1
|
Pollet RM, Martin LM, Koropatkin NM. TonB-dependent transporters in the Bacteroidetes: Unique domain structures and potential functions. Mol Microbiol 2021; 115:490-501. [PMID: 33448497 DOI: 10.1111/mmi.14683] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/26/2022]
Abstract
The human gut microbiota endows the host with a wealth of metabolic functions central to health, one of which is the degradation and fermentation of complex carbohydrates. The Bacteroidetes are one of the dominant bacterial phyla of this community and possess an expanded capacity for glycan utilization. This is mediated via the coordinated expression of discrete polysaccharide utilization loci (PUL) that invariantly encode a TonB-dependent transporter (SusC) that works with a glycan-capturing lipoprotein (SusD). More broadly within Gram-negative bacteria, TonB-dependent transporters (TBDTs) are deployed for the uptake of not only sugars, but also more often for essential nutrients such as iron and vitamins. Here, we provide a comprehensive look at the repertoire of TBDTs found in the model gut symbiont Bacteroides thetaiotaomicron and the range of predicted functional domains associated with these transporters and SusD proteins for the uptake of both glycans and other nutrients. This atlas of the B. thetaiotaomicron TBDTs reveals that there are at least three distinct subtypes of these transporters encoded within its genome that are presumably regulated in different ways to tune nutrient uptake.
Collapse
Affiliation(s)
| | - Lauryn M Martin
- Department of Biology, Alcorn State University, Alcorn, MS, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood-Brain Barriers. Int J Mol Sci 2020; 21:ijms21228788. [PMID: 33233688 PMCID: PMC7699760 DOI: 10.3390/ijms21228788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood–brain barrier separating the blood from the brain parenchyma and the blood–cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.
Collapse
|
3
|
Pogoutse AK, Moraes TF. Iron acquisition through the bacterial transferrin receptor. Crit Rev Biochem Mol Biol 2017; 52:314-326. [PMID: 28276700 DOI: 10.1080/10409238.2017.1293606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transferrin is one of the sources of iron that is most readily available to colonizing and invading pathogens. In this review, we look at iron uptake by the bacterial transferrin receptor that is found in the families Neisseriaceae, Pasteurellaceae and Moraxellaceae. This bipartite receptor consists of the TonB-dependent transporter, TbpA, and the surface lipoprotein, TbpB. In the past three decades, major advancements have been made in our understanding of the mechanism through which the Tbps take up iron. We summarize these findings and discuss how they relate to the diversity and specificity of the transferrin receptor. We also outline several of the remaining unanswered questions about iron uptake via the bacterial transferrin receptor and suggest directions for future research.
Collapse
Affiliation(s)
| | - Trevor F Moraes
- a Department of Biochemistry , University of Toronto , Toronto , Canada
| |
Collapse
|
4
|
Gasparini R, Panatto D, Bragazzi NL, Lai PL, Bechini A, Levi M, Durando P, Amicizia D. How the Knowledge of Interactions between Meningococcus and the Human Immune System Has Been Used to Prepare Effective Neisseria meningitidis Vaccines. J Immunol Res 2015; 2015:189153. [PMID: 26351643 PMCID: PMC4553322 DOI: 10.1155/2015/189153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/09/2015] [Indexed: 01/17/2023] Open
Abstract
In the last decades, tremendous advancement in dissecting the mechanisms of pathogenicity of Neisseria meningitidis at a molecular level has been achieved, exploiting converging approaches of different disciplines, ranging from pathology to microbiology, immunology, and omics sciences (such as genomics and proteomics). Here, we review the molecular biology of the infectious agent and, in particular, its interactions with the immune system, focusing on both the innate and the adaptive responses. Meningococci exploit different mechanisms and complex machineries in order to subvert the immune system and to avoid being killed. Capsular polysaccharide and lipooligosaccharide glycan composition, in particular, play a major role in circumventing immune response. The understanding of these mechanisms has opened new horizons in the field of vaccinology. Nowadays different licensed meningococcal vaccines are available and used: conjugate meningococcal C vaccines, tetravalent conjugate vaccines, an affordable conjugate vaccine against the N. menigitidis serogroup A, and universal vaccines based on multiple antigens each one with a different and peculiar function against meningococcal group B strains.
Collapse
Affiliation(s)
- R. Gasparini
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Panatto
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - N. L. Bragazzi
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - P. L. Lai
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - A. Bechini
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - M. Levi
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - P. Durando
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Amicizia
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| |
Collapse
|
5
|
Parker Siburt CJ, Mietzner TA, Crumbliss AL. FbpA--a bacterial transferrin with more to offer. Biochim Biophys Acta Gen Subj 2011; 1820:379-92. [PMID: 21933698 DOI: 10.1016/j.bbagen.2011.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/25/2011] [Accepted: 09/02/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND Gram negative bacteria require iron for growth and virulence. It has been shown that certain pathogenic bacteria such as Neisseria gonorrhoeae possess a periplasmic protein called ferric binding protein (FbpA), which is a node in the transport of iron from the cell exterior to the cytosol. SCOPE OF REVIEW The relevant literature is reviewed which establishes the molecular mechanism of FbpA mediated iron transport across the periplasm to the inner membrane. MAJOR CONCLUSIONS Here we establish that FbpA may be considered a bacterial transferrin on structural and functional grounds. Data are presented which suggest a continuum whereby FbpA may be considered as a naked iron carrier, as well as a Fe-chelate carrier, and finally a member of the larger family of periplasmic binding proteins. GENERAL SIGNIFICANCE An investigation of the molecular mechanisms of action of FbpA as a member of the transferrin super family enhances our understanding of bacterial mechanisms for acquisition of the essential nutrient iron, as well as the modes of action of human transferrin, and may provide approaches to the control of pathogenic diseases. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
|
6
|
The role of vicinal tyrosine residues in the function of Haemophilus influenzae ferric-binding protein A. Biochem J 2010; 432:57-64. [DOI: 10.1042/bj20101043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The periplasmic FbpA (ferric-binding protein A) from Haemophilus influenzae plays a critical role in acquiring iron from host transferrin, shuttling iron from the outer-membrane receptor complex to the inner-membrane transport complex responsible for transporting iron into the cytoplasm. In the present study, we report on the properties of a series of site-directed mutants of two adjacent tyrosine residues involved in iron co-ordination, and demonstrate that, in contrast with mutation of equivalent residues in the N-lobe of human transferrin, the mutant FbpAs retain significant iron-binding affinity regardless of the nature of the replacement amino acid. The Y195A and Y196A FbpAs are not only capable of binding iron, but are proficient in mediating periplasm-to-cytoplasm iron transport in a reconstituted FbpABC pathway in a specialized Escherichia coli reporter strain. This indicates that their inability to mediate iron acquisition from transferrin is due to their inability to compete for iron with receptor-bound transferrin. Wild-type iron-loaded FbpA could be crystalized in a closed or open state depending upon the crystallization conditions. The synergistic phosphate anion was not present in the iron-loaded open form, suggesting that initial anchoring of iron was mediated by the adjacent tyrosine residues and that alternate pathways for iron and anion binding and release may be considered. Collectively, these results demonstrate that the presence of a twin-tyrosine motif common to many periplasmic iron-binding proteins is critical for initially capturing the ferric ion released by the outer-membrane receptor complex.
Collapse
|
7
|
Ling JML, Shima CH, Schriemer DC, Schryvers AB. Delineating the regions of human transferrin involved in interactions with transferrin binding protein B from Neisseria meningitidis. Mol Microbiol 2010; 77:1301-14. [DOI: 10.1111/j.1365-2958.2010.07289.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Shao H, Demuth DR. Quorum sensing regulation of biofilm growth and gene expression by oral bacteria and periodontal pathogens. Periodontol 2000 2010; 52:53-67. [DOI: 10.1111/j.1600-0757.2009.00318.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Parker Siburt CJ, Roulhac PL, Weaver KD, Noto JM, Mietzner TA, Cornelissen CN, Fitzgerald MC, Crumbliss AL. Hijacking transferrin bound iron: protein-receptor interactions involved in iron transport in N. gonorrhoeae. Metallomics 2009; 1:249-55. [PMID: 20161024 PMCID: PMC2749328 DOI: 10.1039/b902860a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neisseria gonorrhoeae has the capacity to acquire iron from its human host by removing this essential nutrient from serum transferrin. The transferrin binding proteins, TbpA and TbpB constitute the outer membrane receptor complex responsible for binding transferrin, extracting the tightly bound iron from the host-derived molecule, and transporting iron into the periplasmic space of this Gram-negative bacterium. Once iron is transported across the outer membrane, ferric binding protein A (FbpA) moves the iron across the periplasmic space and initiates the process of transport into the bacterial cytosol. The results of the studies reported here define the multiple steps in the iron transport process in which TbpA and TbpB participate. Using the SUPREX technique for assessing the thermodynamic stability of protein-ligand complexes, we report herein the first direct measurement of periplasmic FbpA binding to the outer membrane protein TbpA. We also show that TbpA discriminates between apo- and holo-FbpA; i.e. the TbpA interaction with apo-FbpA is higher affinity than the TbpA interaction with holo-FbpA. Further, we demonstrate that both TbpA and TbpB individually can deferrate transferrin and ferrate FbpA without energy supplied from TonB resulting in sequestration by apo-FbpA.
Collapse
Affiliation(s)
| | - Petra L. Roulhac
- Department of Chemistry, Duke University, Durham, NC 27708-0346, USA
| | | | - Jennifer M. Noto
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | - Timothy A. Mietzner
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cynthia N. Cornelissen
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | | | | |
Collapse
|
10
|
Noto JM, Cornelissen CN. Identification of TbpA residues required for transferrin-iron utilization by Neisseria gonorrhoeae. Infect Immun 2008; 76:1960-9. [PMID: 18347046 PMCID: PMC2346694 DOI: 10.1128/iai.00020-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/15/2008] [Accepted: 03/06/2008] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae requires iron for survival in the human host and therefore expresses high-affinity receptors for iron acquisition from host iron-binding proteins. The gonococcal transferrin-iron uptake system is composed of two transferrin binding proteins, TbpA and TbpB. TbpA is a TonB-dependent, outer membrane transporter critical for iron acquisition, while TbpB is a surface-exposed lipoprotein that increases the efficiency of iron uptake. The precise mechanism by which TbpA mediates iron acquisition has not been elucidated; however, the process is distinct from those of characterized siderophore transporters. Similar to these TonB-dependent transporters, TbpA is proposed to have two distinct domains, a beta-barrel and a plug domain. We hypothesize that the TbpA plug coordinates iron and therefore potentially functions in multiple steps of transferrin-mediated iron acquisition. To test this hypothesis, we targeted a conserved motif within the TbpA plug domain and generated single, double, and triple alanine substitution mutants. Mutagenized TbpAs were expressed on the gonococcal cell surface and maintained wild-type transferrin binding affinity. Single alanine substitution mutants internalized iron at wild-type levels, while the double and triple mutants showed a significant decrease in iron uptake. Moreover, the triple alanine substitution mutant was unable to grow on transferrin as a sole iron source; however, expression of TbpB compensated for this defect. These data indicate that the conserved motif between residues 120 and 122 of the TbpA plug domain is critical for transferrin-iron utilization, suggesting that this region plays a role in iron acquisition that is shared by both TbpA and TbpB.
Collapse
Affiliation(s)
- Jennifer M Noto
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0678, USA
| | | |
Collapse
|
11
|
Utilization of lactoferrin-bound and transferrin-bound iron by Campylobacter jejuni. J Bacteriol 2008; 190:1900-11. [PMID: 18203832 DOI: 10.1128/jb.01761-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni NCTC 11168 was capable of growth to levels comparable with FeSO4 in defined iron-limited medium (minimal essential medium alpha [MEMalpha]) containing ferrilactoferrin, ferritransferrin, or ferri-ovotransferrin. Iron was internalized in a contact-dependent manner, with 94% of cell-associated radioactivity from either 55Fe-loaded transferrin or lactoferrin associated with the soluble cell fraction. Partitioning the iron source away from bacteria significantly decreased cellular growth. Excess cold transferrin or lactoferrin in cultures containing 55Fe-loaded transferrin or lactoferrin resulted in reduced levels of 55Fe uptake. Growth of C. jejuni in the presence of ferri- and an excess of apoprotein reduced overall levels of growth. Following incubation of cells in the presence of ferrilactoferrin, lactoferrin became associated with the cell surface; binding levels were higher after growth under iron limitation. A strain carrying a mutation in the cj0178 gene from the iron uptake system Cj0173c-Cj0178 demonstrated significantly reduced growth promotion in the presence of ferrilactoferrin in MEMalpha compared to wild type but was not affected in the presence of heme. Moreover, this mutant acquired less 55Fe than wild type when incubated with 55Fe-loaded protein and bound less lactoferrin. Complementation restored the wild-type phenotype when cells were grown with ferrilactoferrin. A mutant in the ABC transporter system permease gene (cj0174c) showed a small but significant growth reduction. The cj0176c-cj0177 intergenic region contains two separate Fur-regulated iron-repressible promoters. This is the first demonstration that C. jejuni is capable of acquiring iron from members of the transferrin protein family, and our data indicate a role for Cj0178 in this process.
Collapse
|
12
|
Stokes RH, Oakhill JS, Joannou CL, Gorringe AR, Evans RW. Meningococcal transferrin-binding proteins A and B show cooperation in their binding kinetics for human transferrin. Infect Immun 2005; 73:944-52. [PMID: 15664936 PMCID: PMC546982 DOI: 10.1128/iai.73.2.944-952.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis, a causative agent of bacterial meningitis and septicemia, obtains transferrin-bound iron by expressing two outer membrane-located transferrin-binding proteins, TbpA and TbpB. A novel system was developed to investigate the interaction between Tbps and human transferrin. Copurified TbpA-TbpB, recombined TbpA-TbpB, and individual TbpA and TbpB were reconstituted into liposomes and fused onto an HPA chip (BIAcore). All preparations formed stable monolayers, which, with the exception of TbpB, could be regenerated by removing bound transferrin. The ligand binding properties of these monolayers were characterized with surface plasmon resonance and shown to be specific for human transferrin. Kinetic data for diferric human transferrin binding showed that recombined TbpA-TbpB had K(a) and K(d) values similar to those of copurified TbpA-TbpB. Individual TbpA and TbpB also displayed K(a) values similar to those of copurified TbpA-TbpB, but their K(d) values were one order of magnitude higher. Chemical cross-linking studies revealed that TbpA and TbpB, in the absence of human transferrin, formed large complexes with TbpA as the predominant species. Upon human transferrin binding, a complex was formed with a molecular mass corresponding to that of a TbpB-human transferrin heterodimer as well as a higher-molecular-mass complex of this heterodimer cross-linked to TbpA. This indicates that TbpA and TbpB form a functional meningococcal receptor complex in which there is cooperativity in the human transferrin binding kinetics. However, iron loss from the diferric human transferrin-TbpA-TbpB complex was not greater than that from human transferrin alone, suggesting that additional meningococcal transport components are involved in the process of iron removal.
Collapse
Affiliation(s)
- Russell H Stokes
- Metalloprotein Research Group, Randall Division of Cell and Molecular Biophysics, GKT School of Biomedical Sciences, King's College London, Guy's Campus, New Hunt's House, London SE1 1UL, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Abstract
Iron is an essential element for most organisms, including bacteria. The oxidized form is insoluble, and the reduced form is highly toxic for most macromolecules and, in biological systems, is generally sequestrated by iron- and heme-carrier proteins. Thus, despite its abundance on earth, there is practically no free iron available for bacteria whatever biotope they colonize. To fulfill their iron needs, bacteria have multiple iron acquisition systems, reflecting the diversity of their potential biotopes. The iron/heme acquisition systems in bacteria have one of two general mechanisms. The first involves direct contact between the bacterium and the exogenous iron/heme sources. The second mechanism relies on molecules (siderophores and hemophores) synthesized and released by bacteria into the extracellular medium; these molecules scavenge iron or heme from various sources. Recent genetic, biochemical, and crystallographic studies have allowed substantial progress in describing molecular mechanisms of siderophore and hemophore interactions with the outer membrane receptors, transport through the inner membrane, iron storage, and regulation of genes encoding biosynthesis and uptake proteins.
Collapse
Affiliation(s)
- Cécile Wandersman
- Unité des Membranes Bactériennes, Département de Microbiologie Fondamentale et Médicale, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
14
|
Nemish U, Yu RH, Tari LW, Krewulak K, Schryvers AB. The bacterial receptor protein, transferrin-binding protein B, does not independently facilitate the release of metal ion from human transferrin. Biochem Cell Biol 2004; 81:275-83. [PMID: 14569300 DOI: 10.1139/o03-057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pathogenic Gram-negative bacteria of the Pasteurellaceae and Neisseriaceae acquire iron for growth from host transferrin through the action of specific surface receptors. Iron is removed from transferrin by the receptor at the cell surface and is transported across the outer membrane to the periplasm. A periplasmic binding protein-dependent pathway subsequently transports iron into the cell. The transferrin receptor is composed of a largely surface-exposed lipoprotein, transferrin binding protein B, and a TonB-dependent integral outer membrane protein, transferrin binding protein A. To examine the role of transferrin binding protein B in the iron removal process, complexes of recombinant transferrin binding protein B and transferrin were prepared and compared with transferrin in metal-binding and -removal experiments. A polyhistidine-tagged form of recombinant transferrin binding protein B was able to purify a complex with transferrin that was largely monodisperse by dynamic light scattering analysis. Gallium was used instead of iron in the metal-binding studies, since it resulted in increased stability of recombinant transferrin binding protein B in the complex. Difference absorption spectra were used to monitor removal of gallium by nitrilotriacetic acid. Kinetic and equilibrium binding studies indicated that transferrin binds gallium more tightly in the presence of transferrin binding protein B. Thus, transferrin binding protein B does not facilitate metal ion removal and additional components are required for this process.
Collapse
Affiliation(s)
- Ulyana Nemish
- Department of Biological Sciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
15
|
Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I. Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 2004; 68:154-71. [PMID: 15007100 PMCID: PMC362107 DOI: 10.1128/mmbr.68.1.154-171.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acquisition of iron and iron complexes has long been recognized as a major determinant in the pathogenesis of Neisseria meningitidis. In this review, high-affinity iron uptake systems, which allow meningococci to utilize the human host proteins transferrin, lactoferrin, hemoglobin, and haptoglobin-hemoglobin as sources of essential iron, are described. Classic features of bacterial iron transport systems, such as regulation by the iron-responsive repressor Fur and TonB-dependent transport activity, are discussed, as well as more specific features of meningococcal iron transport. Our current understanding of how N. meningitidis acquires iron from the human host and the vaccine potentials of various components of these iron transport systems are also reviewed.
Collapse
Affiliation(s)
- Donna Perkins-Balding
- Rollins Research Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
16
|
Fong KP, Gao L, Demuth DR. luxS and arcB control aerobic growth of Actinobacillus actinomycetemcomitans under iron limitation. Infect Immun 2003; 71:298-308. [PMID: 12496179 PMCID: PMC143191 DOI: 10.1128/iai.71.1.298-308.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LuxS is responsible for the production of autoinducer 2 (AI-2), which functions in Vibrio harveyi as a quorum-sensing signal that controls the cell density-dependent expression of the lux operon. In nonluminescent organisms, the physiologic role of AI-2 is not clear. We report that inactivation of luxS in Actinobacillus actinomycetemcomitans JP2 results in reduced growth of the mutant, but not the wild-type organism, under aerobic, iron-limited conditions. Stunted cultures of the luxS mutant A. actinomycetemcomitans JP2-12 grew to high cell density when subcultured under iron-replete conditions. In addition, the mutant strain grew to high cell density under iron limitation after transformation with a plasmid containing a functional copy of luxS. Results of real-time PCR showed that A. actinomycetemcomitans JP2-12 exhibited significantly reduced expression of afuA (eightfold), fecBCDE (10-fold), and ftnAB (>50-fold), which encode a periplasmic ferric transport protein, a putative ferric citrate transporter, and ferritin, respectively. The expressions of putative receptors for transferrin, hemoglobin, and hemophore binding protein were also reduced at more modest levels (two- to threefold). In contrast, expressions of sidD and frpB (encoding putative siderophore receptors) were increased 10- and 3-fold, respectively, in the luxS mutant. To better understand the mechanism of the AI-2 response, the A. actinomycetemcomitans genome was searched for homologs of the V. harveyi signal transduction proteins, LuxP, LuxQ, LuxU, and LuxO. Interestingly, ArcB was found to be most similar to LuxQ sensor/kinase. To determine whether arcB plays a role in the response of A. actinomycetemcomitans to AI-2, an arcB-deficient mutant was constructed. The isogenic arcB mutant grew poorly under anaerobic conditions but grew normally under aerobic iron-replete conditions. However, the arcB mutant failed to grow aerobically under iron limitation, and reverse transcriptase PCR showed that inactivation of arcB resulted in decreased expression of afuA and ftnAB. Thus, isogenic luxS and arcB mutants of A. actinomycetemcomitans exhibit similar phenotypes when cultured aerobically under iron limitation, and both mutants exhibit reduced expression of a common set of genes involved in the transport and storage of iron. These results suggest that LuxS and ArcB may act in concert to control the adaptation of A. actinomycetemcomitans to iron-limiting conditions and its growth under such conditions.
Collapse
Affiliation(s)
- Karen P Fong
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
17
|
Abstract
In the human body iron is present in growth-limiting amounts for bacteria. For this reason intricate iron transport and iron regulatory systems evolved in bacteria to guarantee a sufficient iron supply. The few principal mechanisms that underly the large variety of iron supply systems will be presented, as well as cases, in which defined iron supply systems are related to virulence.
Collapse
Affiliation(s)
- V Braun
- Mikrobiologie/Membranphysiologie, Universität Tübingen, Germany.
| |
Collapse
|
18
|
Abstract
The ability of pathogens to obtain iron from transferrins, ferritin, hemoglobin, and other iron-containing proteins of their host is central to whether they live or die. To combat invading bacteria, animals go into an iron-withholding mode and also use a protein (Nramp1) to generate reactive oxygen species in an attempt to kill the pathogens. Some invading bacteria respond by producing specific iron chelators-siderophores-that remove the iron from the host sources. Other bacteria rely on direct contact with host iron proteins, either abstracting the iron at their surface or, as with heme, taking it up into the cytoplasm. The expression of a large number of genes (>40 in some cases) is directly controlled by the prevailing intracellular concentration of Fe(II) via its complexing to a regulatory protein (the Fur protein or equivalent). In this way, the biochemistry of the bacterial cell can accommodate the challenges from the host. Agents that interfere with bacterial iron metabolism may prove extremely valuable for chemotherapy of diseases.
Collapse
Affiliation(s)
- C Ratledge
- Department of Biological Sciences, University of Hull, Hull HU6 7RX.
| | | |
Collapse
|
19
|
Boulton IC, Gorringe AR, Shergill JK, Joannou CL, Evans RW. A dynamic model of the meningococcal transferrin receptor. J Theor Biol 1999; 198:497-505. [PMID: 10373350 DOI: 10.1006/jtbi.1999.0928] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron is an essential nutrient for all organisms and consequently, the ability to bind transferrin and sequester iron from his source constitutes a distinct advantage to a blood-borne bacterial pathogen. Levels of free iron are strictly limited in human serum, largely through the action of the iron-binding protein transferrin. The acquisition of trasferrin-iron is coincident with pathogenicity among Neisseria species and a limited number of other pathogens of human and veterinary significance. In Neisseria meningitidis, transferrin binding relies on two co-expressed, outer membrane proteins distinct in aspects of both structure and function. These proteins are independently and simultaneously capable of binding human transferrin and both are required for the optimal uptake of iron from this source. It has been established that transferrin-binding proteins (designated TbpA and TbpB) form a discrete, specific complex which may be composed of a transmembrane species (composed of the TbpA dimer) associated with a single surface-exposed lipoprotein (TbpB). This more exposed protein is capable of selectively binding iron-saturated transferrin and the receptor complex has ligand-binding properties which are distinct from either of its components. Previous in vivo analyses of N. gonorrhoeae, which utilizes a closely related transferrin-iron uptake system, indicated that this receptor exists in several conformations influenced in part by the presence (or absence) of transferrin. Here we propose a dynamic model of the meningococcal transferrin receptor which is fully consistent with the current data concerning this subject. We suggest that TbpB serves as the initial binding site for iron-saturated transferrin and brings this ligand close to the associated transmembrane dimer, enabling additional binding events and orientating transferrin over the dual TbpA pores. The antagonistic association of these receptor proteins with a single ligand molecule may also induce conformational change in transferrin, thereby favouring the release of iron. As, in vivo, transferrin may have iron in one or both lobes, this dynamic molecular arrangement would enable iron uptake from either iron-binding site. In addition, the predicted molecular dimensions of the putative TbpA dimer and hTf are fully consistent with these proposals. Given the diverse data used in the formulation of this model and the consistent characteristics of transferrin binding among several significant Gram-negative pathogens, we speculate that such receptor-ligand interactions may be, at least in part, conserved between species. Consequently, this model may be applicable to bacteria other than N. meningitidis.
Collapse
Affiliation(s)
- I C Boulton
- Centre for Applied Microbiology and Research, Salisbury, SP4 0JG, UK.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Pathogenic neisseriae have a repertoire of high-affinity iron uptake systems to facilitate acquisition of this essential element in the human host. They possess surface receptor proteins that directly bind the extracellular host iron-binding proteins transferrin and lactoferrin. Alternatively, they have siderophore receptors capable of scavenging iron when exogenous siderophores are present. Released intracellular haem iron present in the form of haemoglobin, haemoglobin-haptoglobin or free haem can be used directly as a source of iron for growth through direct binding by specific surface receptors. Although these receptors may vary in complexity and composition, the key protein involved in the transport of iron (as iron, haem or iron-siderophore) across the outer membrane is a TonB-dependent receptor with an overall structure presumably similar to that determined recently for Escherichia coli FhuA or FepA. The receptors are potentially ideal vaccine targets in view of their critical role in survival in the host. Preliminary pilot studies indicate that transferrin receptor-based vaccines may be protective in humans.
Collapse
Affiliation(s)
- A B Schryvers
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
21
|
Ferreirós C, Criado MT, Gómez JA. The neisserial 37 kDa ferric binding protein (FbpA). Comp Biochem Physiol B Biochem Mol Biol 1999; 123:1-7. [PMID: 10425707 DOI: 10.1016/s0305-0491(99)00044-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The ferric binding protein (FbpA) is one of the major proteins regulated by the level of environmental iron in the genus Neisseria. Its conservation in all species of pathogenic Neisseria has been demonstrated, and the possible role that it plays in the iron uptake mechanisms in these bacteria has been postulated. Similar proteins in Haemophilus influenzae (HitA) and in Serratia marcescens (SfuA) have been described, but relationships with the meningococcal FbpA could not be proven. Although supposedly periplasmic, the exact location of FbpA remains controversial because some molecules, or parts of them, have been found exposed to the bacterial outer surface. The DNA sequence downstream of the fbpA gene has been recently analysed, finding an operon composed of three open reading frames: fbpA, encoding for FbpA; fbpB, that codifies a cytoplasmic permease, and fbpC, that contains the information for a nucleotide binding protein. These proteins would form an iron transport system through the periplasmic space. FbpA is highly antigenic in mice when injected in purified form, shows intraspecies and interspecies antigenic homogenicity, and specific anti-FbpA antibodies are fully cross-reactive; nevertheless, the in vivo induction of anti-FbpA antibodies in man is still polemical. Recent studies reveal that the purified FbpA induces a fair response of bactericidal antibodies in mice.
Collapse
Affiliation(s)
- C Ferreirós
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Spain.
| | | | | |
Collapse
|