1
|
Gamalero E, Lingua G, Glick BR. Ethylene, ACC, and the Plant Growth-Promoting Enzyme ACC Deaminase. BIOLOGY 2023; 12:1043. [PMID: 37626930 PMCID: PMC10452086 DOI: 10.3390/biology12081043] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Here, a brief summary of the biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) and ethylene in plants, as well as overviews of how ACC and ethylene act as signaling molecules in plants, is presented. Next, how the bacterial enzyme ACC deaminase cleaves plant-produced ACC and thereby decreases or prevents the ethylene or ACC modulation of plant gene expression is considered. A detailed model of ACC deaminase functioning, including the role of indoleacetic acid (IAA), is presented. Given that ACC is a signaling molecule under some circumstances, this suggests that ACC, which appears to have evolved prior to ethylene, may have been a major signaling molecule in primitive plants prior to the evolution of ethylene and ethylene signaling. Due to their involvement in stimulating ethylene production, the role of D-amino acids in plants is then considered. The enzyme D-cysteine desulfhydrase, which is structurally very similar to ACC deaminase, is briefly discussed and the possibility that ACC deaminase arose as a variant of D-cysteine desulfhydrase is suggested.
Collapse
Affiliation(s)
- Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| | - Guido Lingua
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
2
|
Sato N. Are Cyanobacteria an Ancestor of Chloroplasts or Just One of the Gene Donors for Plants and Algae? Genes (Basel) 2021; 12:genes12060823. [PMID: 34071987 PMCID: PMC8227023 DOI: 10.3390/genes12060823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 12/04/2022] Open
Abstract
Chloroplasts of plants and algae are currently believed to originate from a cyanobacterial endosymbiont, mainly based on the shared proteins involved in the oxygenic photosynthesis and gene expression system. The phylogenetic relationship between the chloroplast and cyanobacterial genomes was important evidence for the notion that chloroplasts originated from cyanobacterial endosymbiosis. However, studies in the post-genomic era revealed that various substances (glycolipids, peptidoglycan, etc.) shared by cyanobacteria and chloroplasts are synthesized by different pathways or phylogenetically unrelated enzymes. Membranes and genomes are essential components of a cell (or an organelle), but the origins of these turned out to be different. Besides, phylogenetic trees of chloroplast-encoded genes suggest an alternative possibility that chloroplast genes could be acquired from at least three different lineages of cyanobacteria. We have to seriously examine that the chloroplast genome might be chimeric due to various independent gene flows from cyanobacteria. Chloroplast formation could be more complex than a single event of cyanobacterial endosymbiosis. I present the “host-directed chloroplast formation” hypothesis, in which the eukaryotic host cell that had acquired glycolipid synthesis genes as an adaptation to phosphate limitation facilitated chloroplast formation by providing glycolipid-based membranes (pre-adaptation). The origins of the membranes and the genome could be different, and the origin of the genome could be complex.
Collapse
Affiliation(s)
- Naoki Sato
- Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
3
|
Ponce-Toledo RI, Moreira D, López-García P, Deschamps P. Secondary Plastids of Euglenids and Chlorarachniophytes Function with a Mix of Genes of Red and Green Algal Ancestry. Mol Biol Evol 2020; 35:2198-2204. [PMID: 29924337 DOI: 10.1093/molbev/msy121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endosymbiosis has been common all along eukaryotic evolution, providing opportunities for genomic and organellar innovation. Plastids are a prominent example. After the primary endosymbiosis of the cyanobacterial plastid ancestor, photosynthesis spread in many eukaryotic lineages via secondary endosymbioses involving red or green algal endosymbionts and diverse heterotrophic hosts. However, the number of secondary endosymbioses and how they occurred remain poorly understood. In particular, contrasting patterns of endosymbiotic gene transfer have been detected and subjected to various interpretations. In this context, accurate detection of endosymbiotic gene transfers is essential to avoid wrong evolutionary conclusions. We have assembled a strictly selected set of markers that provides robust phylogenomic evidence suggesting that nuclear genes involved in the function and maintenance of green secondary plastids in chlorarachniophytes and euglenids have unexpected mixed red and green algal origins. This mixed ancestry contrasts with the clear red algal origin of most nuclear genes carrying similar functions in secondary algae with red plastids.
Collapse
Affiliation(s)
- Rafael I Ponce-Toledo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Philippe Deschamps
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
4
|
Ponce-Toledo RI, López-García P, Moreira D. Horizontal and endosymbiotic gene transfer in early plastid evolution. THE NEW PHYTOLOGIST 2019; 224:618-624. [PMID: 31135958 PMCID: PMC6759420 DOI: 10.1111/nph.15965] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/17/2019] [Indexed: 05/03/2023]
Abstract
Plastids evolved from a cyanobacterium that was engulfed by a heterotrophic eukaryotic host and became a stable organelle. Some of the resulting eukaryotic algae entered into a number of secondary endosymbioses with diverse eukaryotic hosts. These events had major consequences on the evolution and diversification of life on Earth. Although almost all plastid diversity derives from a single endosymbiotic event, the analysis of nuclear genomes of plastid-bearing lineages has revealed a mosaic origin of plastid-related genes. In addition to cyanobacterial genes, plastids recruited for their functioning eukaryotic proteins encoded by the host nucleus and also bacterial proteins of noncyanobacterial origin. Therefore, plastid proteins and plastid-localised metabolic pathways evolved by tinkering and using gene toolkits from different sources. This mixed heritage seems especially complex in secondary algae containing green plastids, the acquisition of which appears to have been facilitated by many previous acquisitions of red algal genes (the 'red carpet hypothesis').
Collapse
Affiliation(s)
- Rafael I Ponce-Toledo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
5
|
López-García P, Eme L, Moreira D. Symbiosis in eukaryotic evolution. J Theor Biol 2017; 434:20-33. [PMID: 28254477 DOI: 10.1016/j.jtbi.2017.02.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/19/2017] [Accepted: 02/25/2017] [Indexed: 01/27/2023]
Abstract
Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes.
Collapse
Affiliation(s)
- Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France.
| | - Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada NS B3H 4R2
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| |
Collapse
|
6
|
Mirza N, Crocoll C, Erik Olsen C, Ann Halkier B. Engineering of methionine chain elongation part of glucoraphanin pathway in E. coli. Metab Eng 2016; 35:31-37. [DOI: 10.1016/j.ymben.2015.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 07/24/2015] [Accepted: 09/02/2015] [Indexed: 12/12/2022]
|
7
|
Sasso S, Pohnert G, Lohr M, Mittag M, Hertweck C. Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiol Rev 2012; 36:761-85. [DOI: 10.1111/j.1574-6976.2011.00304.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/29/2011] [Indexed: 01/20/2023] Open
|
8
|
|
9
|
Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG. Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Mol Biol Evol 2011; 28:2921-33. [PMID: 21551270 DOI: 10.1093/molbev/msr124] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vitamin B(12) (cobalamin) is a dietary requirement for humans because it is an essential cofactor for two enzymes, methylmalonyl-CoA mutase and methionine synthase (METH). Land plants and fungi neither synthesize or require cobalamin because they do not contain methylmalonyl-CoA mutase, and have an alternative B(12)-independent methionine synthase (METE). Within the algal kingdom, approximately half of all microalgal species need the vitamin as a growth supplement, but there is no phylogenetic relationship between these species, suggesting that the auxotrophy arose multiple times through evolution. We set out to determine the underlying cellular mechanisms for this observation by investigating elements of B(12) metabolism in the sequenced genomes of 15 different algal species, with representatives of the red, green, and brown algae, diatoms, and coccolithophores, including both macro- and microalgae, and from marine and freshwater environments. From this analysis, together with growth assays, we found a strong correlation between the absence of a functional METE gene and B(12) auxotrophy. The presence of a METE unitary pseudogene in the B(12)-dependent green algae Volvox carteri and Gonium pectorale, relatives of the B(12)-independent Chlamydomonas reinhardtii, suggest that B(12) dependence evolved recently in these lineages. In both C. reinhardtii and the diatom Phaeodactylum tricornutum, growth in the presence of cobalamin leads to repression of METE transcription, providing a mechanism for gene loss. Thus varying environmental conditions are likely to have been the reason for the multiple independent origins of B(12) auxotrophy in these organisms. Because the ultimate source of cobalamin is from prokaryotes, the selective loss of METE in different algal lineages will have had important physiological and ecological consequences for these organisms in terms of their dependence on bacteria.
Collapse
|
10
|
Deschamps P, Moreira D. Signal Conflicts in the Phylogeny of the Primary Photosynthetic Eukaryotes. Mol Biol Evol 2009; 26:2745-53. [DOI: 10.1093/molbev/msp189] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Carter DR. Plastocyanin-ferredoxin oxidoreduction and endosymbiotic gene transfer. PHOTOSYNTHESIS RESEARCH 2008; 97:245-253. [PMID: 18661249 DOI: 10.1007/s11120-008-9333-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2008] [Accepted: 07/10/2008] [Indexed: 05/26/2023]
Abstract
Sequence similarities of proteins associated with plastocyanin-ferredoxin oxidoreduction (PcFdOR) activity of Photosystem I (PSI) were grouped and compared. PsaA, psaB, psaC, and petG represent genes that have been retained in the chloroplasts of both green- and red-lineage species. PsaD, psaE, psaF, and petF represent genes that have been retained in the chloroplast of red-lineage species, but have been transferred to the nuclear genome of green-lineage species. Translated sequences from red- and green-lineage proteins were compared to that of contemporary cyanobacteria, Synechocystis PCC 6803, and Gloeobacter violaceus PCC 7421. Within the green lineage, a lower level of sequence conservation coincided with gene transfer to the nuclear genome. Surprisingly, a similar pattern of sequence conservation existed for the same set of genes found in the red lineage even though all those genes were retained in their chloroplast genomes. This discrepancy between green and red lineage is discussed in terms of endosymbiotic gene transfer.
Collapse
Affiliation(s)
- Douglas R Carter
- Department of Biology, Central Connecticut State University, 1615 Stanley St., New Britain, CT, 06050, USA.
| |
Collapse
|
12
|
Kutschera U, Niklas KJ. Macroevolution via secondary endosymbiosis: a Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form. Theory Biosci 2008; 127:277-89. [DOI: 10.1007/s12064-008-0046-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 06/02/2008] [Indexed: 10/21/2022]
|
13
|
Dufernez F, Derelle E, Noël C, Sanciu G, Mantini C, Dive D, Soyer-Gobillard MO, Capron M, Pierce RJ, Wintjens R, Guillebault D, Viscogliosi E. Molecular characterization of iron-containing superoxide dismutases in the heterotrophic dinoflagellate Crypthecodinium cohnii. Protist 2008; 159:223-38. [PMID: 18276189 DOI: 10.1016/j.protis.2007.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Accepted: 11/30/2007] [Indexed: 11/26/2022]
Abstract
Superoxide dismutases (SODs) are a family of antioxidant enzymes that catalyse the degradation of toxic superoxide radicals in obligate and facultative aerobic organisms. Here, we report the presence of a multi-copy gene family encoding SODs in the heterotrophic dinoflagellate Crypthecodinium cohnii. All the genes identified (sod1 to sod17) have been cloned and sequenced, and shown to encode potentially functional dimeric iron-containing SOD isozymes. Our data revealed a considerable molecular heterogeneity of this enzyme in C. cohnii at both genomic and transcriptional levels. The C. cohnii SOD1, overexpressed in Escherichia coli, was active and its structure obtained by homology modeling using X-ray crystal structures of homologues exhibited the typical fold of dimeric FeSODs. Phylogenetic studies including 110 other dimeric FeSODs and closely related cambialistic dimeric SOD sequences showed that the C. cohnii SODs form a monophyletic group and have all been acquired by the same event of horizontal gene transfer. It also revealed a dichotomy within the C. cohnii SOD sequences that could be explained by an ancestral sod gene duplication followed by subsequent gene duplications within each of the two groups. Enzyme assays of SOD activity indicated the presence of two FeSOD activities in C. cohnii cell lysate whereas MnSOD and Cu/ZnSOD were not detected. These activities contrasted with the SOD repertoire previously characterized in photosynthetic dinoflagellates. To explain these differences, a hypothetical evolutionary scenario is proposed that suggests gains and losses of sod genes in dinoflagellates.
Collapse
Affiliation(s)
- Fabienne Dufernez
- Institut Pasteur de Lille, Université Lille 2, 59019 Lille cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Biswas S, Haque R, Bhuyan NR, Bera T. Participation of chlorobiumquinone in the transplasma membrane electron transport system of Leishmania donovani promastigote: Effect of near-ultraviolet light on the redox reaction of plasma membrane. Biochim Biophys Acta Gen Subj 2008; 1780:116-27. [DOI: 10.1016/j.bbagen.2007.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/08/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
|
15
|
Affiliation(s)
- Martin T Croft
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom.
| | | | | |
Collapse
|
16
|
Marin B, Nowack ECM, Melkonian M. A plastid in the making: evidence for a second primary endosymbiosis. Protist 2005; 156:425-32. [PMID: 16310747 DOI: 10.1016/j.protis.2005.09.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 09/14/2005] [Indexed: 10/25/2022]
Abstract
One of the major steps in the evolution of life was the origin of photosynthesis in nucleated cells underpinning the evolution of plants. It is well accepted that this evolutionary process was initiated when a photosynthetic bacterium (a cyanobacterium) was taken up by a colorless host cell, probably more than a billion years ago, and transformed into a photosynthetic organelle (a plastid) during a process known as primary endosymbiosis. Here, we use sequence comparisons and phylogenetic analyses of the prokaryotic rDNA operon to show that the thecate, filose amoeba Paulinella chromatophora Lauterborn obtained its photosynthetic organelles by a similar but more recent process, which involved a different cyanobacterium, indicating that the evolution of photosynthetic organelles from cyanobacteria was not a unique event, as is commonly believed, but may be an ongoing process.
Collapse
Affiliation(s)
- Birger Marin
- Botanisches Institut, Lehrstuhl I, Universität zu Köln, Gyrhofstrasse 15, 50931 Köln, Germany.
| | | | | |
Collapse
|
17
|
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution, Department of Plant Biology, Stanford, California 94305, USA.
| |
Collapse
|
18
|
Hanikenne M, Krämer U, Demoulin V, Baurain D. A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. PLANT PHYSIOLOGY 2005; 137:428-46. [PMID: 15710683 PMCID: PMC1065346 DOI: 10.1104/pp.104.054189] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/16/2004] [Accepted: 11/18/2004] [Indexed: 05/20/2023]
Affiliation(s)
- Marc Hanikenne
- Metal Homeostasis Group, Max Planck Institute for Plant Molecular Physiology, 14476 Golm, Germany.
| | | | | | | |
Collapse
|
19
|
Abstract
Unicellular apicomplexans possess an algal-originated plastid referred to as an apicoplast. Although apicomplexan parasites are comprised of highly diverse protists, the complete apicoplast genome sequences have only been determined from the hematozoan Plasmodium falciparum and cyst-forming coccidian Toxoplasma gondii. Here, we report the third complete sequence of apicoplast genome from the intestinal coccidian Eimeria tenella that may serve as a new drug target against coccidiosis in the livestock. The AT-rich E. tenella plastid genome is a 35-kb circular element. Its gene organization resembles more closely that of T. gondii than P. falciparum. Although the E. tenella plastid genome contains an almost identical set of genes to that found in P. falciparum and T. gondii, its encoded genes share low or moderate homologies with their counterparts in the other two apicomplexans. With the addition of this coccidian plastid genome sequence, we attempted to reexamine the apicoplast genome evolution and performed phylogenetic reconstructions using maximum likelihood and Bayesian inference (BI) methods based on a concatenated dataset of plastid-encoded rpoB, rpoC1 and rpoC2 proteins. All resulting rpo protein trees placed apicoplast as a sister to Euglena within the green lineage. On the other hand, many recent studies based on the organization of plastid genes and some nuclear-encoded plastid proteins have supported a common red algal ancestry of apicomplexan and dinoflagellate plastids. If the apicoplast indeed originated from a red ancestor, the green relationship of apicomplexan genes would probably imply that the ancestral host that gave rise to the (red) apicoplast might have already contained some primary green plastid genes.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Veterinary Pathobiology, College of Veterinary Medicine, College Station, TX 77843-4467, USA
| | | | | | | |
Collapse
|
20
|
Foth BJ, McFadden GI. The apicoplast: a plastid in Plasmodium falciparum and other Apicomplexan parasites. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:57-110. [PMID: 12722949 DOI: 10.1016/s0074-7696(05)24003-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apicomplexan parasites cause severe diseases such as malaria, toxoplasmosis, and coccidiosis (caused by Plasmodium spp., Toxoplasma, and Eimeria, respectively). These parasites contain a relict plastid-termed "apicoplast"--that originated from the engulfment of an organism of the red algal lineage. The apicoplast is indispensable but its exact role in parasites is unknown. The apicoplast has its own genome and expresses a small number of genes, but the vast majority of the apicoplast proteome is encoded in the nuclear genome. The products of these nuclear genes are posttranslationally targeted to the organelle via the secretory pathway courtesy of a bipartite N-terminal leader sequence. Apicoplasts are nonphotosynthetic but retain other typical plastid functions such as fatty acid, isoprenoid and heme synthesis, and products of these pathways might be exported from the apicoplast for use by the parasite. Apicoplast pathways are essentially prokaryotic and therefore excellent drug targets. Some antibiotics inhibiting these molecular processes are already in chemotherapeutic use, whereas many new drugs will hopefully spring from our growing understanding of this intriguing organelle.
Collapse
Affiliation(s)
- Bernardo J Foth
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
21
|
Tovar-Méndez A, Miernyk JA, Randall DD. Regulation of pyruvate dehydrogenase complex activity in plant cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1043-9. [PMID: 12631264 DOI: 10.1046/j.1432-1033.2003.03469.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pyruvate dehydrogenase complex (PDC) is subjected to multiple interacting levels of control in plant cells. The first level is subcellular compartmentation. Plant cells are unique in having two distinct, spatially separated forms of the PDC; mitochondrial (mtPDC) and plastidial (plPDC). The mtPDC is the site of carbon entry into the tricarboxylic acid cycle, while the plPDC provides acetyl-CoA and NADH for de novo fatty acid biosynthesis. The second level of regulation of PDC activity is the control of gene expression. The genes encoding the subunits of the mt- and plPDCs are expressed following developmental programs, and are additionally subject to physiological and environmental cues. Thirdly, both the mt- and plPDCs are sensitive to product inhibition, and, potentially, to metabolite effectors. Finally, the two different forms of the complex are regulated by distinct organelle-specific mechanisms. Activity of the mtPDC is regulated by reversible phosphorylation catalyzed by intrinsic kinase and phosphatase components. An additional level of sensitivity is provided by metabolite control of the kinase activity. The plPDC is not regulated by reversible phosphorylation. Instead, activity is controlled to a large extent by the physical environment that exists in the plastid stroma.
Collapse
Affiliation(s)
- Alejandro Tovar-Méndez
- Department of Biochemistry, University of Missouri and Plant Genetics Research Unit, USDA, Agricultural Research Service, Columbia, MO 65211, USA
| | | | | |
Collapse
|