1
|
Jeckelmann JM, Erni B. The mannose phosphotransferase system (Man-PTS) - Mannose transporter and receptor for bacteriocins and bacteriophages. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183412. [PMID: 32710850 DOI: 10.1016/j.bbamem.2020.183412] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Mannose transporters constitute a superfamily (Man-PTS) of the Phosphoenolpyruvate Carbohydrate Phosphotransferase System (PTS). The membrane complexes are homotrimers of protomers consisting of two subunits, IIC and IID. The two subunits without recognizable sequence similarity assume the same fold, and in the protomer are structurally related by a two fold pseudosymmetry axis parallel to membrane-plane (Liu et al. (2019) Cell Research 29 680). Two reentrant loops and two transmembrane helices of each subunit together form the N-terminal transport domain. Two three-helix bundles, one of each subunit, form the scaffold domain. The protomer is stabilized by a helix swap between these bundles. The two C-terminal helices of IIC mediate the interprotomer contacts. PTS occur in bacteria and archaea but not in eukaryotes. Man-PTS are abundant in Gram-positive bacteria living on carbohydrate rich mucosal surfaces. A subgroup of IICIID complexes serve as receptors for class IIa bacteriocins and as channel for the penetration of bacteriophage lambda DNA across the inner membrane. Some Man-PTS are associated with host-pathogen and -symbiont processes.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| | - Bernhard Erni
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Patron K, Gilot P, Rong V, Hiron A, Mereghetti L, Camiade E. Inductors and regulatory properties of the genomic island-associatedfru2metabolic operon ofStreptococcus agalactiae. Mol Microbiol 2016; 103:678-697. [DOI: 10.1111/mmi.13581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Kévin Patron
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
| | - Philippe Gilot
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
| | - Vanessa Rong
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
| | - Aurélia Hiron
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
| | - Laurent Mereghetti
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
- Service de Bactériologie-Virologie-Hygiène; Centre Hospitalier Universitaire de Tours; Tours F-37044 France
| | - Emilie Camiade
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
| |
Collapse
|
3
|
Abstract
Virulence gene expression serves two main functions, growth in/on the host, and the acquisition of nutrients. Therefore, it is obvious that nutrient availability is important to control expression of virulence genes. In any cell, enzymes are the components that are best informed about the availability of their respective substrates and products. It is thus not surprising that bacteria have evolved a variety of strategies to employ this information in the control of gene expression. Enzymes that have a second (so-called moonlighting) function in the regulation of gene expression are collectively referred to as trigger enzymes. Trigger enzymes may have a second activity as a direct regulatory protein that can bind specific DNA or RNA targets under particular conditions or they may affect the activity of transcription factors by covalent modification or direct protein-protein interaction. In this chapter, we provide an overview on these mechanisms and discuss the relevance of trigger enzymes for virulence gene expression in bacterial pathogens.
Collapse
|
4
|
Heravi KM, Altenbuchner J. Regulation of the Bacillus subtilis mannitol utilization genes: promoter structure and transcriptional activation by the wild-type regulator (MtlR) and its mutants. MICROBIOLOGY-SGM 2013; 160:91-101. [PMID: 24196428 DOI: 10.1099/mic.0.071233-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression of mannitol utilization genes in Bacillus subtilis is directed by PmtlA, the promoter of the mtlAFD operon, and PmtlR, the promoter of the MtlR activator. MtlR contains phosphoenolpyruvate-dependent phosphotransferase system (PTS) regulation domains, called PRDs. The activity of PRD-containing MtlR is mainly regulated by the phosphorylation/dephosphorylation of its PRDII and EIIB(Gat)-like domains. Replacing histidine 342 and cysteine 419 residues, which are the targets of phosphorylation in these two domains, by aspartate and alanine provided MtlR-H342D C419A, which permanently activates PmtlA in vivo. In the mtlR-H342D C419A mutant, PmtlA was active, even when the mtlAFD operon was deleted from the genome. The mtlR-H342D C419A allele was expressed in an Escherichia coli strain lacking enzyme I of the PTS. Electrophoretic mobility shift assays using purified MtlR-H342D C419A showed an interaction between the MtlR double-mutant and the Cy5-labelled PmtlA and PmtlR DNA fragments. These investigations indicate that the activated MtlR functions regardless of the presence of the mannitol-specific transporter (MtlA). This is in contrast to the proposed model in which the sequestration of MtlR by the MtlA transporter is necessary for the activity of MtlR. Additionally, DNase I footprinting, construction of PmtlA-PlicB hybrid promoters, as well as increasing the distance between the MtlR operator and the -35 box of PmtlA revealed that the activated MtlR molecules and RNA polymerase holoenzyme likely form a class II type activation complex at PmtlA and PmtlR during transcription initiation.
Collapse
Affiliation(s)
- Kambiz Morabbi Heravi
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Josef Altenbuchner
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Wenzel M, Altenbuchner J. The Bacillus subtilis mannose regulator, ManR, a DNA-binding protein regulated by HPr and its cognate PTS transporter ManP. Mol Microbiol 2013; 88:562-76. [PMID: 23551403 DOI: 10.1111/mmi.12209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 11/28/2022]
Abstract
The transcriptional activator ManR of the Bacillus subtilis mannose utilization operon is composed of an N-terminal DNA-binding domain, two phosphotransferase system (PTS) regulation domains (PRDs), an EIIB(Bgl) - and an EIIA(Fru) -like domain. Site-specific mutagenesis of ManR revealed the role of conserved amino acids representing potential phosphorylation sites. This was investigated by β-galactosidase activity tests and by mobility shift assays after incubation with the PTS components HPr and EI. In analogy to other PRD-containing regulators we propose stimulation of ManR activity by phosphorylation. Mutations in PRD1 lowered ManR activity, whereas mutations in PRD2 abolished ManR activity completely. The Cys415Ala (EIIB(Bgl)) and the His570Ala mutations (EIIA(Fru)) provoked constitutive activities to different degrees, whereas the latter had the greater influence. Addition of EIIBA(Man) reduced the binding capability significantly in a wild-type and a Cys415Ala background, but had no effect on a His570Ala mutant. The different expression levels originating from the two promoters PmanR and PmanP could be ascribed to different 5'-untranslated mRNA regions. Sequences of 44 bp were identified and confirmed as the ManR binding sites by DNase I footprinting. The binding properties of ManR, in particular the equilibrium dissociation constant KD and the dissociation rate kdiss, were determined for both promoter regions.
Collapse
Affiliation(s)
- Marian Wenzel
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | | |
Collapse
|
6
|
Kim MK, An CL, Kang TH, Kim J, Kim H, Yun HD. Activation of a casB gene encoding β-glucosidase of Pectobacterium carotovorum subsp. carotovorum LY34. Microbiol Res 2013. [PMID: 23176777 DOI: 10.1016/j.micres.2012.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two cas genes were isolated from Pectobacterium carotovorum subsp. carotovorum LY34 (Pcc LY34). Sequence analysis of the 4873 bp cloned DNA fragment (accession number AY866383) revealed two open reading frames (casF and casB) that are predicted to encode 658 and 467 amino acid proteins, respectively. The CasF protein is similar to other PTS enzyme II components. casB encodes β-glucosidase, a member of the glycosyl hydrolase family 1. An inverted repeat sequence was identified in the casB promoter region, and was hypothesized to have a negative effect on casB transcription. Replacement of the casB promoter of Pcc LY34 with the bglB promoter activated the casB gene, consistent with the repeats inhibiting expression of casB. Purified CasB enzyme was estimated to be 53,000 Da by SDS-PAGE, and hydrolyzed salicin, arbutin, pNPG, and MUG. CasB exhibited maximal activity toward pNPG at pH 7.0 and 40 °C, and Mg(2+) is essential for its activity. Two conserved glutamate residues (Glu(177) and Glu(366)) were shown to be important for CasB activity.
Collapse
Affiliation(s)
- Min Keun Kim
- Gyeongsangnam-do Agricultural Research and Extension Service, Chinju 660-360, Republic of Korea
| | | | | | | | | | | |
Collapse
|
7
|
Erni B. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0185-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Hondorp ER, Hou SC, Hempstead AD, Hause LL, Beckett DM, McIver KS. Characterization of the Group A Streptococcus Mga virulence regulator reveals a role for the C-terminal region in oligomerization and transcriptional activation. Mol Microbiol 2012; 83:953-67. [PMID: 22468267 DOI: 10.1111/j.1365-2958.2012.07980.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Group A Streptococcus (GAS) is a strict human pathogen that causes a broad spectrum of illnesses. One of the key regulators of virulence in GAS is the transcriptional activator Mga, which co-ordinates the early stages of infection. Although the targets of Mga have been well characterized, basic biochemical analyses have been limited due to difficulties in obtaining purified protein. In this study, high-level purification of soluble Mga was achieved, enabling the first detailed characterization of the protein. Fluorescence titrations coupled with filter-binding assays indicate that Mga binds cognate DNA with nanomolar affinity. Gel filtration analyses, analytical ultracentrifugation and co-immunoprecipitation experiments demonstrate that Mga forms oligomers in solution.Moreover, the ability of the protein to oligomerize in solution was found to correlate with transcriptional activation; DNA binding appears to be necessary but insufficient for full activity. Truncation analyses reveal that the uncharacterized C-terminal region of Mga, possessing similarity to phosphotransferase system EIIB proteins, plays a critical role in oligomerization and in vivo activity. Mga from a divergent serotype was found to behave similarly, suggesting that this study describes a general mechanism for Mga regulation of target virulence genes within GAS and provides insight into related regulators in other Gram-positive pathogens.
Collapse
Affiliation(s)
- Elise R Hondorp
- Department of Cell Biology & Molecular Genetics andMaryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
9
|
Himmel S, Zschiedrich CP, Becker S, Hsiao HH, Wolff S, Diethmaier C, Urlaub H, Lee D, Griesinger C, Stülke J. Determinants of interaction specificity of the Bacillus subtilis GlcT antitermination protein: functionality and phosphorylation specificity depend on the arrangement of the regulatory domains. J Biol Chem 2012; 287:27731-42. [PMID: 22722928 DOI: 10.1074/jbc.m112.388850] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The control of several catabolic operons in bacteria by transcription antitermination is mediated by RNA-binding proteins that consist of an RNA-binding domain and two reiterated phosphotransferase system regulation domains (PRDs). The Bacillus subtilis GlcT antitermination protein regulates the expression of the ptsG gene, encoding the glucose-specific enzyme II of the phosphotransferase system. In the absence of glucose, GlcT becomes inactivated by enzyme II-dependent phosphorylation at its PRD1, whereas the phosphotransferase HPr phosphorylates PRD2. However, here we demonstrate by NMR analysis and mass spectrometry that HPr also phosphorylates PRD1 in vitro but with low efficiency. Size exclusion chromatography revealed that non-phosphorylated PRD1 forms dimers that dissociate upon phosphorylation. The effect of HPr on PRD1 was also investigated in vivo. For this purpose, we used GlcT variants with altered domain arrangements or domain deletions. Our results demonstrate that HPr can target PRD1 when this domain is placed at the C terminus of the protein. In agreement with the in vitro data, HPr exerts a negative control on PRD1. This work provides the first insights into how specificity is achieved in a regulator that contains duplicated regulatory domains with distinct dimerization properties that are controlled by phosphorylation by different phosphate donors. Moreover, the results suggest that the domain arrangement of the PRD-containing antitermination proteins is under selective pressure to ensure the proper regulatory output, i.e. transcription antitermination of the target genes specifically in the presence of the corresponding sugar.
Collapse
Affiliation(s)
- Sebastian Himmel
- Department of NMR-based Structural Biology, Max Planck Institute for iophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation. Appl Environ Microbiol 2011; 77:6419-25. [PMID: 21803899 DOI: 10.1128/aem.05219-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product yields at the same time as decreasing production costs. Standard systems involve the positively regulated manP promoter of the mannose operon, which led to relatively high product yields of 5.3% (5.3 g enhanced green fluorescent protein [eGFP] per 100 g cell dry weight [CDW]) but required large quantities of mannose to induce the reactions, thus rendering the system's technical application rather expensive. To improve this situation, mutant B. subtilis strains were used: the ΔmanA (mannose metabolism) strain TQ281 and the ΔmanP (mannose uptake) strain TQ356. The total amount of inducer could be reduced with TQ281, which, however, displayed sensitivity to mannose. An inducer-independent self-induction system was developed with TQ356 to further improve the cost efficiency and product yield of the system, in which glucose prevents induction by carbon catabolite repression. To create optimal self-induction conditions, a glucose-limited process strategy, namely, a fed-batch process, was utilized as follows. The initiation of self-induction at the beginning of the glucose-restricted transition phase between the batch and fed-batch phase of fermentation and its maintenance throughout the glucose-limiting fed-batch phase led to a nearly 3-fold increase of product yield, to 14.6%. The novel B. subtilis self-induction system thus makes a considerable contribution to improving product yield and reducing the costs associated with its technical application.
Collapse
|
11
|
Joyet P, Derkaoui M, Poncet S, Deutscher J. Control of Bacillus subtilis mtl operon expression by complex phosphorylation-dependent regulation of the transcriptional activator MtlR. Mol Microbiol 2010; 76:1279-94. [PMID: 20444094 DOI: 10.1111/j.1365-2958.2010.07175.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many bacteria transport mannitol via the mtlAF-encoded phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). In most firmicutes the transcriptional activator MtlR controls expression of the mtl operon. MtlR possesses an N-terminal DNA binding domain, two PTS regulation domains (PRDs), an EIIB(Gat)- and EIIA(Mtl)-like domain. These four regulatory domains contain one or two potential PTS phosphorylation sites. Replacement of His-342 or His-399 in PRD2 with Ala prevented the phosphorylation of Bacillus subtilis MtlR by PEP, EI and HPr. These mutations as well as EI inactivation caused a loss of MtlR function in vivo. In contrast, phosphomimetic replacement of His-342 with Asp rendered MtlR constitutively active. The absence of phosphorylation in PRD2 serves as catabolite repression mechanism. When EIIA(Mtl) and the soluble EIIB(Mtl) domain of the EIICB(Mtl) permease were included in the phosphorylation mixture, His-599 in the EIIA-like domain of MtlR also became phosphorylated. Replacement of His-599 with Asp rendered MtlR inactive, while His599Ala replacement caused slightly constitutive, glucose-repressible MtlR activity. Doubly mutated His342Ala/His599Ala MtlR was still phosphorylated by EI, HPr and EIIA(Mtl) at Cys-419 in the EIIB(Gat)-like domain. Cys419Ala replacement and deletion of EIIA(Mtl) caused strong constitutive glucose-repressible MtlR activity. This is the first report that Cys phosphorylation controls PRD-containing transcriptional activators.
Collapse
Affiliation(s)
- Philippe Joyet
- Laboratoire de Microbiologie et Génétique Moléculaire, INRA-CNRS-AgroParisTech UMR2585, 78850 Thiverval-Grignon, France
| | | | | | | |
Collapse
|
12
|
Abstract
The mannose operon of Bacillus subtilis consists of three genes, manP, manA, and yjdF, which are responsible for the transport and utilization of mannose. Upstream and in the same orientation as the mannose operon a regulatory gene, manR, codes for a transcription activator of the mannose operon, as shown in this study. Both mannose operon transcription and manR transcription are inducible by mannose. The presence of mannose resulted in a 4- to 7-fold increase in expression of lacZ from the manP promoter (P(manP)) and in a 3-fold increase in expression of lacZ from the manR promoter (P(manR)). The transcription start sites of manPA-yjdF and manR were determined to be a single A residue and a single G residue, respectively, preceded by -10 and -35 boxes resembling a vegetative sigma(A) promoter structure. Through deletion analysis the target sequences of ManR upstream of P(manP) and P(manR) were identified between bp -80 and -35 with respect to the transcriptional start site of both promoters. Deletion of manP (mannose transporter) resulted in constitutive expression from both the P(manP) and P(manR) promoters, indicating that the phosphotransferase system (PTS) component EII(Man) has a negative effect on regulation of the mannose operon and manR. Moreover, both P(manP) and P(manR) are subject to carbon catabolite repression (CCR). By constructing protein sequence alignments a DNA binding motif at the N-terminal end, two PTS regulation domains (PRDs), and an EIIA- and EIIB-like domain were identified in the ManR sequence, indicating that ManR is a PRD-containing transcription activator. Like findings for other PRD regulators, the phosphoenolpyruvate (PEP)-dependent phosphorylation by the histidine protein HPr via His15 plays an essential role in transcriptional activation of P(manP) and P(manR). Phosphorylation of Ser46 of HPr or of the homologous Crh protein by HPr kinase and formation of a repressor complex with CcpA are parts of the B. subtilis CCR system. Only in the double mutant with an HPr Ser46Ala mutation and a crh knockout mutation was CCR strongly reduced. In contrast, P(manR) and P(manP) were not inducible in a ccpA deletion mutant.
Collapse
|
13
|
Stoll R, Goebel W. The major PEP-phosphotransferase systems (PTSs) for glucose, mannose and cellobiose of Listeria monocytogenes, and their significance for extra- and intracellular growth. MICROBIOLOGY-SGM 2010; 156:1069-1083. [PMID: 20056707 DOI: 10.1099/mic.0.034934-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this report we examine the PEP-dependent phosphotransferase systems (PTSs) of Listeria monocytogenes EGD-e, especially those involved in glucose and cellobiose transport. This L. monocytogenes strain possesses in total 86 pts genes, encoding 29 complete PTSs for the transport of carbohydrates and sugar alcohols, and several single PTS components, possibly supporting transport of these compounds. By a systematic deletion analysis we identified the major PTSs involved in glucose, mannose and cellobiose transport, when L. monocytogenes grows in a defined minimal medium in the presence of these carbohydrates. Whereas all four PTS permeases belonging to the PTS(Man) family may be involved in mannose transport, only two of these (PTS(Man)-2 and PTS(Man)-3), and in addition at least one (PTS(Glc)-1) of the five PTS permeases belonging to the PTS(Glc) family, are able to transport glucose, albeit with different efficiencies. Cellobiose is transported mainly by one (PTS(Lac)-4) of the six members belonging to the PTS(Lac) family. In addition, PTS(Glc)-1 appears to be also able to transport cellobiose. The transcription of the operons encoding PTS(Man)-2 and PTS(Lac)-4 (but not that of the operon for PTS(Man)-3) is regulated by LevR-homologous PTS regulation domain (PRD) activators. Whereas the growth rate of the mutant lacking PTS(Man)-2, PTS(Man)-3 and PTS(Glc)-1 is drastically reduced (compared with the wild-type strain) in the presence of glucose, and that of the mutant lacking PTS(Lac)-4 and PTS(Glc)-1 in the presence of cellobiose, replication of both mutants within epithelial cells or macrophages is as efficient as that of the wild-type strain.
Collapse
Affiliation(s)
- Regina Stoll
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, D-97074 Würzburg, Germany
| | - Werner Goebel
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
14
|
Chen YF, Chen RC, Chan YK, Pan RH, Hseu YC, Lin E. Design of multiplex PCR primers using heuristic algorithm for sequential deletion applications. Comput Biol Chem 2009; 33:181-8. [PMID: 19211306 DOI: 10.1016/j.compbiolchem.2008.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/23/2008] [Accepted: 12/26/2008] [Indexed: 10/21/2022]
Abstract
UNLABELLED The sequential deletion method is commonly applied to locate the functional domain of a protein. Unfortunately, manually designing primers for multiplex polymerase chain reaction (PCR) is a labor-intensive task. In order to speed up the experimental procedure and to improve the efficiency of producing PCR products, this paper proposes a multiplex PCR primers (MPCRPs) designer to design multiple forward primers with a single 3'-UTR reverse primer for extracting various N-terminal truncated mutants to quickly locate the functional domain of a cDNA sequence. Several factors, including melting temperature, primer length, GC content, internal self-complement, cross-dimerization, terminal limitation, and specificity, are used as the criteria for designing primers. This study obtains a near-optimal solution of primer sets that can be placed in as few test tubes as possible for one multiplex PCR experiment. RESULTS Homo sapiens ribosomal protein L5, Homo sapiens xylosyltransferase I, and Bacteriophage T4 gene product 11 were used as test examples to verify efficacy of the proposed algorithm. In addition, the designed primers of Homo sapiens ribosomal protein L5 cDNA were applied in multiplex PCR experiments. A total of 48 forward primers and one reverse primer were designed and used to duplicate N-terminal truncated mutants of different lengths from the protein. The primers were classified into eight tube groups (i.e., test tubes) held within the same temperature range (53-57 degrees C), and the validity of the PCR products were verified using polyacrylamide gel electrophoresis (PAGE) with the functional domain correctly located. A software implementation of the proposed algorithm useful in assisting the researcher to design primers for multiplex PCR experiments was developed and available upon request.
Collapse
Affiliation(s)
- Yung-Fu Chen
- Department of Health Services Administration, China Medical University, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
15
|
Comas I, González-Candelas F, Zúñiga M. Unraveling the evolutionary history of the phosphoryl-transfer chain of the phosphoenolpyruvate:phosphotransferase system through phylogenetic analyses and genome context. BMC Evol Biol 2008; 8:147. [PMID: 18485189 PMCID: PMC2405797 DOI: 10.1186/1471-2148-8-147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 05/16/2008] [Indexed: 01/16/2023] Open
Abstract
Background The phosphoenolpyruvate phosphotransferase system (PTS) plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP) and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS. Results We have analyzed the evolutionary history of the PTS phosphoryl transfer chain (PTS-ptc) components in 222 complete genomes by combining phylogenetic methods and analysis of genomic context. Phylogenetic analyses alone were not conclusive for the deepest nodes but when complemented with analyses of genomic context and functional information, the main evolutionary trends of this system could be depicted. Conclusion The PTS-ptc evolved in bacteria after the divergence of early lineages such as Aquificales, Thermotogales and Thermus/Deinococcus. The subsequent evolutionary history of the PTS-ptc varied in different bacterial lineages: vertical inheritance and lineage-specific gene losses mainly explain the current situation in Actinobacteria and Firmicutes whereas horizontal gene transfer (HGT) also played a major role in Proteobacteria. Most remarkably, we have identified a HGT event from Firmicutes or Fusobacteria to the last common ancestor of the Enterobacteriaceae, Pasteurellaceae, Shewanellaceae and Vibrionaceae. This transfer led to extensive changes in the metabolic and regulatory networks of these bacteria including the development of a novel carbon catabolite repression system. Hence, this example illustrates that HGT can drive major physiological modifications in bacteria.
Collapse
Affiliation(s)
- Iñaki Comas
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain.
| | | | | |
Collapse
|
16
|
|
17
|
Xue J, Miller KW. Regulation of the mpt operon in Listeria innocua by the ManR protein. Appl Environ Microbiol 2007; 73:5648-52. [PMID: 17616620 PMCID: PMC2042094 DOI: 10.1128/aem.00052-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphotransferase system regulation domain (PRD)-containing activator, ManR, is required for glucose-controlled transcription of the mannose permease two (mpt) operon in Listeria innocua. His-871 in ManR PRD-II is needed for mpt repression in glucose-free media. His-506 in PRD-I is needed for mpt induction by glucose.
Collapse
Affiliation(s)
- Junfeng Xue
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Dept. 3944, Laramie, WY 82071-3944, USA
| | | |
Collapse
|
18
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1015] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
19
|
Mitchell WJ, Tewatia P, Meaden PG. Genomic Analysis of the Phosphotransferase System in Clostridium botulinum. J Mol Microbiol Biotechnol 2006; 12:33-42. [PMID: 17183209 DOI: 10.1159/000096457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Clostridium botulinum is capable of fermenting carbohydrates, but there have been no detailed studies of the uptake of sugars and related substrates. In bacteria, a common and often predominant system of carbohydrate uptake is the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS). This multi-protein complex catalyses a group translocation involving both uptake and phosphorylation of carbohydrates, and is also known to play an important role in environmental sensing and metabolic regulation. The genome of C. botulinum encodes 15 PTSs which have a similar domain structure to the PTS in other bacteria. Based on phylogenetic relationships and analysis of gene clusters, the C. botulinum PTS appears to be involved in the uptake of hexoses, hexose derivatives and disaccharides. C. botulinum also contains the components of PTS-associated regulatory mechanisms which have been characterised in other bacteria. It therefore seems likely that the PTS plays a significant, and previously unrecognised, role in the physiology of this bacterium.
Collapse
|
20
|
Schilling O, Herzberg C, Hertrich T, Vörsmann H, Jessen D, Hübner S, Titgemeyer F, Stülke J. Keeping signals straight in transcription regulation: specificity determinants for the interaction of a family of conserved bacterial RNA-protein couples. Nucleic Acids Res 2006; 34:6102-15. [PMID: 17074746 PMCID: PMC1635312 DOI: 10.1093/nar/gkl733] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regulatory systems often evolve by duplication of ancestral systems and subsequent specialization of the components of the novel signal transduction systems. In the Gram-positive soil bacterium Bacillus subtilis, four homologous antitermination systems control the expression of genes involved in the metabolism of glucose, sucrose and β-glucosides. Each of these systems is made up of a sensory sugar permease that does also act as phosphotransferase, an antitermination protein, and a RNA switch that is composed of two mutually exclusive structures, a RNA antiterminator (RAT) and a transcriptional terminator. We have studied the contributions of sugar specificity of the permeases, carbon catabolite repression, and protein–RAT recognition for the straightness of the signalling chains. We found that the β-glucoside permease BglP does also have a minor activity in glucose transport. However, this activity is irrelevant under physiological conditions since carbon catabolite repression in the presence of glucose prevents the synthesis of the β-glucoside permease. Reporter gene studies, in vitro RNA–protein interaction analyzes and northern blot transcript analyzes revealed that the interactions between the antiterminator proteins and their RNA targets are the major factor contributing to regulatory specificity. Both structural features in the RATs and individual bases are important specificity determinants. Our study revealed that the specificity of protein–RNA interactions, substrate specificity of the permeases as well as the general mechanism of carbon catabolite repression together allow to keep the signalling chains straight and to avoid excessive cross-talk between the systems.
Collapse
Affiliation(s)
| | | | - Tina Hertrich
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | | | | | | | - Fritz Titgemeyer
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | - Jörg Stülke
- To whom correspondence should be addressed. Tel: +49 551 393781; Fax: +49 551 393808;
| |
Collapse
|
21
|
Barabote RD, Saier MH. Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol Mol Biol Rev 2005; 69:608-34. [PMID: 16339738 PMCID: PMC1306802 DOI: 10.1128/mmbr.69.4.608-634.2005] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report analyses of 202 fully sequenced genomes for homologues of known protein constituents of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). These included 174 bacterial, 19 archaeal, and 9 eukaryotic genomes. Homologues of PTS proteins were not identified in archaea or eukaryotes, showing that the horizontal transfer of genes encoding PTS proteins has not occurred between the three domains of life. Of the 174 bacterial genomes (136 bacterial species) analyzed, 30 diverse species have no PTS homologues, and 29 species have cytoplasmic PTS phosphoryl transfer protein homologues but lack recognizable PTS permeases. These soluble homologues presumably function in regulation. The remaining 77 species possess all PTS proteins required for the transport and phosphorylation of at least one sugar via the PTS. Up to 3.2% of the genes in a bacterium encode PTS proteins. These homologues were analyzed for family association, range of protein types, domain organization, and organismal distribution. Different strains of a single bacterial species often possess strikingly different complements of PTS proteins. Types of PTS protein domain fusions were analyzed, showing that certain types of domain fusions are common, while others are rare or prohibited. Select PTS proteins were analyzed from different phylogenetic standpoints, showing that PTS protein phylogeny often differs from organismal phylogeny. The results document the frequent gain and loss of PTS protein-encoding genes and suggest that the lateral transfer of these genes within the bacterial domain has played an important role in bacterial evolution. Our studies provide insight into the development of complex multicomponent enzyme systems and lead to predictions regarding the types of protein-protein interactions that promote efficient PTS-mediated phosphoryl transfer.
Collapse
Affiliation(s)
- Ravi D Barabote
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | |
Collapse
|
22
|
Yebra MJ, Viana R, Monedero V, Deutscher J, Pérez-Martínez G. An Esterase Gene from Lactobacillus casei Cotranscribed with Genes Encoding a Phosphoenolpyruvate:Sugar Phosphotransferase System and Regulated by a LevR-Like Activator and σ 54 Factor. J Mol Microbiol Biotechnol 2005; 8:117-28. [PMID: 15925903 DOI: 10.1159/000084567] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A new esterase-encoding gene was found in the draft genome sequence of Lactobacillus casei BL23 (CECT5275). It is located in an operon together with genes encoding the EIIA, EIIB, EIIC, and EIID proteins of a mannose class phosphoenolpyruvate:sugar phosphotransferase system. After overproduction in Escherichia coli and purification, the esterase could hydrolyze acetyl sugars, hence the operon was named esu for esterase-sugar uptake genes. Upstream of the genes encoding the EII components (esuABCD) and the esterase (esuE), two genes transcribed in the opposite sense were found which encode a Bacillus subtilis LevR-like transcriptional activator (esuR) and a sigma54-like transcriptional factor (rpoN). As compared with the wild-type strain, elevated fructose phosphorylation was detected in L. casei mutants constitutively expressing the esu operon. However, none of the many sugars tested could induce the esu operon. The fact that EsuE exhibits esterase activity on acetyl sugars suggests that this operon could be involved in the uptake and metabolism of esterified sugars. Expression of the esu operon is similar to that of the B. subtilis lev operon: it contains a -12,-24 consensus promoter typical of sigma54-regulated genes, and EsuR and RpoN are essential for its transcription which is negatively regulated by EIIB(Esu). The esuABCDE transcription unit represents the first sigma54-regulated operon in lactobacilli. Furthermore, replacement of His852 in the phosphoenolpyruvate:sugar phosphotransferase system regulation domain II of EsuR with Ala indicated that the transcription activator function of EsuR is inhibited by EIIB(Esu)-mediated phosphorylation at His852.
Collapse
Affiliation(s)
- María J Yebra
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Burjassot, Spain
| | | | | | | | | |
Collapse
|
23
|
Cochu A, Roy D, Vaillancourt K, Lemay JD, Casabon I, Frenette M, Moineau S, Vadeboncoeur C. The doubly phosphorylated form of HPr, HPr(Ser~P)(His-P), is abundant in exponentially growing cells of Streptococcus thermophilus and phosphorylates the lactose transporter LacS as efficiently as HPr(His~P). Appl Environ Microbiol 2005; 71:1364-72. [PMID: 15746339 PMCID: PMC1065139 DOI: 10.1128/aem.71.3.1364-1372.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 09/28/2004] [Indexed: 11/20/2022] Open
Abstract
In Streptococcus thermophilus, lactose is taken up by LacS, a transporter that comprises a membrane translocator domain and a hydrophilic regulatory domain homologous to the IIA proteins and protein domains of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The IIA domain of LacS (IIALacS) possesses a histidine residue that can be phosphorylated by HPr(His~P), a protein component of the PTS. However, determination of the cellular levels of the different forms of HPr, namely, HPr, HPr(His~P), HPr(Ser-P), and HPr(Ser-P)(His~P), in exponentially lactose-growing cells revealed that the doubly phosphorylated form of HPr represented 75% and 25% of the total HPr in S. thermophilus ATCC 19258 and S. thermophilus SMQ-301, respectively. Experiments conducted with [32P]PEP and purified recombinant S. thermophilus ATCC 19258 proteins (EI, HPr, and IIALacS) showed that IIALacS was reversibly phosphorylated by HPr(Ser-P)(His~P) at a rate similar to that measured with HPr(His~P). Sequence analysis of the IIALacS protein domains from several S. thermophilus strains indicated that they can be divided into two groups on the basis of their amino acid sequences. The amino acid sequence of IIALacS from group I, to which strain 19258 belongs, differed from that of group II at 11 to 12 positions. To ascertain whether IIALacS from group II could also be phosphorylated by HPr(His~P) and HPr(Ser-P)(His~P), in vitro phosphorylation experiments were conducted with purified proteins from Streptococcus salivarius ATCC 25975, which possesses a IIALacS very similar to group II S. thermophilus IIALacS. The results indicated that S. salivarius IIALacS was phosphorylated by HPr(Ser-P)(His~P) at a higher rate than that observed with HPr(His~P). Our results suggest that the reversible phosphorylation of IIALacS in S. thermophilus is accomplished by HPr(Ser-P)(His~P) as well as by HPr(His~P).
Collapse
Affiliation(s)
- Armelle Cochu
- Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, and Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada, G1K 7P4
| | | | | | | | | | | | | | | |
Collapse
|
24
|
An CL, Lim WJ, Hong SY, Shin EC, Kim MK, Lee JR, Park SR, Woo JG, Lim YP, Yun HD. Structural and biochemical analysis of the asc operon encoding 6-phospho-beta-glucosidase in Pectobacterium carotovorum subsp. carotovorum LY34. Res Microbiol 2004; 156:145-53. [PMID: 15748978 DOI: 10.1016/j.resmic.2004.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 09/10/2004] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
An asc operon of Pectobacterium carotovorum subsp. carotovorum LY34 (Pcc LY34) was isolated from a genomic library in a screen for beta-glucosidase activities. Sequence analysis of the 5618-bp cloned DNA fragment (accession number AY622309) showed three open reading frames (ascG, ascF, and ascB) that are predicted to encode 375, 486, and 476 amino acid proteins, respectively. The AscG ORF shared a high similarity with the Escherichia coli AscG repressor. The AscF ORF shared 81% identity with the E. coli AscF PTS enzyme II(asc), while the AscB ORF was highly similar to 6-phospho-beta-glucosidases and is a member of the glycosyl hydrolase family 1. The purified AscB enzyme hydrolyzed salicin, arbutin, pNPG, and MUG. It exhibited maximal activity at pH 7.0 and 40 degrees C, and its activity was enhanced in the presence of Mg(2+) and Ca(2+). The molecular weight of the enzyme was estimated to be 53 000 Da by SDS-PAGE. Two conserved glutamate residues (Glu(182) and Glu(374)) were shown to be important for AscB activity.
Collapse
Affiliation(s)
- Chang Long An
- Division of Applied Life Science, Gyeongsang National University, Chinju 660-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Leipe DD, Koonin EV, Aravind L. STAND, a Class of P-Loop NTPases Including Animal and Plant Regulators of Programmed Cell Death: Multiple, Complex Domain Architectures, Unusual Phyletic Patterns, and Evolution by Horizontal Gene Transfer. J Mol Biol 2004; 343:1-28. [PMID: 15381417 DOI: 10.1016/j.jmb.2004.08.023] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 07/27/2004] [Accepted: 08/10/2004] [Indexed: 10/26/2022]
Abstract
Using sequence profile analysis and sequence-based structure predictions, we define a previously unrecognized, widespread class of P-loop NTPases. The signal transduction ATPases with numerous domains (STAND) class includes the AP-ATPases (animal apoptosis regulators CED4/Apaf-1, plant disease resistance proteins, and bacterial AfsR-like transcription regulators) and NACHT NTPases (e.g. NAIP, TLP1, Het-E-1) that have been studied extensively in the context of apoptosis, pathogen response in animals and plants, and transcriptional regulation in bacteria. We show that, in addition to these well-characterized protein families, the STAND class includes several other groups of (predicted) NTPase domains from diverse signaling and transcription regulatory proteins from bacteria and eukaryotes, and three Archaea-specific families. We identified the STAND domain in several biologically well-characterized proteins that have not been suspected to have NTPase activity, including soluble adenylyl cyclases, nephrocystin 3 (implicated in polycystic kidney disease), and Rolling pebble (a regulator of muscle development); these findings are expected to facilitate elucidation of the functions of these proteins. The STAND class belongs to the additional strand, catalytic E division of P-loop NTPases together with the AAA+ ATPases, RecA/helicase-related ATPases, ABC-ATPases, and VirD4/PilT-like ATPases. The STAND proteins are distinguished from other P-loop NTPases by the presence of unique sequence motifs associated with the N-terminal helix and the core strand-4, as well as a C-terminal helical bundle that is fused to the NTPase domain. This helical module contains a signature GxP motif in the loop between the two distal helices. With the exception of the archaeal families, almost all STAND NTPases are multidomain proteins containing three or more domains. In addition to the NTPase domain, these proteins typically contain DNA-binding or protein-binding domains, superstructure-forming repeats, such as WD40 and TPR, and enzymatic domains involved in signal transduction, including adenylate cyclases and kinases. By analogy to the AAA+ ATPases, it can be predicted that STAND NTPases use the C-terminal helical bundle as a "lever" to transmit the conformational changes brought about by NTP hydrolysis to effector domains. STAND NTPases represent a novel paradigm in signal transduction, whereby adaptor, regulatory switch, scaffolding, and, in some cases, signal-generating moieties are combined into a single polypeptide. The STAND class consists of 14 distinct families, and the evolutionary history of most of these families is riddled with dramatic instances of lineage-specific expansion and apparent horizontal gene transfer. The STAND NTPases are most abundant in developmentally and organizationally complex prokaryotes and eukaryotes. Transfer of genes for STAND NTPases from bacteria to eukaryotes on several occasions might have played a significant role in the evolution of eukaryotic signaling systems.
Collapse
Affiliation(s)
- Detlef D Leipe
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
26
|
Mazé A, Boël G, Poncet S, Mijakovic I, Le Breton Y, Benachour A, Monedero V, Deutscher J, Hartke A. The Lactobacillus casei ptsHI47T mutation causes overexpression of a LevR-regulated but RpoN-independent operon encoding a mannose class phosphotransferase system. J Bacteriol 2004; 186:4543-55. [PMID: 15231787 PMCID: PMC438589 DOI: 10.1128/jb.186.14.4543-4555.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 04/07/2004] [Indexed: 11/20/2022] Open
Abstract
A proteome analysis of Lactobacillus casei mutants that are affected in carbon catabolite repression revealed that a 15-kDa protein was strongly overproduced in a ptsHI47T mutant. This protein was identified as EIIA of a mannose class phosphotransferase system (PTS). A 7.1-kb DNA fragment containing the EIIA-encoding open reading frame and five other genes was sequenced. The first gene encodes a protein resembling the RpoN (sigma54)-dependent Bacillus subtilis transcription activator LevR. The following pentacistronic operon is oriented in the opposite direction and encodes four proteins with strong similarity to the proteins of the B. subtilis Lev-PTS and one protein of unknown function. The genes present on the 7.1-kb DNA fragment were therefore called levR and levABCDX. The levABCDX operon was induced by fructose and mannose. No "-12, -24" promoter typical of RpoN-dependent genes precedes the L. casei lev operon, and its expression was therefore RpoN independent but required LevR. Phosphorylation of LevR by P approximately His-HPr stimulates its activity, while phosphorylation by P approximately EIIBLev inhibits it. Disruption of the EIIBLev-encoding levB gene therefore led to strong constitutive expression of the lev operon, which was weaker in a strain carrying a ptsI mutation preventing phosphorylation by both P approximately EIIBLev and P approximately His-HPr. Expression of the L. casei lev operon is also subject to P-Ser-HPr-mediated catabolite repression. The observed slow phosphoenolpyruvate- and ATP-dependent phosphorylation of HPrI47T as well as the slow phosphoryl group transfer from the mutant P approximately His-HPr to EIIALev are assumed to be responsible for the elevated expression of the lev operon in the ptsHI47T mutant.
Collapse
Affiliation(s)
- Alain Mazé
- Laboratoire de Microbiologie et Génétique Moléculaire, INRA-INAPG-CNRS, Thiverval-Grignon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schilling O, Langbein I, Müller M, Schmalisch MH, Stülke J. A protein-dependent riboswitch controlling ptsGHI operon expression in Bacillus subtilis: RNA structure rather than sequence provides interaction specificity. Nucleic Acids Res 2004; 32:2853-64. [PMID: 15155854 PMCID: PMC419612 DOI: 10.1093/nar/gkh611] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Gram-positive soil bacterium Bacillus subtilis transports glucose by the phosphotransferase system. The genes for this system are encoded in the ptsGHI operon. The expression of this operon is controlled at the level of transcript elongation by a protein-dependent riboswitch. In the absence of glucose a transcriptional terminator prevents elongation into the structural genes. In the presence of glucose, the GlcT protein is activated and binds and stabilizes an alternative RNA structure that overlaps the terminator and prevents termination. In this work, we have studied the structural and sequence requirements for the two mutually exclusive RNA structures, the terminator and the RNA antiterminator (the RAT sequence). In both cases, the structure seems to be more important than the actual sequence. The number of paired and unpaired bases in the RAT sequence is essential for recognition by the antiterminator protein GlcT. In contrast, mutations of individual bases are well tolerated as long as the general structure of the RAT is not impaired. The introduction of one additional base in the RAT changed its structure and resulted in complete loss of interaction with GlcT. In contrast, this mutant RAT was efficiently recognized by a different B.subtilis antitermination protein, LicT.
Collapse
Affiliation(s)
- Oliver Schilling
- Abteilung für Allgemeine Mikrobiologie, Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
28
|
The bacterial phosphotransferase system: a perfect link of sugar transport and signal transduction. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/b95776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Schmalisch MH, Bachem S, Stülke J. Control of the Bacillus subtilis Antiterminator Protein GlcT by Phosphorylation. J Biol Chem 2003; 278:51108-15. [PMID: 14527945 DOI: 10.1074/jbc.m309972200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus subtilis transports glucose by the phosphotransferase system (PTS). The genes for this system are encoded in the ptsGHI operon, which is induced by glucose and depends on a termination/antitermination mechanism involving a riboswitch and the RNA-binding antitermination protein GlcT. In the absence of glucose, GlcT is inactive, and a terminator is formed in the leader region of the ptsG mRNA. If glucose is present, GlcT can bind to its RNA target and prevent transcription termination. The GlcT protein is composed of three domains, an N-terminal RNA binding domain and two PTS regulation domains, PTS regulation domain (PRD) I and PRD-II. In this work, we demonstrate that GlcT can be phosphorylated by two PTS proteins, HPr and the glucose-specific enzyme II (EIIGlc). HPr-dependent phosphorylation occurs on PRD-II and has a slight stimulatory effect on GlcT activity. In contrast, EIIGlc phosphorylates the PRD-I of GlcT, and this phosphorylation inactivates GlcT. This latter phosphorylation event links the availability of glucose to the expression of the ptsGHI operon via the phosphorylation state of EIIGlc and GlcT. This is the first in vitro demonstration of a direct phosphorylation of an antiterminator of the BglG family by the corresponding PTS permease.
Collapse
Affiliation(s)
- Matthias H Schmalisch
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nuremberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | | | | |
Collapse
|
30
|
Görke B. Regulation of the Escherichia coli antiterminator protein BglG by phosphorylation at multiple sites and evidence for transfer of phosphoryl groups between monomers. J Biol Chem 2003; 278:46219-29. [PMID: 12963714 DOI: 10.1074/jbc.m308002200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activity of antiterminator protein BglG regulating the beta-glucoside operon in Escherichia coli is controlled by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in a dual manner. It requires HPr phosphorylation to be active, whereas phosphorylation by the beta-glucoside-specific transport protein EIIBgl inhibits its activity. BglG and its relatives carry two PTS regulation domains (PRD1 and PRD2), each containing two conserved histidines. For BglG, histidine 208 in PRD2 was reported to be the negative phosphorylation site. In contrast, other antiterminators of this family are negatively regulated by phosphorylation of the first histidine in PRD1, and presumably activated by phosphorylation of the histidines in PRD2. In this work, a screen for mutant BglG proteins that escape repression by EIIBgl yielded exchanges of nine residues within PRD1, including conserved histidines His-101 and His-160, and C-terminally truncated proteins. Genetic and phosphorylation analyses indicate that His-101 in PRD1 is phosphorylated by EIIBgl and that His-160 contributes to negative regulation. His-208 in PRD2 is essential for BglG activity, suggesting that it is phosphorylated by HPr. Surprisingly, phosphorylation by HPr is not fully abolished by exchanges of His-208. However, phosphorylation by HPr is inhibited by exchanges in PRD1 and the phosphorylation of these mutants is restored in the presence of wild-type BglG. These results suggest that the activating phosphoryl group is transiently donated from HPr to PRD1 and subsequently transferred to His-208 of a second BglG monomer. The active His-208-phosphorylated BglG dimer can subsequently be inhibited in its activity by EIIBgl-catalyzed phosphorylation at His-101.
Collapse
Affiliation(s)
- Boris Görke
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany.
| |
Collapse
|
31
|
Abstract
The sgaTBA genes of Escherichia coli encode a putative 12-transmembrane alpha-helical segment (12 TMS) transporter, an enzyme IIB-like protein and an enzyme IIA-like protein of the phosphotransferase system (PTS), respectively. We show that all three proteins as well as the energy-coupling PTS proteins, enzyme I and HPr, are required for the anaerobic utilization and uptake of L-ascorbate in vivo and its phosphoenolpyruvate-dependent phosphorylation in vitro. The transporter exhibits an apparent K(m) for L-ascorbate of 9 micro M and is highly specific. The sgaTBA genes are regulated at the transcriptional level by the yjfQ gene product, as well as by Crp and Fnr. The yjfR gene product is essential for L-ascorbate utilization and probably encodes a cytoplasmic L-ascorbate 6-phosphate lactonase. We conclude that SgaT represents a novel prototypical enzyme IIC that functions with SgaA and SgaB to allow phosphoryl transfer from HPr(his-P) to L-ascorbate via the phosphoryl transfer pathway: [pathway: see text].
Collapse
Affiliation(s)
- Zhongge Zhang
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | | | | | |
Collapse
|