1
|
Arunkumar M, LewisOscar F, Thajuddin N, Pugazhendhi A, Nithya C. In vitro and in vivo biofilm forming Vibrio spp: A significant threat in aquaculture. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
2
|
Li C, Cheng S. Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system. Crit Rev Biotechnol 2019; 39:1015-1030. [PMID: 31496297 DOI: 10.1080/07388551.2019.1662367] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Various new energy technologies have been developed to reduce reliance on fossil fuels. The bioelectrochemical system (BES), an integrated microbial-electrochemical energy conversion process, is projected to be a sustainable and environmentally friendly energy technology. However, low power density is still one of the main limiting factors restricting the practical application of BESs. To enhance power output, functional group modification on anode surfaces has been primarily developed to improve the bioelectrochemical performances of BESs in terms of startup, power density, chemical oxygen demand (COD) removal and coulombic efficiency (CE). This modification could change the anode surface characteristics: roughness, hydrophobicity, biocompatibility, chemical bonding and electrochemically active surface area. This will facilitate bacterial adhesion, biofilm formation and extracellular electron transfer (EET). Additionally, some antibacterial functional groups are applied on air cathodes in order to suppress aerobic biofilms and enhance cathodic oxygen reduction reactions (ORRs). Various modification strategies such as: soaking, heat treatment and plasma modification have been reported to introduce functional groups typically as O-, N- and S-containing groups. In this review, the effects of anode functional groups on electroactive bacteria through the whole biofilm formation process are summarized. In addition, the application of those modification technologies to improve bioelectricity generation, resource recovery, bioelectrochemical analysis and the production of value-added chemicals and biofuels is also discussed. Accordingly, this review aims to help scientists select the most appropriate functional groups and up-to-date methods to improve biofilm formation.
Collapse
Affiliation(s)
- Chaochao Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University , Hangzhou , China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University , Hangzhou , China
| |
Collapse
|
3
|
Differential Gene Expression Patterns of Yersinia pestis and Yersinia pseudotuberculosis during Infection and Biofilm Formation in the Flea Digestive Tract. mSystems 2019; 4:mSystems00217-18. [PMID: 30801031 PMCID: PMC6381227 DOI: 10.1128/msystems.00217-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/27/2019] [Indexed: 01/01/2023] Open
Abstract
Yersinia pestis, the etiologic agent of plague, emerged as a fleaborne pathogen only within the last 6,000 years. Just five simple genetic changes in the Yersinia pseudotuberculosis progenitor, which served to eliminate toxicity to fleas and to enhance survival and biofilm formation in the flea digestive tract, were key to the transition to the arthropodborne transmission route. To gain a deeper understanding of the genetic basis for the development of a transmissible biofilm infection in the flea foregut, we evaluated additional gene differences and performed in vivo transcriptional profiling of Y. pestis, a Y. pseudotuberculosis wild-type strain (unable to form biofilm in the flea foregut), and a Y. pseudotuberculosis mutant strain (able to produce foregut-blocking biofilm in fleas) recovered from fleas 1 day and 14 days after an infectious blood meal. Surprisingly, the Y. pseudotuberculosis mutations that increased c-di-GMP levels and enabled biofilm development in the flea did not change the expression levels of the hms genes responsible for the synthesis and export of the extracellular polysaccharide matrix required for mature biofilm formation. The Y. pseudotuberculosis mutant uniquely expressed much higher levels of Yersinia type VI secretion system 4 (T6SS-4) in the flea, and this locus was required for flea blockage by Y. pseudotuberculosis but not for blockage by Y. pestis. Significant differences between the two species in expression of several metabolism genes, the Psa fimbrial genes, quorum sensing-related genes, transcription regulation genes, and stress response genes were evident during flea infection. IMPORTANCE Y. pestis emerged as a highly virulent, arthropod-transmitted pathogen on the basis of relatively few and discrete genetic changes from Y. pseudotuberculosis. Parallel comparisons of the in vitro and in vivo transcriptomes of Y. pestis and two Y. pseudotuberculosis variants that produce a nontransmissible infection and a transmissible infection of the flea vector, respectively, provided insights into how Y. pestis has adapted to life in its flea vector and point to evolutionary changes in the regulation of metabolic and biofilm development pathways in these two closely related species.
Collapse
|
4
|
Silva HO, Lima JAS, Aguilar CEG, Rossi GAM, Mathias LA, Vidal AMC. Efficiency of Different Disinfectants on Bacillus cereus Sensu Stricto Biofilms on Stainless-Steel Surfaces in Contact With Milk. Front Microbiol 2018; 9:2934. [PMID: 30555449 PMCID: PMC6280812 DOI: 10.3389/fmicb.2018.02934] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/14/2018] [Indexed: 01/28/2023] Open
Abstract
The species of the Bacillus cereus group have the ability to adhere to and form biofilms on solid surfaces, including stainless steel, a material widely used in food industries. Biofilms allow for recontamination during food processing, and the "clean-in-place" (CIP) system is largely used by industries to control them. This study thus proposes to evaluate the efficacy of peracetic acid and sodium hypochlorite against biofilms induced on stainless-steel surfaces. The SAMN07414939 isolate (BioProject PRJNA390851), a recognized biofilm producer, was selected for biofilm induction on AISI 304 stainless steel. Biofilm induction was performed and classified into three categories: TCP (Tindalized, Contaminated, and Pasteurized milk), TCS (Tindalized milk Contaminated with Spores), and TCV (Tindalized milk Contaminated with Vegetative cells). Subsequently, the coupons were sanitized simulating a CIP procedure, on a pilot scale, using alkaline and acid solutions followed by disinfectants (peracetic acid and sodium hypochlorite). Microorganism adhesion on the surfaces reached 6.3 × 105 to 3.1 × 107 CFU/cm-2. Results did not show significant differences (p > 0.05) for surface adhesion between the three tested categories (TCP, TCS, and TCV) or (p > 0.05) between the two disinfectants (peracetic acid and sodium hypochlorite). Microbial populations adhered to the stainless-steel coupons are equally reduced after treatment with peracetic acid and sodium hypochlorite, with no differences in the control of B. cereus s.s. biofilms on AISI 304 stainless-steel surfaces.
Collapse
Affiliation(s)
- Higor Oliveira Silva
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agrarian and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Joyce Aparecida Santos Lima
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agrarian and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Carlos Eduardo Gamero Aguilar
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agrarian and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Gabriel Augusto Marques Rossi
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agrarian and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Luis Antonio Mathias
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agrarian and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Ana Maria Centola Vidal
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
|
6
|
Galván EM, Mateyca C, Ielpi L. Role of interspecies interactions in dual-species biofilms developed in vitro by uropathogens isolated from polymicrobial urinary catheter-associated bacteriuria. BIOFOULING 2016; 32:1067-1077. [PMID: 27642801 DOI: 10.1080/08927014.2016.1231300] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
Most catheter-associated urinary tract infections are polymicrobial. Here, uropathogen interactions in dual-species biofilms were studied. The dual-species associations selected based on their prevalence in clinical settings were Klebsiella pneumoniae-Escherichia coli, E. coli-Enterococcus faecalis, K. pneumoniae-E. faecalis, and K. pneumoniae-Proteus mirabilis. All species developed single-species biofilms in artificial urine. The ability of K. pneumoniae to form biofilms was not affected by E. coli or E. faecalis co-inoculation, but was impaired by P. mirabilis. Conversely, P. mirabilis established a biofilm when co-inoculated with K. pneumoniae. Additionally, E. coli persistence in biofilms was hampered by K. pneumoniae but not by E. faecalis. Interestingly, E. coli, but not K. pneumoniae, partially inhibited E. faecalis attachment to the surface and retarded biofilm development. The findings reveal bacterial interactions between uropathogens in dual-species biofilms ranged from affecting initial adhesion to outcompeting one bacterial species, depending on the identity of the partners involved.
Collapse
Affiliation(s)
- E M Galván
- a Laboratory of Bacterial Genetics , Fundacion Instituto Leloir-IIBBA (CONICET) , Buenos Aires , Argentina
| | - C Mateyca
- a Laboratory of Bacterial Genetics , Fundacion Instituto Leloir-IIBBA (CONICET) , Buenos Aires , Argentina
| | - L Ielpi
- a Laboratory of Bacterial Genetics , Fundacion Instituto Leloir-IIBBA (CONICET) , Buenos Aires , Argentina
| |
Collapse
|
7
|
Pratten J, Nazhat SN, Blaker JJ, Boccaccini AR. In Vitro Attachment of Staphylococcus Epidermidis to Surgical Sutures with and without Ag-Containing Bioactive Glass Coating. J Biomater Appl 2016; 19:47-57. [PMID: 15245643 DOI: 10.1177/0885328204043200] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability of a silver-doped bioactive glass (AgBG) coating to prevent bacterial colonization on surgical sutures was investigated in vitro. Bioactive glass powders, in the form of 45S5 Bioglass® and AgBG, were used to coat Mersilk® sutures using an optimized ‘in house’ slurry-dipping process. In vitro experiments were carried out using Staphylococcus epidermidis under both batch and flow conditions. While the traditional batch culture testing was used to determine the number of viable cells adhered to the surface, the flow-cell was used to visualize attachment and detachment over time. Under batch conditions of up to 180 min, statistically significant differences were observed in the colony forming units (CFU) per suture for both the coated and uncoated Mersilk® sutures. The results showed that the AgBG coating had the greatest effect on limiting bacterial attachment (8 102 CFU) when compared to the 45S5 Bioglass® coating (3.2 103 CFU) and the uncoated Mersilk® (1.2 104 CFU). Also under flow conditions differences were seen between the coated and uncoated sutures. Therefore, this preliminary study has demonstrated the quantification and visualization of bacterial attachment onto sutures in order to compare the antibacterial properties of Ag-containing bioactive glass coatings. The bactericidal properties imparted by Ag-containing glass open new opportunities for use of the composite sutures in wound healing and body wall repair.
Collapse
Affiliation(s)
- Jonathan Pratten
- Division of Infection and Immunity, Eastman Dental Institute for Oral Health Care Sciences, University College London, 256 Gray's Inn Road, WC1X 8LD, UK
| | | | | | | |
Collapse
|
8
|
Abstract
Bacterial biofilms are dense and often mixed-species surface-attached communities in which bacteria coexist and compete for limited space and nutrients. Here we present the different antagonistic interactions described in biofilm environments and their underlying molecular mechanisms, along with ecological and evolutionary insights as to how competitive interactions arise and are maintained within biofilms.
Collapse
|
9
|
Parker JK, Chen H, McCarty SE, Liu LY, De La Fuente L. Calcium transcriptionally regulates the biofilm machinery of Xylella fastidiosa to promote continued biofilm development in batch cultures. Environ Microbiol 2016; 18:1620-34. [PMID: 26913481 DOI: 10.1111/1462-2920.13242] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/21/2016] [Indexed: 11/29/2022]
Abstract
The functions of calcium (Ca) in bacteria are less characterized than in eukaryotes, where its role has been studied extensively. The plant-pathogenic bacterium Xylella fastidiosa has several virulence features that are enhanced by increased Ca concentrations, including biofilm formation. However, the specific mechanisms driving modulation of this feature are unclear. Characterization of biofilm formation over time showed that 4 mM Ca supplementation produced denser biofilms that were still developing at 96 h, while biofilm in non-supplemented media had reached the dispersal stage by 72 h. To identify changes in global gene expression in X. fastidiosa grown in supplemental Ca, RNA-Seq of batch culture biofilm cells was conducted at three 24-h time intervals. Results indicate that a variety of genes are differentially expressed in response to Ca, including genes related to attachment, motility, exopolysaccharide synthesis, biofilm formation, peptidoglycan synthesis, regulatory functions, iron homeostasis, and phages. Collectively, results demonstrate that Ca supplementation induces a transcriptional response that promotes continued biofilm development, while biofilm cells in nonsupplemented media are driven towards dispersion of cells from the biofilm structure. These results have important implications for disease progression in planta, where xylem sap is the source of Ca and other nutrients for X. fastidiosa.
Collapse
Affiliation(s)
- Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - Hongyu Chen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - Sara E McCarty
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - Lawrence Y Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | | |
Collapse
|
10
|
Prabhakaran P, Ashraf MA, Aqma WS. Microbial stress response to heavy metals in the environment. RSC Adv 2016. [DOI: 10.1039/c6ra10966g] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Heavy metal contamination is a global environmental issue as it poses a significant threat to public health, and exposure to metals above a certain threshold level can cause deleterious effects in all living organisms including microbes.
Collapse
Affiliation(s)
- Pranesha Prabhakaran
- School of Biosciences and Biotechnology
- Faculty of Science and Technology
- Universiti Kebangsaan Malaysia
- 43600 Bangi
- Malaysia
| | - Muhammad Aqeel Ashraf
- Faculty of Science & Natural Resources
- Universiti Malaysia Sabah
- 88400 Kota Kinabalu
- Malaysia
- Department of Environmental Science and Engineering
| | - Wan Syaidatul Aqma
- School of Biosciences and Biotechnology
- Faculty of Science and Technology
- Universiti Kebangsaan Malaysia
- 43600 Bangi
- Malaysia
| |
Collapse
|
11
|
Microbial biofilms in seafood: A food-hygiene challenge. Food Microbiol 2015; 49:41-55. [DOI: 10.1016/j.fm.2015.01.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 11/21/2022]
|
12
|
Biofilms formed by gram-negative bacteria undergo increased lipid a palmitoylation, enhancing in vivo survival. mBio 2014; 5:mBio.01116-14. [PMID: 25139899 PMCID: PMC4147861 DOI: 10.1128/mbio.01116-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Bacterial biofilm communities are associated with profound physiological changes that lead to novel properties compared to the properties of individual (planktonic) bacteria. The study of biofilm-associated phenotypes is an essential step toward control of deleterious effects of pathogenic biofilms. Here we investigated lipopolysaccharide (LPS) structural modifications in Escherichia coli biofilm bacteria, and we showed that all tested commensal and pathogenic E. coli biofilm bacteria display LPS modifications corresponding to an increased level of incorporation of palmitate acyl chain (palmitoylation) into lipid A compared to planktonic bacteria. Genetic analysis showed that lipid A palmitoylation in biofilms is mediated by the PagP enzyme, which is regulated by the histone-like protein repressor H-NS and the SlyA regulator. While lipid A palmitoylation does not influence bacterial adhesion, it weakens inflammatory response and enhances resistance to some antimicrobial peptides. Moreover, we showed that lipid A palmitoylation increases in vivo survival of biofilm bacteria in a clinically relevant model of catheter infection, potentially contributing to biofilm tolerance to host immune defenses. The widespread occurrence of increased lipid A palmitoylation in biofilms formed by all tested bacteria suggests that it constitutes a new biofilm-associated phenotype in Gram-negative bacteria. Bacterial communities called biofilms display characteristic properties compared to isolated (planktonic) bacteria, suggesting that some molecules could be more particularly produced under biofilm conditions. We investigated biofilm-associated modifications occurring in the lipopolysaccharide (LPS), a major component of all Gram-negative bacterial outer membrane. We showed that all tested commensal and pathogenic biofilm bacteria display high incorporation of a palmitate acyl chain into the lipid A part of LPS. This lipid A palmitoylation is mediated by the PagP enzyme, whose expression in biofilm is controlled by the regulatory proteins H-NS and SlyA. We also showed that lipid A palmitoylation in biofilm bacteria reduces host inflammatory response and enhances their survival in an animal model of biofilm infections. While these results provide new insights into the biofilm lifestyle, they also suggest that the level of lipid A palmitoylation could be used as an indicator to monitor the development of biofilm infections on medical surfaces.
Collapse
|
13
|
A new biofilm-associated colicin with increased efficiency against biofilm bacteria. ISME JOURNAL 2014; 8:1275-88. [PMID: 24451204 DOI: 10.1038/ismej.2013.238] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 11/08/2022]
Abstract
Formation of bacterial biofilm communities leads to profound physiological modifications and increased physical and metabolic exchanges between bacteria. It was previously shown that bioactive molecules produced within the biofilm environment contribute to bacterial interactions. Here we describe new pore-forming colicin R, specifically produced in biofilms formed by the natural isolate Escherichia coli ROAR029 but that cannot be detected under planktonic culture conditions. We demonstrate that an increased SOS stress response within mature biofilms induces SOS-dependent colicin R expression. We provide evidence that colicin R displays increased activity against E. coli strains that have a reduced lipopolysaccharide length, such as the pathogenic enteroaggregative E. coli LF82 clinical isolate, therefore pointing to lipopolysaccharide size as an important determinant for resistance to colicins. We show that colicin R toxicity toward E. coli LF82 is increased under biofilm conditions compared with planktonic susceptibility and that release of colicin R confers a strong competitive advantage in mixed biofilms by rapidly outcompeting sensitive neighboring bacteria. This work identifies the first biofilm-associated colicin that preferentially targets biofilm bacteria. Furthermore, it indicates that the study of antagonistic molecules produced in biofilm and multispecies contexts could reveal unsuspected, ecologically relevant bacterial interactions influencing population dynamics in natural environments.
Collapse
|
14
|
Giaouris E, Samoilis G, Chorianopoulos N, Ercolini D, Nychas GJ. Differential protein expression patterns between planktonic and biofilm cells of Salmonella enterica serovar Enteritidis PT4 on stainless steel surface. Int J Food Microbiol 2013; 162:105-13. [PMID: 23376784 DOI: 10.1016/j.ijfoodmicro.2012.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
In the present study, the proteome of a strain of S. enterica serovar Enteritidis PT4, grown either as biofilm on stainless steel surface or as free-floating (planktonic) in Brain Heart (BH) broth, was investigated in order to detect the strong differences in whole-cell protein expression patterns between the two growth styles. The proteins extracted from both types of cells were subjected to 2-D PAGE, followed by in-gel tryptic digestion, extraction, subsequent MALDI-TOF mass spectrometry (MS) analysis and finally database searches for protein identification. Using this approach, 30 proteins were identified as differentially expressed between the two growth modes on an "on-off" basis, that is, proteins that were detected in one case but not in the other. In particular, 20 and 10 proteins were identified in biofilm and planktonic-grown cells, respectively. The group of proteins whose expression was visible only during biofilm growth included proteins involved in global regulation and stress response (ArcA, BtuE, Dps, OsmY, SspA, TrxA, YbbN and YhbO), nutrient transport (Crr, DppA, Fur and SufC), degradation and energy metabolism (GcvT, GpmA, RibB), detoxification (SseA and YibF), DNA metabolism (SSB), curli production (CsgF), and murein synthesis (MipA). To summarize, this study demonstrates that biofilm growth of S. Enteritidis causes distinct changes in protein expression and offers valuable new data regarding some of the proteins presumably involved in this process. The putative role of these proteins in the maintenance of a biofilm community in Salmonella and other bacteria is discussed.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, University of the Aegean, Mitropoliti Ioakeim 2, Myrina, 81400 Lemnos, Greece.
| | | | | | | | | |
Collapse
|
15
|
Wu J, Bi L, Zhang JB, Poncin S, Cao ZP, Li HZ. Effects of increase modes of shear force on granule disruption in upflow anaerobic reactors. WATER RESEARCH 2012; 46:3189-3196. [PMID: 22542131 DOI: 10.1016/j.watres.2012.03.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/15/2012] [Accepted: 03/23/2012] [Indexed: 05/31/2023]
Abstract
Sludge washout is listed among the top practical problems of the high rate upflow anaerobic reactors. This study investigated quantitatively two sludge washout processes operated under different hydrodynamic shear increase modes with the intervals of 1 and 10 days respectively. The results reveal that the sludge washout accompanying with large-scale granule disruption could lead to performance failure with heavy sludge loss ratio of about 46.1% at sludge loss rate about 0.35 gVSS L(-1) d(-1) during the process with shear increase interval of 1 day, while the highest sludge loss rate was only 0.12 gVSS L(-1) d(-1) during the process with 10-day interval. The intensified shear conditions could weaken the granules through inhibiting the extracellular polymers production and bioactivity. As consequences, an outbreak of large-scale granule disruption would raise and then significantly accelerate the sludge washout. Since long interval could provide the granules the opportunity to recover from these negative effects to some extent, the shear increase strategy of long interval over 10 days is favorably recommended to operate full-scale reactors during the start-up and shock load periods. The pioneer use of the micro particle image velocimetry in this study offers the possibility to discover the real hydrodynamic conditions around granules at microscale for the first time and reveals that the shear force exerts directly on the granular surface as a mechanical disruption force and big granules undergo high disruption force. The granule disruption is a result of the competition between the granule and the ambient hydrodynamic shear conditions rather than a process with shear force as a sole dominant factor. These could facilitate the understanding of the complicated interactions between the hydrodynamics and reactor performance and favor then a better control of the full-scale reactors.
Collapse
Affiliation(s)
- Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | | | | | | | | | | |
Collapse
|
16
|
Rendueles O, Ghigo JM. Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol Rev 2012; 36:972-89. [PMID: 22273363 DOI: 10.1111/j.1574-6976.2012.00328.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/17/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022] Open
Abstract
Multi-species biofilm communities are environments in which complex but ill understood exchanges between bacteria occur. Although monospecies cultures are still widely used in the laboratory, new approaches have been undertaken to study interspecies interactions within mixed communities. This review describes our current understanding of competitive relationships involving nonbiocidal biosurfactants, enzymes, and metabolites produced by bacteria and other microorganisms. These molecules target all steps of biofilm formation, ranging from inhibition of initial adhesion to matrix degradation, jamming of cell-cell communications, and induction of biofilm dispersion. This review presents available data on nonbiocidal molecules and provides a new perspective on competitive interactions within biofilms that could lead to antibiofilm strategies of potential biomedical interest.
Collapse
Affiliation(s)
- Olaya Rendueles
- Institut Pasteur, Unité de Génétique des Biofilms, Paris, France
| | | |
Collapse
|
17
|
Liu N, Xu Y, Hossain S, Huang N, Coursolle D, Gralnick JA, Boon EM. Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi. Biochemistry 2012; 51:2087-99. [PMID: 22360279 DOI: 10.1021/bi201753f] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although several reports have documented nitric oxide (NO) regulation of biofilm formation, the molecular basis of this phenomenon is unknown. In many bacteria, an H-NOX (heme-nitric oxide/oxygen-binding) gene is found near a diguanylate cyclase (DGC) gene. H-NOX domains are conserved hemoproteins that are known NO sensors. It is widely recognized that cyclic di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates the transition between motility and biofilm. Therefore, NO may influence biofilm formation through H-NOX regulation of DGC, thus providing a molecular-level explanation for NO regulation of biofilm formation. This work demonstrates that, indeed, NO-bound H-NOX negatively affects biofilm formation by directly regulating c-di-GMP turnover in Shewanella woodyi strain MS32. Exposure of wild-type S. woodyi to a nanomolar level of NO resulted in the formation of thinner biofilms, and less intracellular c-di-GMP, than in the absence of NO. Also, a mutant strain in the gene encoding SwH-NOX showed a decreased level of biofilm formation (and a decreased amount of intracellular c-di-GMP) with no change observed upon NO addition. Furthermore, using purified proteins, it was demonstrated that SwH-NOX and SwDGC are binding partners. SwDGC is a dual-functioning DGC; it has diguanylate cyclase and phosphodiesterase activities. These data indicate that NO-bound SwH-NOX enhances c-di-GMP degradation, but not synthesis, by SwDGC. These results support the biofilm growth data and indicate that S. woodyi senses nanomolar NO with an H-NOX domain and that SwH-NOX regulates SwDGC activity, resulting in a reduction in c-di-GMP concentration and a decreased level of biofilm growth in the presence of NO. These data provide a detailed molecular mechanism for NO regulation of c-di-GMP signaling and biofilm formation.
Collapse
Affiliation(s)
- Niu Liu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | | | | | | | | | | | | |
Collapse
|
18
|
Knudsen GM, Nielsen MB, Grassby T, Danino-Appleton V, Thomsen LE, Colquhoun IJ, Brocklehurst TF, Olsen JE, Hinton JCD. A third mode of surface-associated growth: immobilization of Salmonella enterica serovar Typhimurium modulates the RpoS-directed transcriptional programme. Environ Microbiol 2012; 14:1855-75. [PMID: 22356617 DOI: 10.1111/j.1462-2920.2012.02703.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the growth of bacteria has been studied for more than a century, it is only in recent decades that surface-associated growth has received attention. In addition to the well-characterized biofilm and swarming lifestyles, bacteria can also develop as micro-colonies supported by structured environments in both food products and the GI tract. This immobilized mode of growth has not been widely studied. To develop our understanding of the effects of immobilization upon a food-borne bacterial pathogen, we used the IFR Gel Cassette model. The transcriptional programme and metabolomic profile of Salmonella enterica serovar Typhimurium ST4/74 were compared during planktonic and immobilized growth, and a number of immobilization-specific characteristics were identified. Immobilized S.Typhimurium did not express motility and chemotaxis genes, and electron microscopy revealed the absence of flagella. The expression of RpoS-dependent genes and the level of RpoS protein were increased in immobilized bacteria, compared with planktonic growth. Immobilized growth prevented the induction of SPI1, SPI4 and SPI5 gene expression, likely mediated by the FliZ transcriptional regulator. Using an epithelial cell-based assay, we showed that immobilized S.Typhimurium was significantly less invasive than planktonic bacteria, and we suggest that S.Typhimurium grown in immobilized environments are less virulent than planktonic bacteria. Our findings identify immobilization as a third type of surface-associated growth that is distinct from the biofilm and swarming lifestyles of Salmonella.
Collapse
Affiliation(s)
- Gitte M Knudsen
- Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gutiérrez-Correa M, Ludeña Y, Ramage G, Villena GK. Recent Advances on Filamentous Fungal Biofilms for Industrial Uses. Appl Biochem Biotechnol 2012; 167:1235-53. [DOI: 10.1007/s12010-012-9555-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/06/2012] [Indexed: 11/28/2022]
|
20
|
Wu L, Peng C, Peng Y, Li L, Wang S, Ma Y. Effect of wastewater COD/N ratio on aerobic nitrifying sludge granulation and microbial population shift. J Environ Sci (China) 2012; 24:234-241. [PMID: 22655382 DOI: 10.1016/s1001-0742(11)60719-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effect of COD/N ratio on the granulation process and microbial population succession was investigated. Four identical sequencing batch reactors, R1, R2, R3 and R4, were operated with various initial COD/N ratios ranging from 0/200 to 800/200 (m/m). Ethanol was fed as the source of COD. Aerobic granules were successfully cultivated in R2 and R3, operating with the COD/N ratio of 200/200 and 400/200, respectively. Scanning electron microscope observations indicated that short rod-shaped and spherical bacteria were dominant in R2, while granules produced in R3 were surrounded with a large amount of filamentous bacteria. The average specific nitritation rate in R2 and R3 were 0.019 and 0.008 mg N/(mg MLVSS x hr), respectively. Fluorescence in situ hybridization results demonstrated that nitrifying bacteria population was enriched remarkably in R2. It indicated that nitrification ability and nitrifying bacteria population were enriched remarkably at low COD/N ratio. However, no granules were formed in R1 and R4 which might attribute to either limited or excessive extracellular polymeric substances production. This study contributed to a better understanding of the role of COD/N ratio in nitrifying sludge granulation.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The secondary messenger cyclic di-GMP coordinately regulates the transition between motility/sessility/virulence in bacterial populations and upon adaptation to novel habitats. Thereby, multiple independent regulatory circuits regulate a diversity of targets. This specific output response is surprising considering the diverse physiological processes regulated by this signalling molecule, which range from transcription to proteolysis and clearly demonstrates the presence of sophisticated developmental programmes in these so-called simple organisms.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Geng J, Henry N. Short time-scale bacterial adhesion dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:315-31. [PMID: 21557073 DOI: 10.1007/978-94-007-0940-9_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In natural conditions many bacterial populations are found as surface-attached communities exhibiting features distinct from those of planktonic cells. We focus here on the question of initial adhesion, the mechanisms of which are still far from being fully understood. Recently, the frontier between microbiologists and physicists has become increasingly permeable, boosting implementation of new methodological approaches for better elucidating the intricate aspects of initial bacterial adhesion. After discussing briefly the main sources of complexity that confuse the understanding of the early steps of cell-surface attachment, we present a selection of physical methods enabling real-time measurement of early adhesion kinetics in live cells. We also discuss the limitations and pitfalls that might appear when applying such methodologies - initially designed for studying physically ideal systems - to analysis of these, more complex, living systems. We address mainly on the use of dispersed-surfaces flow cytometry (DS-FCM), quartz microbalance (QCM) and surface plasmon resonance (SPR) approaches, and give a brief survey of new perspectives in optical microscopy. We conclude that the use of combined and multiparametric technical approaches will lead to significant advances in providing a comprehensive understanding of the early events in bacterial adhesion.
Collapse
Affiliation(s)
- Jing Geng
- Laboratoire Physico-chimie Curie (CNRS UMR 168), Université Paris VI Institut Curie, Paris Cedex 05, France.
| | | |
Collapse
|
23
|
White AP, Weljie AM, Apel D, Zhang P, Shaykhutdinov R, Vogel HJ, Surette MG. A global metabolic shift is linked to Salmonella multicellular development. PLoS One 2010; 5:e11814. [PMID: 20676398 PMCID: PMC2910731 DOI: 10.1371/journal.pone.0011814] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/22/2010] [Indexed: 11/18/2022] Open
Abstract
Bacteria can elaborate complex patterns of development that are dictated by temporally ordered patterns of gene expression, typically under the control of a master regulatory pathway. For some processes, such as biofilm development, regulators that initiate the process have been identified but subsequent phenotypic changes such as stress tolerance do not seem to be under the control of these same regulators. A hallmark feature of biofilms is growth within a self-produced extracellular matrix. In this study we used metabolomics to compare Salmonella cells in rdar colony biofilms to isogenic csgD deletion mutants that do not produce an extracellular matrix. The two populations show distinct metabolite profiles. Even though CsgD controls only extracellular matrix production, metabolite signatures associated with cellular adaptations associated with stress tolerances were present in the wild type but not the mutant cells. To further explore these differences we examine the temporal gene expression of genes implicated in biofilm development and stress adaptations. In wild type cells, genes involved in a metabolic shift to gluconeogenesis and various stress-resistance pathways exhibited an ordered expression profile timed with multicellular development even though they are not CsgD regulated. In csgD mutant cells, the ordered expression was lost. We conclude that the induction of these pathways results from production of, and growth within, a self produced matrix rather than elaboration of a defined genetic program. These results predict that common physiological properties of biofilms are induced independently of regulatory pathways that initiate biofilm formation.
Collapse
Affiliation(s)
- Aaron P. White
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Aalim M. Weljie
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Dmitry Apel
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Ping Zhang
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | | | - Hans J. Vogel
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Michael G. Surette
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
24
|
Martínez-Gil M, Yousef-Coronado F, Espinosa-Urgel M. LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol Microbiol 2010; 77:549-61. [DOI: 10.1111/j.1365-2958.2010.07249.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Biofilm-induced modifications in the proteome of Pseudomonas aeruginosa planktonic cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:957-66. [DOI: 10.1016/j.bbapap.2010.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/04/2009] [Accepted: 01/08/2010] [Indexed: 11/17/2022]
|
26
|
Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. Our current understanding of fungal biofilms. Crit Rev Microbiol 2010; 35:340-55. [PMID: 19863383 DOI: 10.3109/10408410903241436] [Citation(s) in RCA: 326] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fungal biofilms are an escalating clinical problem associated with significant rates of mortality. Candida albicans is the most notorious of all fungal biofilm formers. However, non-Candida species, yeasts such as Cryptococcus neoformans, and filamentous moulds such as Aspergillus fumigatus, have been shown to be implicated in biofilm-associated infections. Fungal biofilms have distinct developmental phases, including adhesion, colonisation, maturation and dispersal, which are governed by complex molecular events. Recalcitrance to antifungal therapy remains the greatest threat to patients with fungal biofilms. This review discusses our current understanding of the basic biology and clinical implications associated with fungal biofilms.
Collapse
Affiliation(s)
- Gordon Ramage
- Section of Infection and Immunity, Glasgow Dental School and Hospital, Faculty of Medicine, University of Glasgow, UK.
| | | | | | | | | |
Collapse
|
27
|
Lakins MA, Marrison JL, O'Toole PJ, van der Woude MW. Exploiting advances in imaging technology to study biofilms by applying multiphoton laser scanning microscopy as an imaging and manipulation tool. J Microsc 2009; 235:128-37. [PMID: 19659907 DOI: 10.1111/j.1365-2818.2009.03190.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Biofilms are an important element of the natural ecosystems but can be detrimental in health care and industrial settings. To improve our ability to combat biofilms, we need to understand the processes that facilitate their formation and dispersal. One approach that has proven to be invaluable is to image biofilms as they grow. Here we describe tools and protocols to visualize biofilms with multiphoton laser scanning microscopy, compare this with single photon laser scanning confocal microscopy and highlight best working procedures. Furthermore, we describe how with multiphoton laser scanning microscopy the laser can be used to manipulate the biofilm, specifically to achieve localized bleaching, killing or ablation within the biofilm biomass. These applications open novel ways to study the dynamics of biofilm formation, regeneration and dispersal.
Collapse
Affiliation(s)
- M A Lakins
- Centre of Immunology and Infection, Department of Biology, University of York and The Hull York Medical School, York YO10 5YW, UK
| | | | | | | |
Collapse
|
28
|
Landini P. Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli. Res Microbiol 2009; 160:259-66. [PMID: 19345733 DOI: 10.1016/j.resmic.2009.03.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/21/2009] [Accepted: 03/04/2009] [Indexed: 11/26/2022]
Abstract
Switching from single-cell (planktonic) to biofilm growth (and vice versa) is regulated by a variety of environmental and physiological cues. Signals leading to activation of stress responses often lead to biofilm formation which, in turn, can trigger induction of stress response mechanisms, suggesting direct cross-talk between the two cellular processes. Regulatory mechanisms of this process include two-component regulatory systems, master regulators such as the rpoS gene and signal molecules such as cyclic-di-GMP, in a tight and complex interplay.
Collapse
Affiliation(s)
- Paolo Landini
- Department of Biomolecular Sciences and Biotechnology, University of Milan, Via Celoria 22, 20133 Milan, Italy.
| |
Collapse
|
29
|
Potential of biofilm-based biofuel production. Appl Microbiol Biotechnol 2009; 83:1-18. [PMID: 19300995 DOI: 10.1007/s00253-009-1940-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 01/09/2023]
Abstract
Biofilm technology has been extensively applied to wastewater treatment, but its potential application in biofuel production has not been explored. Current technologies of converting lignocellulose materials to biofuel are hampered by costly processing steps in pretreatment, saccharification, and product recovery. Biofilms may have a potential to improve efficiency of these processes. Advantages of biofilms include concentration of cell-associated hydrolytic enzymes at the biofilm-substrate interface to increase reaction rates, a layered microbial structure in which multiple species may sequentially convert complex substrates and coferment hexose and pentose as hydrolysates diffuse outward, and the possibility of fungal-bacterial symbioses that allow simultaneous delignification and saccharification. More importantly, the confined microenvironment within a biofilm selectively rewards cells with better phenotypes conferred from intercellular gene or signal exchange, a process which is absent in suspended cultures. The immobilized property of biofilm, especially when affixed to a membrane, simplifies the separation of biofuel from its producer and promotes retention of biomass for continued reaction in the fermenter. Highly consolidated bioprocessing, including delignification, saccharification, fermentation, and separation in a single reactor, may be possible through the application of biofilm technology. To date, solid-state fermentation is the only biofuel process to which the advantages of biofilms have been applied, even though it has received limited attention and improvements. The transfer of biofilm technology from environmental engineering has the potential to spur great innovations in the optimization of biofuel production.
Collapse
|
30
|
Monds RD, O'Toole GA. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 2009; 17:73-87. [PMID: 19162483 DOI: 10.1016/j.tim.2008.11.001] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 12/28/2022]
Abstract
For the past ten years, the developmental model of microbial biofilm formation has served as the major conceptual framework for biofilm research; however, the paradigmatic value of this model has begun to be challenged by the research community. Here, we critically evaluate recent data to determine whether biofilm formation satisfies the criteria requisite of a developmental system. We contend that the developmental model of biofilm formation must be approached as a model in need of further validation, rather than utilized as a platform on which to base empirical research and scientific inference. With this in mind, we explore the experimental approaches required to further our understanding of the biofilm phenotype, highlighting evolutionary and ecological approaches as a natural complement to rigorous mechanistic studies into the causal basis of biofilm formation. Finally, we discuss a second model of biofilm formation that serves as a counterpoint to our discussion of the developmental model. Our hope is that this article will provide a platform for discussion about the conceptual underpinnings of biofilm formation and the impact of such frameworks on shaping the questions we ask, and the answers we uncover, during our research into these microbial communities.
Collapse
Affiliation(s)
- Russell D Monds
- Bio-X Program, Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
31
|
|
32
|
Serra DO, Lücking G, Weiland F, Schulz S, Görg A, Yantorno OM, Ehling-Schulz M. Proteome approaches combined with Fourier transform infrared spectroscopy revealed a distinctive biofilm physiology in Bordetella pertussis. Proteomics 2008; 8:4995-5010. [DOI: 10.1002/pmic.200800218] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Collet A, Cosette P, Beloin C, Ghigo JM, Rihouey C, Lerouge P, Junter GA, Jouenne T. Impact of rpoS deletion on the proteome of Escherichia coli grown planktonically and as biofilm. J Proteome Res 2008; 7:4659-69. [PMID: 18826300 DOI: 10.1021/pr8001723] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To investigate the role of rpoS in gene expression of Escherichia coli cells grown as biofilms, we compared the proteomes of a rpoS mutant and the wild-type strain. Experiments were performed on planktonic cells (in exponential or stationary growth phase) and biofilms developed on glass wool. Spot-by-spot comparison of gels obtained from biofilm and planktonic wild-type organisms showed that the intensity of between 22 and 30% of detected spots was affected by the growth mode, depending of the control used. Principal component analysis, used to interpret the variations in protein spot densities, discriminated exponential-phase cells (wild-type and mutant) from the other incubation conditions and secondarily 72-old cultures. The statistical analysis demonstrated that the rpoS mutation did not significantly modify the proteome of exponential-growth phase cells, the differences involving only 3% of the proteome. However, increasing the incubation time from 8 to 72 h noticeably increased the number of changed proteins. A cluster analysis showed that RpoS plays a role in the special nature of the gene expression of biofilm cells but lower than in stationary-phase bacteria. We identified 35 rpoS-regulated proteins that were already or not described as controlled by this sigma factor. For some of them, the mode of regulation by RpoS was obviously dependent on the culture condition (planktonic vs biofilm).
Collapse
Affiliation(s)
- Anthony Collet
- Polymeres, Biopolymers, Surfaces" Laboratory, University of Rouen, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu Z, Li H, Liu J, Su Z. Effects of inoculation strategy and cultivation approach on the performance of microbial fuel cell using marine sediment as bio-matrix. J Appl Microbiol 2007; 104:1163-70. [PMID: 18005344 DOI: 10.1111/j.1365-2672.2007.03643.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIMS To investigate the effects of inoculation strategy and cultivation approach on the performance of microbial fuel cell (MFC). METHODS AND RESULTS A dual-chamber sediment fuel cell was set up fed with glucose under batch condition. At day 30, the supernatant consortium was partly transferred and used as inoculum for the evaluation of cultivation approach. Power output gradually increased to 9.9 mW m(-2) over 180 days, corresponding to coulombic efficiency (CE) of 29.6%. Separated biofilms attached anode enabled power output and CE dramatically up to 100.9 mW m(-2) and over 50%, respectively, whereas the residual sediment catalysed MFC gave a poor performance. MFC catalysed by in situ supernatant consortium demonstrated more than twice higher power than MFC catalysed by the supernatant consortium after Fe(OH)(3) cultivation. However, the re-generation of biofilms from the latter largely enhanced the cell performance. CONCLUSIONS MFC exhibited a more efficient inducement of electroactive consortium than Fe(OH)(3) cultivation. MFC performance varied depending on different inoculation strategies. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first time to study cultivation approach affecting electricity generation. In addition, anodic limitations of mass and electron transfer were discussed through MFC catalysed by sediment-based bio-matrix.
Collapse
Affiliation(s)
- Z Liu
- Department of Biotechnology, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
35
|
Huang WE, Ude S, Spiers AJ. Pseudomonas fluorescens SBW25 biofilm and planktonic cells have differentiable Raman spectral profiles. MICROBIAL ECOLOGY 2007; 53:471-4. [PMID: 17345138 DOI: 10.1007/s00248-006-9190-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 11/08/2006] [Accepted: 11/26/2006] [Indexed: 05/14/2023]
Abstract
Biofilms, and other bacterial aggregations, are of significance in both environmental microbiology and in plant and human pathogenesis. Comparative single-cell Raman spectral analysis can differentiate between planktonic bacteria and those recovered from biofilms and appears to offer a new means by which to investigate bacterial cell physiology, metabolic status, and stress under different environmental conditions.
Collapse
Affiliation(s)
- Wei E Huang
- Molecular Microbiology Ecology Section, CEH-Oxford, Mansfield Road, Oxford, OX1 3SR, UK
| | | | | |
Collapse
|
36
|
Vilain S, Brözel VS. Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm-specific proteome. J Proteome Res 2007; 5:1924-30. [PMID: 16889414 DOI: 10.1021/pr050402b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biofilm bacteria are widely held to exhibit a unique phenotype, typified by their increased resistance to antimicrobial agents. Numerous studies have been devoted to the identification of biofilm-specific genes, but surprisingly few have been reported to date. We compared the whole cell proteomes of 24 h old Bacillus cereus biofilms and the associated suspended population to exponential, transient and stationary phase planktonic cultures using the unbiased approach of principal component analysis, comparing the quantity variations of the 823 detected spots. The analyses support the hypothesis that biofilms of Gram positive bacteria have a unique pattern of gene expression. The data provides proteomic evidence for a new biofilm and surface influenced planktonic population which is distinct to both planktonic and biofilm cells.
Collapse
Affiliation(s)
- Sébastien Vilain
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007, USA
| | | |
Collapse
|
37
|
Wijman JGE, de Leeuw PPLA, Moezelaar R, Zwietering MH, Abee T. Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl Environ Microbiol 2007; 73:1481-8. [PMID: 17209076 PMCID: PMC1828785 DOI: 10.1128/aem.01781-06] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biofilm formation by Bacillus cereus was assessed using 56 strains of B. cereus, including the two sequenced strains, ATCC 14579 and ATCC 10987. Biofilm production in microtiter plates was found to be strongly dependent on incubation time, temperature, and medium, as well as the strain used, with some strains showing biofilm formation within 24 h and subsequent dispersion within the next 24 h. A selection of strains was used for quantitative analysis of biofilm formation on stainless steel coupons. Thick biofilms of B. cereus developed at the air-liquid interface, while the amount of biofilm formed was much lower in submerged systems. This suggests that B. cereus biofilms may develop particularly in industrial storage and piping systems that are partly filled during operation or where residual liquid has remained after a production cycle. Moreover, depending on the strain and culture conditions, spores constituted up to 90% of the total biofilm counts. This indicates that B. cereus biofilms can act as a nidus for spore formation and subsequently can release their spores into food production environments.
Collapse
Affiliation(s)
- Janneke G E Wijman
- Wageningen Centre for Food Sciences, Wageningen University, Laboratory of Food Microbiology, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Rinaudi L, Fujishige NA, Hirsch AM, Banchio E, Zorreguieta A, Giordano W. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res Microbiol 2006; 157:867-75. [PMID: 16887339 DOI: 10.1016/j.resmic.2006.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/24/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
Rhizobia are non-spore-forming soil bacteria that fix atmospheric nitrogen into ammonia in a symbiosis with legume roots. However, in the absence of a legume host, rhizobia manage to survive and hence must have evolved strategies to adapt to diverse environmental conditions. The capacity to respond to variations in nutrient availability enables the persistence of rhizobial species in soil, and consequently improves their ability to colonize and to survive in the host plant. Rhizobia, like many other soil bacteria, persist in nature most likely in sessile communities known as biofilms, which are most often composed of multiple microbial species. We have been employing in vitro assays to study environmental parameters that might influence biofilm formation in the Medicago symbiont Sinorhizobium meliloti. These parameters include carbon source, amount of nitrate, phosphate, calcium and magnesium as well as the effects of osmolarity and pH. The microtiter plate assay facilitates the detection of subtle differences in rhizobial biofilms in response to these parameters, thereby providing insight into how environmental stress or nutritional status influences rhizobial survival. Nutrients such as sucrose, phosphate and calcium enhance biofilm formation as their concentrations increase, whereas extreme temperatures and pH negatively affect biofilm formation.
Collapse
Affiliation(s)
- Luciana Rinaudi
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800-Río Cuarto, Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
39
|
Goller C, Wang X, Itoh Y, Romeo T. The cation-responsive protein NhaR of Escherichia coli activates pgaABCD transcription, required for production of the biofilm adhesin poly-beta-1,6-N-acetyl-D-glucosamine. J Bacteriol 2006; 188:8022-32. [PMID: 16997959 PMCID: PMC1698181 DOI: 10.1128/jb.01106-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pgaABCD operon of Escherichia coli is required for production of the biofilm adhesin poly-beta-1,6-N-acetyl-d-glucosamine (PGA). We establish here that NhaR, a DNA-binding protein of the LysR family of transcriptional regulators, activates transcription of this operon. Disruption of the nhaR gene decreased biofilm formation without affecting planktonic growth. PGA production was undetectable in an nhaR mutant strain. Expression of a pgaA'-'lacZ translational fusion was induced by NaCl and alkaline pH, but not by CaCl(2) or sucrose, in an nhaR-dependent fashion. Primer extension and quantitative real-time reverse transcription-PCR analyses further revealed that NhaR affects the steady-state level of pga mRNA. A purified recombinant NhaR protein bound specifically and with high affinity within the pgaABCD promoter region; one apparent binding site overlaps the -35 element, and a second site lies immediately upstream of the first. This protein was necessary and sufficient for activation of in vitro transcription from the pgaA promoter. These results define a novel mechanism for regulation of biofilm formation in response to environmental conditions and suggest an expanded role for NhaR in promoting bacterial survival.
Collapse
MESH Headings
- Adaptation, Physiological
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/metabolism
- Antigens, Bacterial/genetics
- Base Sequence
- Biofilms/growth & development
- Cations
- DNA, Bacterial/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Escherichia coli/genetics
- Escherichia coli/physiology
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/physiology
- Gene Expression Regulation, Bacterial
- Hydrogen-Ion Concentration
- Molecular Sequence Data
- Operon/genetics
- Promoter Regions, Genetic/physiology
- Protein Binding
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- Sodium Chloride/pharmacology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Carlos Goller
- Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Rd., N.E., Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
40
|
Villena GK, Gutiérrez-Correa M. Production of cellulase by Aspergillus niger biofilms developed on polyester cloth. Lett Appl Microbiol 2006; 43:262-8. [PMID: 16910929 DOI: 10.1111/j.1472-765x.2006.01960.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To compare cellulase production by Aspergillus niger ATCC 10864 biofilms on polyester cloth and freely suspended cultures in shaken flasks and microbioreactors of bubble column type. METHODS AND RESULTS Both shaken flasks and oxygenated microbioreactors containing 40 ml of production medium were used to compare cellulase secretion by free mycelium and biofilm cultures. Free mycelium cultures grew better in flasks than in microbioreactors producing compact and fluffy pellets, respectively, while the opposite was found for biofilm cultures without any visible change in biofilm morphology. Cellulase activities and volumetric productivities attained by biofilms in flask cultures were 70% higher than that produced by free mycelium cultures and threefold higher when biofilms were grown in microbioreactors. CONCLUSIONS Fungal biofilms developed on polyester cloth in both flasks and microbioreactors produce higher cellulase yields and volumetric productivities than free mycelium cultures at lower biomass levels. SIGNIFICANCE AND IMPACT OF THE STUDY The results of the present study are of commercial and biological interest. All productivity parameters revealed that fungal biofilms may be used for the production of cellulase and other proteins in various types of bioreactors. Moreover, they may be used as model systems to study differential gene expression related to cell adhesion.
Collapse
Affiliation(s)
- G K Villena
- Laboratorio de Micología y Biotecnología, Universidad Nacional Agraria La Molina, Lima, Peru
| | | |
Collapse
|
41
|
Reisner A, Höller BM, Molin S, Zechner EL. Synergistic effects in mixed Escherichia coli biofilms: conjugative plasmid transfer drives biofilm expansion. J Bacteriol 2006; 188:3582-8. [PMID: 16672612 PMCID: PMC1482856 DOI: 10.1128/jb.188.10.3582-3588.2006] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial biofilms, often composed of multiple species and genetically distinct strains, develop under complex influences of cell-cell interactions. Although detailed knowledge about the mechanisms underlying formation of single-species laboratory biofilms has emerged, little is known about the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n = 56) exhibiting the strongest effects was most often linked to conjugative transmission of natural plasmids carried by the E. coli isolates (70%). Thus, the capacity of an isolate to promote the biofilm through cocultivation was (i) transferable to the K-12 strain, (ii) was linked with the acquisition of conjugation genes present initially in the isolate, and (iii) was inhibited through the presence in the cocultured K-12 strain of a related conjugative plasmid, presumably due to surface exclusion functions. Synergistic effects of cocultivation of pairs of natural isolates were also observed, demonstrating that biofilm promotion in this system is not dependent on the laboratory strain and that the described model system could provide relevant insights on mechanisms of biofilm development in natural E. coli populations.
Collapse
Affiliation(s)
- Andreas Reisner
- Institut für Molekulare Biowissenschaften, Karl-Franzens-Universität Graz, Austria.
| | | | | | | |
Collapse
|
42
|
Cresson R, Carrère H, Delgenès J, Bernet N. Biofilm formation during the start-up period of an anaerobic biofilm reactor—Impact of nutrient complementation. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Abstract
Microbes cohabit our planet and are engaged in a struggle for survival though on a microscopic scale. This endeavor allows them to develop and devise means for survival and proliferation. One such strategy is the formation of biofilms leading to establishment of a protected community. Such multi-communities may consist of harmful and pathogenic microbes, and they may cause economic problems and threats to human health. Biofilms are formed when microorganisms are typically attached to support surfaces. Biofilm-associated cells are sessile and differentiated from their suspended counterparts by generation of an extracellular polymeric substance matrix, reduced growth rates, and the up- and downregulation of specific genes. Biofilm formation is a complex process regulated by diverse characteristics of the growth medium, substratum, and cell surface. Development of strategies to control or prevent biofilms requires a thorough understanding of the biofilm development process. Biofilm research has witnessed exponential growth, and exciting findings have been reported. This has led us to visualize some previously un-thought-of and fascinating events. This article aims to provide an overview of biofilm research and associated challenges.
Collapse
Affiliation(s)
- V S Bhinu
- Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
44
|
Spiers AJ, Rainey PB. The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. MICROBIOLOGY-SGM 2005; 151:2829-2839. [PMID: 16151196 DOI: 10.1099/mic.0.27984-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The wrinkly spreader (WS) isolate of Pseudomonas fluorescens SBW25 forms a substantial biofilm at the air-liquid interface. The biofilm is composed of an extracellular partially acetylated cellulose-fibre matrix, and previous mutagenesis of WS with mini-Tn5 had identified both the regulatory and cellulose-biosynthetic operons. One uncharacterized WS mutant, WS-5, still expressed cellulose but produced very weak biofilms. In this work, the mini-Tn5 insertion site in WS-5 has been identified as being immediately upstream of the tol-pal operon. Like Tol-Pal mutants of other Gram-negative bacteria, WS-5 showed a "leaky-membrane" phenotype, including the serendipitous ability to utilize sucrose, increased uptake of the hydrophilic dye propidium iodide, and the loss of lipopolysaccharide (LPS) expression. WS-5 cells were altered in relative hydrophobicity, and showed poorer recruitment and maintenance in the biofilm than WS. The WS-5 biofilm was also less sensitive to chemical interference during development. However, growth rate, cellulose expression and attachment were not significantly different between WS and WS-5. Finally, WS-5 biofilms could be partially complemented with WS-4, a biofilm- and attachment-deficient mutant that expressed LPS, resulting in a mixed biofilm with significantly increased strength. These findings show that a major component of the WS air-liquid biofilm strength results from the interactions between LPS and the cellulose matrix of the biofilm--and that in the WS biofilm, cellulose fibres, attachment factor and LPS are required for biofilm development, strength and integrity.
Collapse
Affiliation(s)
- Andrew J Spiers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Paul B Rainey
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
45
|
Abstract
Orthopedic biomaterials are foreign bodies and the molecular architecture of their surfaces provides a point of attachment for bacteria. This adherence is made possible through the interaction of the protein interface and the bacterial adhesins. Bacterial colonies use slime and biofilm as means of protection. The development of bacteria towards a reversible state of stationary growth or microcolony variants permits their survival. Microparticles released by biomaterials cause the chronic inflammation associated with the aseptic loosening of prostheses. Some bacterial sub-populations develop transitory resistance to bactericidal antibiotics in the presence of these materials.
Collapse
Affiliation(s)
- Florence Ader
- Département de médecine aiguë spécialisée, Hôpital Raymond-Poincaré (AP-HP), Université de Versailles Saint Quentin-en-Yvelines 104, Boulevard Raymond Poincaré, 92380 Garches
| | | |
Collapse
|
46
|
Abstract
DNA microarray technology has been used to identify the global gene expression profile of biofilm cells. This is an interesting case study in how DNA microarray technology has advanced the molecular understanding of an understudied research area. DNA microarray analyses have suggested that there may be common responses upon biofilm formation, such as the repression of flagella genes and hyper-expression of genes for adhesion and ribosomal protein. They have also assisted in the identification of transcription factors that affect the formation of biofilms and indicated that there may not be biofilm-specific genes, arguing against biofilm formation being a developmental process. Instead, the DNA microarray data suggest that biofilms may have a unique pattern of gene expression, in which sub-sets of genes expressed in biofilms are also expressed under different planktonic conditions, but only in the biofilm are they all expressed simultaneously.
Collapse
Affiliation(s)
- Beth A Lazazzera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 1602 Molecular Sciences Bldg, 405 Hilgard Ave, Los Angeles, California 90095, USA. beth.microbio.ucla.edu
| |
Collapse
|
47
|
Palková Z. Multicellular microorganisms: laboratory versus nature. EMBO Rep 2005; 5:470-6. [PMID: 15184977 PMCID: PMC1299056 DOI: 10.1038/sj.embor.7400145] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 03/15/2004] [Indexed: 11/09/2022] Open
Abstract
Our present in-depth knowledge of the physiology and regulatory mechanisms of microorganisms has arisen from our ability to remove them from their natural, complex ecosystems into pure liquid cultures. These cultures are grown under optimized laboratory conditions and allow us to study microorganisms as individuals. However, microorganisms naturally grow in conditions that are far from optimal, which causes them to become organized into multicellular communities that are better protected against the harmful environment. Moreover, this multicellular existence allows individual cells to differentiate and acquire specific properties, such as forming resistant spores, which benefit the whole population. The relocation of natural microorganisms to the laboratory can result in their adaptation to these favourable conditions, which is accompanied by complex changes that include the repression of some protective mechanisms that are essential in nature. Laboratory microorganisms that have been cultured for long periods under optimized conditions might therefore differ markedly from those that exist in natural ecosystems.
Collapse
Affiliation(s)
- Zdena Palková
- Department of Genetics and Microbiology, Charles University, Vinicná 5, 12844 Prague 2, Czech Republic.
| |
Collapse
|
48
|
Pysz MA, Conners SB, Montero CI, Shockley KR, Johnson MR, Ward DE, Kelly RM. Transcriptional analysis of biofilm formation processes in the anaerobic, hyperthermophilic bacterium Thermotoga maritima. Appl Environ Microbiol 2004; 70:6098-112. [PMID: 15466556 PMCID: PMC522082 DOI: 10.1128/aem.70.10.6098-6112.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Thermotoga maritima, a fermentative, anaerobic, hyperthermophilic bacterium, was found to attach to bioreactor glass walls, nylon mesh, and polycarbonate filters during chemostat cultivation on maltose-based media at 80 degrees C. A whole-genome cDNA microarray was used to examine differential expression patterns between biofilm and planktonic populations. Mixed-model statistical analysis revealed differential expression (twofold or more) of 114 open reading frames in sessile cells (6% of the genome), over a third of which were initially annotated as hypothetical proteins in the T. maritima genome. Among the previously annotated genes in the T. maritima genome, which showed expression changes during biofilm growth, were several that corresponded to biofilm formation genes identified in mesophilic bacteria (i.e., Pseudomonas species, Escherichia coli, and Staphylococcus epidermidis). Most notably, T. maritima biofilm-bound cells exhibited increased transcription of genes involved in iron and sulfur transport, as well as in biosynthesis of cysteine, thiamine, NAD, and isoprenoid side chains of quinones. These findings were all consistent with the up-regulation of iron-sulfur cluster assembly and repair functions in biofilm cells. Significant up-regulation of several beta-specific glycosidases was also noted in biofilm cells, despite the fact that maltose was the primary carbon source fed to the chemostat. The reasons for increased beta-glycosidase levels are unclear but are likely related to the processing of biofilm-based polysaccharides. In addition to revealing insights into the phenotype of sessile T. maritima communities, the methodology developed here can be extended to study other anaerobic biofilm formation processes as well as to examine aspects of microbial ecology in hydrothermal environments.
Collapse
Affiliation(s)
- Marybeth A Pysz
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Arrizubieta MJ, Toledo-Arana A, Amorena B, Penadés JR, Lasa I. Calcium inhibits bap-dependent multicellular behavior in Staphylococcus aureus. J Bacteriol 2004; 186:7490-8. [PMID: 15516560 PMCID: PMC524893 DOI: 10.1128/jb.186.22.7490-7498.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bap (biofilm-associated protein) is a 254-kDa staphylococcal surface protein implicated in formation of biofilms by staphylococci isolated from chronic mastitis infections. The presence of potential EF-hand motifs in the amino acid sequence of Bap prompted us to investigate the effect of calcium on the multicellular behavior of Bap-expressing staphylococci. We found that addition of millimolar amounts of calcium to the growth media inhibited intercellular adhesion of and biofilm formation by Bap-positive strain V329. Addition of manganese, but not addition of magnesium, also inhibited biofilm formation, whereas bacterial aggregation in liquid media was greatly enhanced by metal-chelating agents. In contrast, calcium or chelating agents had virtually no effect on the aggregation of Bap-deficient strain M556. The biofilm elicited by insertion of bap into the chromosome of a biofilm-negative strain exhibited a similar dependence on the calcium concentration, indicating that the observed calcium inhibition was an inherent property of the Bap-mediated biofilms. Site-directed mutagenesis of two of the putative EF-hand domains resulted in a mutant strain that was capable of forming a biofilm but whose biofilm was not inhibited by calcium. Our results indicate that Bap binds Ca2+ with low affinity and that Ca2+ binding renders the protein noncompetent for biofilm formation and for intercellular adhesion. The fact that calcium inhibition of Bap-mediated multicellular behavior takes place in vitro at concentrations similar to those found in milk serum supports the possibility that this inhibition is relevant to the pathogenesis and/or epidemiology of the bacteria in the mastitis process.
Collapse
Affiliation(s)
- María Jesús Arrizubieta
- Instituto de Agrobiotecnología y Recursos Naturales, Universidad Pública de Navarra-CSIC, Pamplona, Spain.
| | | | | | | | | |
Collapse
|
50
|
Junter GA, Jouenne T. Immobilized viable microbial cells: from the process to the proteome… or the cart before the horse. Biotechnol Adv 2004; 22:633-58. [PMID: 15364350 DOI: 10.1016/j.biotechadv.2004.06.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 06/21/2004] [Accepted: 06/21/2004] [Indexed: 12/16/2022]
Abstract
Biotechnological processes based on immobilized viable cells have developed rapidly over the last 30 years. For a long time, basic studies of the physiological behaviour of immobilized cells (IC) have remained in the shadow of the applications. Natural IC structures, i.e. biofilms, are being increasingly investigated at the cellular level owing to their definite importance for human health and in various areas of industrial and environmental relevance. This review illustrates this paradoxical development of research on ICs, starting from the initial rationale for IC emergence and main application fields of the technology--with particular emphasis on those that exploit the extraordinary resistance of ICs to antimicrobial compounds--to recent advances in the proteomic approach of IC physiology.
Collapse
Affiliation(s)
- Guy-Alain Junter
- UMR 6522 CNRS and European Institute for Peptide Research (IFRMP 23), University of Rouen, 76821 Mont-Saint-Aignan Cedex, France.
| | | |
Collapse
|