the helicase domain is necessary for nuclease activity. C5 targets the known functions of DNA2 in vivo: C5 inhibits resection at stalled forks as well as reducing recombination. C5 is an even more potent inhibitor of restart of stalled DNA replication forks and over-resection of nascent DNA in cells defective in replication fork protection, including BRCA2 and BOD1L. C5 sensitizes cells to CPT and synergizes with PARP inhibitors.
Collapse
Affiliation(s)
- Wenpeng Liu
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China; Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA; Division of Chemistry and Chemical Engineering, Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mian Zhou
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Zhengke Li
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Hongzhi Li
- Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Piotr Polaczek
- Division of Chemistry and Chemical Engineering, Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Huifang Dai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Qiong Wu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Changwei Liu
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China; Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Kenneth K Karanja
- Division of Chemistry and Chemical Engineering, Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Vencat Popuri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Katharina Schlacher
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA.
| | - Judith L Campbell
- Division of Chemistry and Chemical Engineering, Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA.
| |
Collapse
|
13
|
Akhmedov AT, Marín-García J. Mitochondrial DNA maintenance: an appraisal. Mol Cell Biochem 2015; 409:283-305. [DOI: 10.1007/s11010-015-2532-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022]
|
14
|
Strauss C, Kornowski M, Benvenisty A, Shahar A, Masury H, Ben-Porath I, Ravid T, Arbel-Eden A, Goldberg M. The DNA2 nuclease/helicase is an estrogen-dependent gene mutated in breast and ovarian cancers. Oncotarget 2015; 5:9396-409. [PMID: 25238049 PMCID: PMC4253442 DOI: 10.18632/oncotarget.2414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genomic instability, a hallmark of cancer, is commonly caused by failures in the DNA damage response. Here we conducted a bioinformatical screen to reveal DNA damage response genes that are upregulated by estrogen and highly mutated in breast and ovarian cancers. This screen identified 53 estrogen-dependent cancer genes, some of which are novel. Notably, the screen retrieved 9 DNA helicases as well as 5 nucleases. DNA2, which functions as both a helicase and a nuclease and plays a role in DNA repair and replication, was retrieved in the screen. Mutations in DNA2, found in estrogen-dependent cancers, are clustered in the helicase and nuclease domains, suggesting activity impairment. Indeed, we show that mutations found in ovarian cancers impair DNA2 activity. Depletion of DNA2 in cells reduces their tumorogenicity in mice. In human, high expression of DNA2 correlates with poor survival of estrogen receptor-positive patients but not of estrogen receptor-negative patients. We also demonstrate that depletion of DNA2 in cells reduces proliferation, while addition of estrogen restores proliferation. These findings suggest that cells responding to estrogen will proliferate despite being impaired in DNA2 activity, potentially promoting genomic instability and triggering cancer development.
Collapse
Affiliation(s)
- Carmit Strauss
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Maya Kornowski
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Avraham Benvenisty
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Amit Shahar
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Hadas Masury
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Tommer Ravid
- Department of Biochemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ayelet Arbel-Eden
- Department of Medical Laboratory Sciences, Hadassah Academic College, Jerusalem, 91010, Israel
| | - Michal Goldberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
15
|
Kadyrova LY, Dahal BK, Kadyrov FA. Evidence that the DNA mismatch repair system removes 1-nucleotide Okazaki fragment flaps. J Biol Chem 2015. [PMID: 26224637 DOI: 10.1074/jbc.m115.660357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The DNA mismatch repair (MMR) system plays a major role in promoting genome stability and suppressing carcinogenesis. In this work, we investigated whether the MMR system is involved in Okazaki fragment maturation. We found that in the yeast Saccharomyces cerevisiae, the MMR system and the flap endonuclease Rad27 act in overlapping pathways that protect the nuclear genome from 1-bp insertions. In addition, we determined that purified yeast and human MutSα proteins recognize 1-nucleotide DNA and RNA flaps. In reconstituted human systems, MutSα, proliferating cell nuclear antigen, and replication factor C activate MutLα endonuclease to remove the flaps. ATPase and endonuclease mutants of MutLα are defective in the flap removal. These results suggest that the MMR system contributes to the removal of 1-nucleotide Okazaki fragment flaps.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Basanta K Dahal
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Farid A Kadyrov
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
16
|
Budd ME, Campbell JL. Dna2 is involved in CA strand resection and nascent lagging strand completion at native yeast telomeres. J Biol Chem 2013; 288:29414-29. [PMID: 23963457 DOI: 10.1074/jbc.m113.472456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Post-replicational telomere end processing involves both extension by telomerase and resection to produce 3'-GT-overhangs that extend beyond the complementary 5'-CA-rich strand. Resection must be carefully controlled to maintain telomere length. At short de novo telomeres generated artificially by HO endonuclease in the G2 phase, we show that dna2-defective strains are impaired in both telomere elongation and sequential 5'-CA resection. At native telomeres in dna2 mutants, GT-overhangs do clearly elongate during late S phase but are shorter than in wild type, suggesting a role for Dna2 in 5'-CA resection but also indicating significant redundancy with other nucleases. Surprisingly, elimination of Mre11 nuclease or Exo1, which are complementary to Dna2 in resection of internal double strand breaks, does not lead to further shortening of GT-overhangs in dna2 mutants. A second step in end processing involves filling in of the CA-strand to maintain appropriate telomere length. We show that Dna2 is required for normal telomeric CA-strand fill-in. Yeast dna2 mutants, like mutants in DNA ligase 1 (cdc9), accumulate low molecular weight, nascent lagging strand DNA replication intermediates at telomeres. Based on this and other results, we propose that FEN1 is not sufficient and that either Dna2 or Exo1 is required to supplement FEN1 in maturing lagging strands at telomeres. Telomeres may be among the subset of genomic locations where Dna2 helicase/nuclease is essential for the two-nuclease pathway of primer processing on lagging strands.
Collapse
Affiliation(s)
- Martin E Budd
- From Braun Laboratories, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
17
|
Granata M, Panigada D, Galati E, Lazzaro F, Pellicioli A, Plevani P, Muzi-Falconi M. To trim or not to trim: progression and control of DSB end resection. Cell Cycle 2013; 12:1848-60. [PMID: 23708517 DOI: 10.4161/cc.25042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the most cytotoxic form of DNA damage, since they can lead to genome instability and chromosome rearrangements, which are hallmarks of cancer cells. To face this kind of lesion, eukaryotic cells developed two alternative repair pathways, homologous recombination (HR) and non-homologous end joining (NHEJ). Repair pathway choice is influenced by the cell cycle phase and depends upon the 5'-3' nucleolytic processing of the break ends, since the generation of ssDNA tails strongly stimulates HR and inhibits NHEJ. A large amount of work has elucidated the key components of the DSBs repair machinery and how this crucial process is finely regulated. The emerging view suggests that besides endo/exonucleases and helicases activities required for end resection, molecular barrier factors are specifically loaded in the proximity of the break, where they physically or functionally limit DNA degradation, preventing excessive accumulation of ssDNA, which could be threatening for cell survival.
Collapse
Affiliation(s)
- Magda Granata
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italia
| | | | | | | | | | | | | |
Collapse
|
18
|
Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity. Proc Natl Acad Sci U S A 2013; 110:E1992-2001. [PMID: 23671118 DOI: 10.1073/pnas.1300390110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dna2 is a nuclease-helicase involved in several key pathways of eukaryotic DNA metabolism. The potent nuclease activity of Saccharomyces cerevisiae Dna2 was reported to be required for all its in vivo functions tested to date. In contrast, its helicase activity was shown to be weak, and its inactivation affected only a subset of Dna2 functions. We describe here a complex interplay of the two enzymatic activities. We show that the nuclease of Dna2 inhibits its helicase by cleaving 5' flaps that are required by the helicase domain for loading onto its substrate. Mutational inactivation of Dna2 nuclease unleashes unexpectedly vigorous DNA unwinding activity, comparable with that of the most potent eukaryotic helicases. Thus, the ssDNA-specific nuclease activity of Dna2 limits and controls the enzyme's capacity to unwind dsDNA. We postulate that regulation of this interplay could modulate the biochemical properties of Dna2 and thus license it to carry out its distinct cellular functions.
Collapse
|
19
|
Abstract
First discovered as a structure-specific endonuclease that evolved to cut at the base of single-stranded flaps, flap endonuclease (FEN1) is now recognized as a central component of cellular DNA metabolism. Substrate specificity allows FEN1 to process intermediates of Okazaki fragment maturation, long-patch base excision repair, telomere maintenance, and stalled replication fork rescue. For Okazaki fragments, the RNA primer is displaced into a 5' flap and then cleaved off. FEN1 binds to the flap base and then threads the 5' end of the flap through its helical arch and active site to create a configuration for cleavage. The threading requirement prevents this active nuclease from cutting the single-stranded template between Okazaki fragments. FEN1 efficiency and specificity are critical to the maintenance of genome fidelity. Overall, recent advances in our knowledge of FEN1 suggest that it was an ancient protein that has been fine-tuned over eons to coordinate many essential DNA transactions.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | |
Collapse
|
20
|
Affiliation(s)
- Tomás Aparicio
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY USA
| | | |
Collapse
|
21
|
Munashingha PR, Lee CH, Kang YH, Shin YK, Nguyen TA, Seo YS. The trans-autostimulatory activity of Rad27 suppresses dna2 defects in Okazaki fragment processing. J Biol Chem 2012; 287:8675-87. [PMID: 22235122 DOI: 10.1074/jbc.m111.326470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dna2 and Rad27 (yeast Fen1) are the two endonucleases critical for Okazaki fragment processing during lagging strand DNA synthesis that have been shown to interact genetically and physically. In this study, we addressed the functional consequences of these interactions by examining whether purified Rad27 of Saccharomyces cerevisiae affects the enzymatic activity of Dna2 and vice versa. For this purpose, we constructed Rad27DA (catalytically defective enzyme with an Asp to Ala substitution at amino acid 179) and found that it significantly stimulated the endonuclease activity of wild type Dna2, but failed to do so with Dna2Δ405N that lacks the N-terminal 405 amino acids. This was an unexpected finding because dna2Δ405N cells were still partially suppressed by overexpression of rad27DA in vivo. Further analyses revealed that Rad27 is a trans-autostimulatory enzyme, providing an explanation why overexpression of Rad27, regardless of its catalytic activity, suppressed dna2 mutants as long as an endogenous wild type Rad27 is available. We found that the C-terminal 16-amino acid fragment of Rad27, a highly polybasic region due to the presence of multiple positively charged lysine and arginine residues, was sufficient and necessary for the stimulation of both Rad27 and Dna2. Our findings provide further insight into how Dna2 and Rad27 jointly affect the processing of Okazaki fragments in eukaryotes.
Collapse
Affiliation(s)
- Palinda Ruvan Munashingha
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Fortini BK, Pokharel S, Polaczek P, Balakrishnan L, Bambara RA, Campbell JL. Characterization of the endonuclease and ATP-dependent flap endo/exonuclease of Dna2. J Biol Chem 2011; 286:23763-70. [PMID: 21572043 DOI: 10.1074/jbc.m111.243071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two processes, DNA replication and DNA damage repair, are key to maintaining genomic fidelity. The Dna2 enzyme lies at the heart of both of these processes, acting in conjunction with flap endonuclease 1 and replication protein A in DNA lagging strand replication and with BLM/Sgs1 and MRN/X in double strand break repair. In vitro, Dna2 helicase and flap endo/exonuclease activities require an unblocked 5' single-stranded DNA end to unwind or cleave DNA. In this study we characterize a Dna2 nuclease activity that does not require, and in fact can create, 5' single-stranded DNA ends. Both endonuclease and flap endo/exonuclease are abolished by the Dna2-K677R mutation, implicating the same active site in catalysis. In addition, we define a novel ATP-dependent flap endo/exonuclease activity, which is observed only in the presence of Mn(2+). The endonuclease is blocked by ATP and is thus experimentally distinguishable from the flap endo/exonuclease function. Thus, Dna2 activities resemble those of RecB and AddAB nucleases even more closely than previously appreciated. This work has important implications for understanding the mechanism of action of Dna2 in multiprotein complexes, where dissection of enzymatic activities and cofactor requirements of individual components contributing to orderly and precise execution of multistep replication/repair processes depends on detailed characterization of each individual activity.
Collapse
Affiliation(s)
- Barbara K Fortini
- Braun Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lee MH, Hollis SE, Yoo BH, Nykamp K. Caenorhabditis elegans DNA-2 helicase/endonuclease plays a vital role in maintaining genome stability, morphogenesis, and life span. Biochem Biophys Res Commun 2011; 407:495-500. [PMID: 21414295 DOI: 10.1016/j.bbrc.2011.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
In eukaryotes, highly conserved Dna2 helicase/endonuclease proteins are involved in DNA replication, DNA double-strand break repair, telomere regulation, and mitochondrial function. The Dna2 protein assists Fen1 (Flap structure-specific endonuclease 1) protein in the maturation of Okazaki fragments. In yeast, Dna2 is absolutely essential for viability, whereas Fen1 is not. In Caenorhabditis elegans, however, CRN-1 (a Fen1 homolog) is essential, but Dna2 is not. Here we explored the biological function of C. elegans Dna2 (Cedna-2) in multiple developmental processes. We find that Cedna-2 contributes to embryonic viability, the morphogenesis of both late-stage embryos and male sensory rays, and normal life span. Our results support a model whereby CeDNA-2 minimizes genetic defects and maintains genome integrity during cell division and DNA replication. These finding may provide insight into the role of Dna2 in other multi-cellular organisms, including humans, and could have important implications for development and treatment of human conditions linked to the accumulation of genetic defects, such as cancer or aging.
Collapse
Affiliation(s)
- Myon-Hee Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | | | | | | |
Collapse
|
24
|
Kang YH, Lee CH, Seo YS. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit Rev Biochem Mol Biol 2010; 45:71-96. [PMID: 20131965 DOI: 10.3109/10409230903578593] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA replication is a primary mechanism for maintaining genome integrity, but it serves this purpose best by cooperating with other proteins involved in DNA repair and recombination. Unlike leading strand synthesis, lagging strand synthesis has a greater risk of faulty replication for several reasons: First, a significant part of DNA is synthesized by polymerase alpha, which lacks a proofreading function. Second, a great number of Okazaki fragments are synthesized, processed and ligated per cell division. Third, the principal mechanism of Okazaki fragment processing is via generation of flaps, which have the potential to form a variety of structures in their sequence context. Finally, many proteins for the lagging strand interact with factors involved in repair and recombination. Thus, lagging strand DNA synthesis could be the best example of a converging place of both replication and repair proteins. To achieve the risky task with extraordinary fidelity, Okazaki fragment processing may depend on multiple layers of redundant, but connected pathways. An essential Dna2 endonuclease/helicase plays a pivotal role in processing common structural intermediates that occur during diverse DNA metabolisms (e.g. lagging strand synthesis and telomere maintenance). Many roles of Dna2 suggest that the preemptive removal of long or structured flaps ultimately contributes to genome maintenance in eukaryotes. In this review, we describe the function of Dna2 in Okazaki fragment processing, and discuss its role in the maintenance of genome integrity with an emphasis on its functional interactions with other factors required for genome maintenance.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | |
Collapse
|
25
|
Mitochondrial helicases and mitochondrial genome maintenance. Mech Ageing Dev 2010; 131:503-10. [PMID: 20576512 DOI: 10.1016/j.mad.2010.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 12/28/2022]
Abstract
Helicases are essential enzymes that utilize the energy of nucleotide hydrolysis to drive unwinding of nucleic acid duplexes. Helicases play roles in all aspects of DNA metabolism including DNA repair, DNA replication and transcription. The subcellular locations and functions of several helicases have been studied in detail; however, the roles of specific helicases in mitochondrial biology remain poorly characterized. This review presents important recent advances in identifying and characterizing mitochondrial helicases, some of which also operate in the nucleus.
Collapse
|
26
|
Wawrousek KE, Fortini BK, Polaczek P, Chen L, Liu Q, Dunphy WG, Campbell JL. Xenopus DNA2 is a helicase/nuclease that is found in complexes with replication proteins And-1/Ctf4 and Mcm10 and DSB response proteins Nbs1 and ATM. Cell Cycle 2010; 9:1156-66. [PMID: 20237432 DOI: 10.4161/cc.9.6.11049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have used the Xenopus laevis egg extract system to study the roles of vertebrate Dna2 in DNA replication and double-strand-break (DSB) repair. We first establish that Xenopus Dna2 is a helicase, as well as a nuclease. We further show that Dna2 is a nuclear protein that is actively recruited to DNA only after replication origin licensing. Dna2 co-localizes in foci with RPA and is found in a complex with replication fork components And-1 and Mcm10. Dna2 interacts with the DSB repair and checkpoint proteins Nbs1 and ATM. We also determine the order of arrival of ATM, MRN, Dna2, TopBP1, and RPA to duplex DNA ends and show that it is the same both in S phase and M phase extracts. Interestingly, Dna2 can bind to DNA ends independently of MRN, but efficient nucleolytic resection, as measured by RPA recruitment, requires both MRN and Dna2. The nuclease activity of Mre11 is required, since its inhibition delays both full Dna2 recruitment and resection. Dna2 depletion inhibits but does not block resection, and Chk1 and Chk2 induction occurs in the absence of Dna2.
Collapse
Affiliation(s)
- Karen E Wawrousek
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Dna2 is a highly conserved helicase/nuclease that in yeast participates in Okazaki fragment processing, DNA repair, and telomere maintenance. Here, we investigated the biological function of human Dna2 (hDna2). Immunofluorescence and biochemical fractionation studies demonstrated that hDna2 was present in both the nucleus and the mitochondria. Analysis of mitochondrial hDna2 revealed that it colocalized with a subfraction of DNA-containing mitochondrial nucleoids in unperturbed cells. Upon the expression of disease-associated mutant forms of the mitochondrial Twinkle helicase which induce DNA replication pausing/stalling, hDna2 accumulated within nucleoids. RNA interference-mediated depletion of hDna2 led to a modest decrease in mitochondrial DNA replication intermediates and inefficient repair of damaged mitochondrial DNA. Importantly, hDna2 depletion also resulted in the appearance of aneuploid cells and the formation of internuclear chromatin bridges, indicating that nuclear hDna2 plays a role in genomic DNA stability. Together, our data indicate that hDna2 is similar to its yeast counterpart and is a new addition to the growing list of proteins that participate in both nuclear and mitochondrial DNA maintenance.
Collapse
|
28
|
Abstract
Double-strand breaks (DSBs) are deleterious DNA lesions and if left unrepaired result in severe genomic instability. Cells use two main pathways to repair DSBs: homologous recombination (HR) or non-homologous end joining (NHEJ) depending on the phase of the cell cycle and the nature of the DSB ends. A key step where pathway choice is exerted is in the 'licensing' of 5'-3' resection of the ends to produce recombinogenic 3' single-stranded tails. These tails are substrate for binding by Rad51 to initiate pairing and strand invasion with homologous duplex DNA. Moreover, the single-stranded DNA generated after end processing is important to activate the DNA damage response. The mechanism of end processing is the focus of this review and we will describe recent findings that shed light on this important initiating step for HR. The conserved MRX/MRN complex appears to be a major regulator of DNA end processing. Sae2/CtIP functions with the MRX complex, either to activate the Mre11 nuclease or via the intrinsic endonuclease, in an initial step to trim the DSB ends. In a second step, redundant systems remove long tracts of DNA to reveal extensive 3' single-stranded tails. One system is dependent on the helicase Sgs1 and the nuclease Dna2, and the other on the 5'-3' exonuclease Exo1.
Collapse
Affiliation(s)
- Eleni P Mimitou
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States
| | | |
Collapse
|
29
|
Budd ME, Campbell JL. Interplay of Mre11 nuclease with Dna2 plus Sgs1 in Rad51-dependent recombinational repair. PLoS One 2009; 4:e4267. [PMID: 19165339 PMCID: PMC2625443 DOI: 10.1371/journal.pone.0004267] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/22/2008] [Indexed: 11/22/2022] Open
Abstract
The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway.
Collapse
Affiliation(s)
- Martin E Budd
- Divisions of Biology and Chemistry, Caltech, Braun Laboratories, Pasadena, California, United States of America
| | | |
Collapse
|
30
|
Tran N, Qu PP, Simpson DA, Lindsey-Boltz L, Guan X, Schmitt CP, Ibrahim JG, Kaufmann WK. In silico construction of a protein interaction landscape for nucleotide excision repair. Cell Biochem Biophys 2009; 53:101-14. [PMID: 19156361 DOI: 10.1007/s12013-009-9042-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To obtain a systems-level perspective on the topological and functional relationships among proteins contributing to nucleotide excision repair (NER) in Saccharomyces cerevisiae, we built two models to analyze protein-protein physical interactions. A recursive computational model based on set theory systematically computed overlaps among protein interaction neighborhoods. A statistical model scored computation results to detect significant overlaps which exposed protein modules and hubs concurrently. We used these protein entities to guide the construction of a multi-resolution landscape which showed relationships among NER, transcription, DNA replication, chromatin remodeling, and cell cycle regulation. Literature curation was used to support the biological significance of identified modules and hubs. The NER landscape revealed a hierarchical topology and a recurrent pattern of kernel modules coupling a variety of proteins in structures that provide diverse functions. Our analysis offers a computational framework that can be applied to construct landscapes for other biological processes.
Collapse
Affiliation(s)
- Nancy Tran
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yeeles JTP, Cammack R, Dillingham MS. An iron-sulfur cluster is essential for the binding of broken DNA by AddAB-type helicase-nucleases. J Biol Chem 2009; 284:7746-55. [PMID: 19129187 DOI: 10.1074/jbc.m808526200] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial helicase-nuclease complex AddAB converts double-stranded DNA breaks into substrates for RecA-dependent recombinational repair. Here we show that the AddB subunit contains a novel class of nuclease domain distinguished by the presence of an iron-sulfur cluster. The cluster is coordinated by an unusual arrangement of cysteine residues that originate from both sides of the AddB nuclease, forming an "iron staple" that is required for the local structural integrity of this domain. Disruption of the iron-sulfur cluster by mutagenesis eliminates the ability of AddAB to bind to duplex DNA ends without affecting the single-stranded DNA-dependent ATPase activity. Sequence analysis suggests that a related iron staple nuclease domain is present in the eukaryotic DNA replication/repair factor Dna2, where it is also associated with a DNA helicase motor.
Collapse
Affiliation(s)
- Joseph T P Yeeles
- DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
32
|
Zheng L, Zhou M, Guo Z, Lu H, Qian L, Dai H, Qiu J, Yakubovskaya E, Bogenhagen DF, Demple B, Shen B. Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates. Mol Cell 2008; 32:325-36. [PMID: 18995831 DOI: 10.1016/j.molcel.2008.09.024] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/30/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
DNA2, a helicase/nuclease family member, plays versatile roles in processing DNA intermediates during DNA replication and repair. Yeast Dna2 (yDna2) is essential in RNA primer removal during nuclear DNA replication and is important in repairing UV damage, base damage, and double-strand breaks. Our data demonstrate that, surprisingly, human DNA2 (hDNA2) does not localize to nuclei, as it lacks a nuclear localization signal equivalent to that present in yDna2. Instead, hDNA2 migrates to the mitochondria, interacts with mitochondrial DNA polymerase gamma, and significantly stimulates polymerase activity. We further demonstrate that hDNA2 and flap endonuclease 1 synergistically process intermediate 5' flap structures occurring in DNA replication and long-patch base excision repair (LP-BER) in mitochondria. Depletion of hDNA2 from a mitochondrial extract reduces its efficiency in RNA primer removal and LP-BER. Taken together, our studies illustrate an evolutionarily diversified role of hDNA2 in mitochondrial DNA replication and repair in a mammalian system.
Collapse
Affiliation(s)
- Li Zheng
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 2008; 134:981-94. [PMID: 18805091 DOI: 10.1016/j.cell.2008.08.037] [Citation(s) in RCA: 833] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/30/2008] [Accepted: 08/27/2008] [Indexed: 01/25/2023]
Abstract
Formation of single-strand DNA (ssDNA) tails at a double-strand break (DSB) is a key step in homologous recombination and DNA-damage signaling. The enzyme(s) producing ssDNA at DSBs in eukaryotes remain unknown. We monitored 5'-strand resection at inducible DSB ends in yeast and identified proteins required for two stages of resection: initiation and long-range 5'-strand resection. We show that the Mre11-Rad50-Xrs2 complex (MRX) initiates 5' degradation, whereas Sgs1 and Dna2 degrade 5' strands exposing long 3' strands. Deletion of SGS1 or DNA2 reduces resection and DSB repair by single-strand annealing between distant repeats while the remaining long-range resection activity depends on the exonuclease Exo1. In exo1Deltasgs1Delta double mutants, the MRX complex together with Sae2 nuclease generate, in a stepwise manner, only few hundred nucleotides of ssDNA at the break, resulting in inefficient gene conversion and G2/M damage checkpoint arrest. These results provide important insights into the early steps of DSB repair in eukaryotes.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
34
|
Liao S, Toczylowski T, Yan H. Identification of the Xenopus DNA2 protein as a major nuclease for the 5'->3' strand-specific processing of DNA ends. Nucleic Acids Res 2008; 36:6091-100. [PMID: 18820296 PMCID: PMC2577336 DOI: 10.1093/nar/gkn616] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The first step of homology-dependent DNA double-strand break (DSB) repair is the 5′ strand-specific processing of DNA ends to generate 3′ single-strand tails. Despite extensive effort, the nuclease(s) that is directly responsible for the resection of 5′ strands in eukaryotic cells remains elusive. Using nucleoplasmic extracts (NPE) derived from the eggs of Xenopus laevis as the model system, we have found that DNA processing consists of at least two steps: an ATP-dependent unwinding of ends and an ATP-independent 5′→3′ degradation of single-strand tails. The unwinding step is catalyzed by DNA helicases, the major one of which is the Xenopus Werner syndrome protein (xWRN), a member of the RecQ helicase family. In this study, we report the purification and identification of the Xenopus DNA2 (xDNA2) as one of the nucleases responsible for the 5′→3′ degradation of single-strand tails. Immunodepletion of xDNA2 resulted in a significant reduction in end processing and homology-dependent DSB repair. These results provide strong evidence that xDNA2 is a major nuclease for the resection of DNA ends for homology-dependent DSB repair in eukaryotes.
Collapse
Affiliation(s)
- Shuren Liao
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
35
|
Rossi ML, Pike JE, Wang W, Burgers PMJ, Campbell JL, Bambara RA. Pif1 helicase directs eukaryotic Okazaki fragments toward the two-nuclease cleavage pathway for primer removal. J Biol Chem 2008; 283:27483-27493. [PMID: 18689797 DOI: 10.1074/jbc.m804550200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic Okazaki fragment maturation requires complete removal of the initiating RNA primer before ligation occurs. Polymerase delta (Pol delta) extends the upstream Okazaki fragment and displaces the 5'-end of the downstream primer into a single nucleotide flap, which is removed by FEN1 nuclease cleavage. This process is repeated until all RNA is removed. However, a small fraction of flaps escapes cleavage and grows long enough to be coated with RPA and requires the consecutive action of the Dna2 and FEN1 nucleases for processing. Here we tested whether RPA inhibits FEN1 cleavage of long flaps as proposed. Surprisingly, we determined that RPA binding to long flaps made dynamically by polymerase delta only slightly inhibited FEN1 cleavage, apparently obviating the need for Dna2. Therefore, we asked whether other relevant proteins promote long flap cleavage via the Dna2 pathway. The Pif1 helicase, implicated in Okazaki maturation from genetic studies, improved flap displacement and increased RPA inhibition of long flap cleavage by FEN1. These results suggest that Pif1 accelerates long flap growth, allowing RPA to bind before FEN1 can act, thereby inhibiting FEN1 cleavage. Therefore, Pif1 directs long flaps toward the two-nuclease pathway, requiring Dna2 cleavage for primer removal.
Collapse
Affiliation(s)
- Marie L Rossi
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jason E Pike
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Wensheng Wang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Peter M J Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, California 91125
| | - Robert A Bambara
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642.
| |
Collapse
|
36
|
Yeast genes involved in cadmium tolerance: Identification of DNA replication as a target of cadmium toxicity. DNA Repair (Amst) 2008; 7:1262-75. [PMID: 18514590 DOI: 10.1016/j.dnarep.2008.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/03/2008] [Accepted: 04/06/2008] [Indexed: 11/21/2022]
Abstract
Cadmium (Cd(2+)) is a ubiquitous environmental pollutant and human carcinogen. The molecular basis of its toxicity remains unclear. Here, to identify the landscape of genes and cell functions involved in cadmium resistance, we have screened the Saccharomyces cerevisiae deletion collection for mutants sensitive to cadmium exposure. Among the 4866 ORFs tested, we identified 73 genes whose inactivation confers increased sensitivity to Cd(2+). Most were previously unknown to play a role in cadmium tolerance and we observed little correlation between the cadmium sensitivity of a gene deletant and the variation in the transcriptional activity of that gene in response to cadmium. These genes encode proteins involved in various functions: intracellular transport, stress response and gene expression. Analysis of the sensitive phenotype of our "Cd(2+)-sensitive mutant collection" to arsenite, cobalt, mercury and H(2)O(2) revealed 17 genes specifically involved in cadmium-induced response. Among them we found RAD27 and subsequently DNA2 which encode for proteins involved in DNA repair and replication. Analysis of the Cd(2+)-sensitivity of RAD27 (rad27-G67S) and DNA2 (dna2-1) separation of function alleles revealed that their activities necessary for Okazaki fragment processing are essential in conditions of cadmium exposure. Consistently, we observed that wild-type cells exposed to cadmium display an enhanced frequency of forward mutations to canavanine resistance and minisatellite destabilisation. Taken together these results provide a global picture of the genetic requirement for cadmium tolerance in yeast and strongly suggest that DNA replication, through the step of Okazaki fragment processing, is a target of cadmium toxicity.
Collapse
|
37
|
High rates of "unselected" aneuploidy and chromosome rearrangements in tel1 mec1 haploid yeast strains. Genetics 2008; 179:237-47. [PMID: 18458104 DOI: 10.1534/genetics.107.086603] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The yeast TEL1 and MEC1 genes (homologous to the mammalian ATM and ATR genes, respectively) serve partially redundant roles in the detection of DNA damage and in the regulation of telomere length. Haploid yeast tel1 mec1 strains were subcultured nonselectively for approximately 200 cell divisions. The subcultured strains had very high rates of chromosome aberrations: duplications, deletions, and translocations. The breakpoints of the rearranged chromosomes were within retrotransposons (Ty or delta-repeats), and these chromosome aberrations nonrandomly involved chromosome III. In addition, we showed that strains with the hypomorphic mec1-21 allele often became disomic for chromosome VIII. This property of the mec1-21 strains is suppressed by a plasmid containing the DNA2 gene (located on chromosome VIII) that encodes an essential nuclease/helicase involved in DNA replication and DNA repair.
Collapse
|
38
|
Toczylowski T, Yan H. Mechanistic analysis of a DNA end processing pathway mediated by the Xenopus Werner syndrome protein. J Biol Chem 2006; 281:33198-205. [PMID: 16959775 DOI: 10.1074/jbc.m605044200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The first step of homology-dependent repair of DNA double-strand breaks is the strand-specific processing of DNA ends to generate 3' single-strand tails. Despite its importance, the molecular mechanism underlying end processing is poorly understood in eukaryotic cells. We have taken a biochemical approach to investigate DNA end processing in nucleoplasmic extracts derived from the unfertilized eggs of Xenopus laevis. We found that double-strand DNA ends are specifically degraded in the 5' --> 3' direction in this system. The reaction consists of two steps: an ATP-dependent unwinding of double-strand ends and an ATP-independent 5' --> 3' degradation of single-strand tails. We also found that the Xenopus Werner syndrome protein, a member of the RecQ helicase family, plays an important role in DNA end processing. Mechanistically, Xenopus Werner syndrome protein (xWRN) is required for the unwinding of DNA ends but not for the degradation of single-strand tails. The xWRN-mediated end processing is remarkably similar to the end processing that has been proposed for the Escherichia coli RecQ helicase and RecJ single-strand nuclease, suggesting that this mechanism might be conserved in prokaryotes and eukaryotes.
Collapse
|
39
|
Iwanczyk J, Sadre-Bazzaz K, Ferrell K, Kondrashkina E, Formosa T, Hill CP, Ortega J. Structure of the Blm10-20 S proteasome complex by cryo-electron microscopy. Insights into the mechanism of activation of mature yeast proteasomes. J Mol Biol 2006; 363:648-59. [PMID: 16952374 PMCID: PMC2980845 DOI: 10.1016/j.jmb.2006.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
The 20 S proteasome is regulated at multiple levels including association with endogenous activators. Two activators have been described for the yeast 20 S proteasome: the 19 S regulatory particle and the Blm10 protein. The sequence of Blm10 is 20% identical to the mammalian PA200 protein. Recent studies have shown that the sequences of Blm10 and PA200 each contain multiple HEAT-repeats and that each binds to the ends of mature proteasomes, suggesting a common structural and biochemical function. In order to advance structural studies, we have developed an efficient purification method that produces high yields of stoichiometric Blm10-mature yeast 20 S proteasome complexes and we constructed a three-dimensional (3D) model of the Blm10-20 S complex from cryo-electron microscopy images. This reconstruction shows that Blm10 binds in a defined orientation to both ends of the 20 S particle and contacts all the proteasome alpha subunits. Blm10 displays the solenoid folding predicted by the presence of multiple HEAT-like repeats and the axial gates on the alpha rings of the proteasome appear to be open in the complex. We also performed a genetic analysis in an effort to identify the physiological role of Blm10. These experiments, however, did not reveal a robust phenotype upon gene deletion, overexpression, or in a screen for synthetic effects. This leaves the physiological role of Blm10 unresolved, but challenges earlier findings of a role in DNA repair.
Collapse
Affiliation(s)
- Jack Iwanczyk
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - Kianoush Sadre-Bazzaz
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650, USA
| | - Katherine Ferrell
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650, USA
| | - Elena Kondrashkina
- Biophysics Collaborative Access Team (BioCAT), BCPS Department, Illinois Institute of Technology, 3101 S. Dearborn, Chicago, IL 60616, USA
| | - Timothy Formosa
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650, USA
| | - Christopher P. Hill
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650, USA
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
- Correspondence: Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, Room 4H24, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada. Phone: 1-905-525-9140 Ext 22703 Fax: 1-905-522-9033.
| |
Collapse
|
40
|
Rossi ML, Bambara RA. Reconstituted Okazaki fragment processing indicates two pathways of primer removal. J Biol Chem 2006; 281:26051-61. [PMID: 16837458 DOI: 10.1074/jbc.m604805200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic Okazaki fragments are initiated by an RNA/DNA primer and extended by DNA polymerase delta (pol delta) and the replication clamp proliferating cell nuclear antigen (PCNA). Joining of the fragments by DNA ligase I to generate the continuous double-stranded DNA requires complete removal of the RNA/DNA primer. Pol delta extends the upstream Okazaki fragment and displaces the downstream RNA/DNA primer into a flap removed by nuclease cleavage. One proposed pathway for flap removal involves pol delta displacement of long flaps, coating of those flaps by replication protein A (RPA), and sequential cleavage of the flap by Dna2 nuclease followed by flap endonuclease 1 (FEN1). A second pathway involves reiterative single nucleotide or short oligonucleotide displacement by pol delta and cleavage by FEN1. We measured the length of FEN1 cleavage products on flaps strand-displaced by pol delta in an oligonucleotide system reconstituted with Saccharomyces cerevisiae proteins. Results showed that in the presence of PCNA and FEN1, pol delta displacement synthesis favors formation and cleavage of primarily short flaps, up to eight nucleotides in length; still, a portion of flaps grows to 20-30 nucleotides. The proportion of long flaps can be altered by mutations in the relevant proteins, sequence changes in the DNA, and reaction conditions. These results suggest that FEN1 is sufficient to remove a majority of Okazaki fragment primers. However, some flaps become long and require the two-nuclease pathway. It appears that both pathways, operating in parallel, are required for processing of all flaps.
Collapse
Affiliation(s)
- Marie L Rossi
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
41
|
Rossi ML, Purohit V, Brandt PD, Bambara RA. Lagging strand replication proteins in genome stability and DNA repair. Chem Rev 2006; 106:453-73. [PMID: 16464014 DOI: 10.1021/cr040497l] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marie L Rossi
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | | | |
Collapse
|
42
|
Budd ME, Reis CC, Smith S, Myung K, Campbell JL. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol Cell Biol 2006; 26:2490-500. [PMID: 16537895 PMCID: PMC1430326 DOI: 10.1128/mcb.26.7.2490-2500.2006] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The precise machineries required for two aspects of eukaryotic DNA replication, Okazaki fragment processing (OFP) and telomere maintenance, are poorly understood. In this work, we present evidence that Saccharomyces cerevisiae Pif1 helicase plays a wider role in DNA replication than previously appreciated and that it likely functions in conjunction with Dna2 helicase/nuclease as a component of the OFP machinery. In addition, we show that Dna2, which is known to associate with telomeres in a cell-cycle-specific manner, may be a new component of the telomere replication apparatus. Specifically, we show that deletion of PIF1 suppresses the lethality of a DNA2-null mutant. The pif1delta dna2delta strain remains methylmethane sulfonate sensitive and temperature sensitive; however, these phenotypes can be suppressed by further deletion of a subunit of pol delta, POL32. Deletion of PIF1 also suppresses the cold-sensitive lethality and hydroxyurea sensitivity of the pol32delta strain. Dna2 is thought to function by cleaving long flaps that arise during OFP due to excessive strand displacement by pol delta and/or by an as yet unidentified helicase. Thus, suppression of dna2delta can be rationalized if deletion of POL32 and/or PIF1 results in a reduction in long flaps that require Dna2 for processing. We further show that deletion of DNA2 suppresses the long-telomere phenotype and the high rate of formation of gross chromosomal rearrangements in pif1Delta mutants, suggesting a role for Dna2 in telomere elongation in the absence of Pif1.
Collapse
Affiliation(s)
- Martin E Budd
- Braun Laboratories, 147-75, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Yeast Dna2 helicase/nuclease is essential for DNA replication and assists FEN1 nuclease in processing a subset of Okazaki fragments that have long single-stranded 5′ flaps. It is also involved in the maintenance of telomeres. DNA2 is a gene conserved in eukaryotes, and a putative human ortholog of yeast DNA2 (ScDNA2) has been identified. Little is known about the role of human DNA2 (hDNA2), although complementation experiments have shown that it can function in yeast to replace ScDNA2. We have now characterized the biochemical properties of hDna2. Recombinant hDna2 has single-stranded DNA-dependent ATPase and DNA helicase activity. It also has 5′–3′ nuclease activity with preference for single-stranded 5′ flaps adjacent to a duplex DNA region. The nuclease activity is stimulated by RPA and suppressed by steric hindrance at the 5′ end. Moreover, hDna2 shows strong 3′–5′ nuclease activity. This activity cleaves single-stranded DNA in a fork structure and, like the 5′–3′ activity, is suppressed by steric hindrance at the 3′-end, suggesting that the 3′–5′ nuclease requires a 3′ single-stranded end for activation. These biochemical specificities are very similar to those of the ScDna2 protein, but suggest that the 3′–5′ nuclease activity may be more important than previously thought.
Collapse
Affiliation(s)
| | | | - Judith L. Campbell
- To whom correspondence should be addressed. Tel: +1 626 395 6053; Fax: +1 626 449 0756;
| |
Collapse
|
44
|
Budd ME, Tong AHY, Polaczek P, Peng X, Boone C, Campbell JL. A network of multi-tasking proteins at the DNA replication fork preserves genome stability. PLoS Genet 2005; 1:e61. [PMID: 16327883 PMCID: PMC1298934 DOI: 10.1371/journal.pgen.0010061] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 10/12/2005] [Indexed: 11/18/2022] Open
Abstract
To elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions) whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity. The results also shed new light on the functions of the query gene DNA2, which, despite many years of study, remain controversial, especially its proposed role in Okazaki fragment processing and the nature of its in vivo substrates. Because of the multifunctional nature of virtually all proteins at the replication fork, the meaning of any single genetic interaction is inherently ambiguous. The multiplexing nature of the current studies, however, combined with follow-up supporting experiments, reveals most if not all of the unique pathways requiring Dna2p. These include not only Okazaki fragment processing and DNA repair but also chromatin dynamics.
Collapse
Affiliation(s)
- Martin E Budd
- Braun Laboratories, California Institute of Technology, Pasadena, California, United States of America
| | - Amy Hin Yan Tong
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada
| | - Piotr Polaczek
- Braun Laboratories, California Institute of Technology, Pasadena, California, United States of America
| | - Xiao Peng
- Braun Laboratories, California Institute of Technology, Pasadena, California, United States of America
| | - Charles Boone
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Tomita K, Kibe T, Kang HY, Seo YS, Uritani M, Ushimaru T, Ueno M. Fission yeast Dna2 is required for generation of the telomeric single-strand overhang. Mol Cell Biol 2004; 24:9557-67. [PMID: 15485922 PMCID: PMC522233 DOI: 10.1128/mcb.24.21.9557-9567.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been suggested that the Schizosaccharomyces pombe Rad50 (Rad50-Rad32-Nbs1) complex is required for the resection of the C-rich strand at telomere ends in taz1-d cells. However, the nuclease-deficient Rad32-D25A mutant can still resect the C-rich strand, suggesting the existence of a nuclease that resects the C-rich strand. Here, we demonstrate that a taz1-d dna2-2C double mutant lost the G-rich overhang at a semipermissive temperature. The amount of G-rich overhang in S phase in the dna2-C2 mutant was lower than that in wild-type cells at the semipermissive temperature. Dna2 bound to telomere DNA in a chromatin immunoprecipitation assay. Moreover, telomere length decreased with each generation after shift of the dna2-2C mutant to the semipermissive temperature. These results suggest that Dna2 is involved in the generation of G-rich overhangs in both wild-type cells and taz1-d cells. The dna2-C2 mutant was not gamma ray sensitive at the semipermissive temperature, suggesting that the ability to process double-strand break (DSB) ends was not affected in the dna2-C2 mutant. Our results reveal that DSB ends and telomere ends are processed by different mechanisms.
Collapse
Affiliation(s)
- Kazunori Tomita
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Oya, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Kao HI, Campbell JL, Bambara RA. Dna2p helicase/nuclease is a tracking protein, like FEN1, for flap cleavage during Okazaki fragment maturation. J Biol Chem 2004; 279:50840-9. [PMID: 15448135 DOI: 10.1074/jbc.m409231200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During cellular DNA replication the lagging strand is generated as discontinuous segments called Okazaki fragments. Each contains an initiator RNA primer that is removed prior to joining of the strands. Primer removal in eukaryotes requires displacement of the primer into a flap that is cleaved off by flap endonuclease 1 (FEN1). FEN1 employs a unique tracking mechanism that requires the recognition of the free 5' terminus and then movement to the base of the flap for cleavage. Abnormally long flaps are coated by replication protein A (RPA), inhibiting FEN1 cleavage. A second nuclease, Dna2p, is needed to cleave an RPA-coated flap producing a short RPA-free flap, favored by FEN1. Here we show that Dna2p is also a tracking protein. Annealed primers or conjugated biotin-streptavidin complex block Dna2p entry and movement. Single-stranded binding protein-coated flaps inhibit Dna2p cleavage. Like FEN1, Dna2p can track over substrates with a non-Watson Crick base, such as a biotin, or a missing base within a chain. Unlike FEN1, Dna2p shows evidence of a "threading-like" mechanism that does not support tracking over a branched substrate. We propose that the two nucleases both track, Dna2p first and then FEN1, to remove initiator RNA via long flap intermediates.
Collapse
Affiliation(s)
- Hui-I Kao
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
47
|
Kao HI, Bambara RA. The protein components and mechanism of eukaryotic Okazaki fragment maturation. Crit Rev Biochem Mol Biol 2004; 38:433-52. [PMID: 14693726 DOI: 10.1080/10409230390259382] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An initiator RNA (iRNA) is required to prime cellular DNA synthesis. The structure of double-stranded DNA allows the synthesis of one strand to be continuous but the other must be generated discontinuously. Frequent priming of the discontinuous strand results in the formation of many small segments, designated Okazaki fragments. These short pieces need to be processed and joined to form an intact DNA strand. Our knowledge of the mechanism of iRNA removal is still evolving. Early reconstituted systems suggesting that the removal of iRNA requires sequential action of RNase H and flap endonuclease 1 (FEN1) led to the RNase H/FEN1 model. However, genetic analyses implied that Dna2p, an essential helicase/nuclease, is required. Subsequent biochemical studies suggested sequential action of RPA, Dna2p, and FEN1 for iRNA removal, leading to the second model, the Dna2p/RPA/FEN1 model. Studies of strand-displacement synthesis by polymerase delta indicated that in a reconstituted system, FEN1 could act as soon as short flaps are created, giving rise to a third model, the FEN1-only model. Each of the three pathways is supported by different genetic and biochemical results. Properties of the major protein components in this process will be discussed, and the validity of each model as a true representation of Okazaki fragment processing will be critically evaluated in this review.
Collapse
Affiliation(s)
- Hui-I Kao
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
48
|
Liu Y, Zhang H, Veeraraghavan J, Bambara RA, Freudenreich CH. Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol Cell Biol 2004; 24:4049-64. [PMID: 15082797 PMCID: PMC387768 DOI: 10.1128/mcb.24.9.4049-4064.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is a central component of Okazaki fragment maturation in eukaryotes. Genetic analysis of Saccharomyces cerevisiae FEN1 (RAD27) also reveals its important role in preventing trinucleotide repeat (TNR) expansion. In humans such expansion is associated with neurodegenerative diseases. In vitro, FEN1 can inhibit TNR expansion by employing its endonuclease activity to compete with DNA ligase I. Here we employed two yeast FEN1 nuclease mutants, rad27-G67S and rad27-G240D, to further define the mechanism by which FEN1 prevents TNR expansion. Using a yeast artificial chromosome system that can detect both TNR instability and fragility, we demonstrate that the G240D but not the G67S mutation increases both the expansion and fragility of a CTG tract in vivo. In vitro, the G240D nuclease is proficient in cleaving a fixed nonrepeat double flap; however, it exhibits severely impaired cleavage of both nonrepeat and CTG-containing equilibrating flaps. In contrast, wild-type FEN1 and the G67S mutant exhibit more efficient cleavage on an equilibrating flap than on a fixed CTG flap. The degree of TNR expansion and the amount of chromosome fragility observed in the mutant strains correlate with the severity of defective flap cleavage in vitro. We present a model to explain how flap equilibration and the unique tracking mechanism of FEN1 can collaborate to remove TNR flaps and prevent repeat expansion.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642,USA
| | | | | | | | | |
Collapse
|
49
|
Torres JZ, Schnakenberg SL, Zakian VA. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol Cell Biol 2004; 24:3198-212. [PMID: 15060144 PMCID: PMC381616 DOI: 10.1128/mcb.24.8.3198-3212.2004] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 08/29/2003] [Accepted: 01/22/2004] [Indexed: 11/20/2022] Open
Abstract
Rrm3p is a 5'-to-3' DNA helicase that helps replication forks traverse protein-DNA complexes. Its absence leads to increased fork stalling and breakage at over 1,000 specific sites located throughout the Saccharomyces cerevisiae genome. To understand the mechanisms that respond to and repair rrm3-dependent lesions, we carried out a candidate gene deletion analysis to identify genes whose mutation conferred slow growth or lethality on rrm3 cells. Based on synthetic phenotypes, the intra-S-phase checkpoint, the SRS2 inhibitor of recombination, the SGS1/TOP3 replication fork restart pathway, and the MRE11/RAD50/XRS2 (MRX) complex were critical for viability of rrm3 cells. DNA damage checkpoint and homologous recombination genes were important for normal growth of rrm3 cells. However, the MUS81/MMS4 replication fork restart pathway did not affect growth of rrm3 cells. These data suggest a model in which the stalled and broken forks generated in rrm3 cells activate a checkpoint response that provides time for fork repair and restart. Stalled forks are converted by a Rad51p-mediated process to intermediates that are resolved by Sgs1p/Top3p. The rrm3 system provides a unique opportunity to learn the fate of forks whose progress is impaired by natural impediments rather than by exogenous DNA damage.
Collapse
Affiliation(s)
- Jorge Z Torres
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
50
|
Lesur I, Campbell JL. The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells. Mol Biol Cell 2004; 15:1297-312. [PMID: 14718559 PMCID: PMC363132 DOI: 10.1091/mbc.e03-10-0742] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 11/30/2003] [Accepted: 11/30/2003] [Indexed: 11/11/2022] Open
Abstract
To help define the pathologies associated with yeast cells as they age, we analyzed the transcriptome of young and old cells isolated by elutriation, which allows isolation of biochemical quantities of old cells much further advanced in their life span than old cells prepared by the biotin-streptavidin method. Both 18-generation-old wild-type yeast and 8-generation-old cells from a prematurely aging mutant (dna2-1), with a defect in DNA replication, were evaluated. Genes involved in gluconeogenesis, the glyoxylate cycle, lipid metabolism, and glycogen production are induced in old cells, signifying a shift toward energy storage. We observed a much more extensive generalized stress response known as the environmental stress response (ESR), than observed previously in biotin-streptavidin-isolated cells, perhaps because the elutriated cells were further advanced in their life span. In addition, there was induction of DNA repair genes that fall in the so-called DNA damage "signature" set. In the dna2-1 mutant, energy production genes were also induced. The response in the dna2-1 strain is similar to the telomerase delete response, genes whose expression changes during cellular senescence in telomerase-deficient cells. We propose that these results suggest, albeit indirectly, that old cells are responding to genome instability.
Collapse
Affiliation(s)
- Isabelle Lesur
- Braun Laboratories 147-75, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|