1
|
West PT, Chanin RB, Bhatt AS. From genome structure to function: insights into structural variation in microbiology. Curr Opin Microbiol 2022; 69:102192. [PMID: 36030622 PMCID: PMC9783807 DOI: 10.1016/j.mib.2022.102192] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 12/27/2022]
Abstract
Structural variation in bacterial genomes is an important evolutionary driver. Genomic rearrangements, such as inversions, duplications, and insertions, can regulate gene expression and promote niche adaptation. Importantly, many of these variations are reversible and preprogrammed to generate heterogeneity. While many tools have been developed to detect structural variation in eukaryotic genomes, variation in bacterial genomes and metagenomes remains understudied. However, recent advances in genome sequencing technology and the development of new bioinformatic pipelines hold promise in further understanding microbial genomics.
Collapse
Affiliation(s)
- Patrick T West
- Department of Genetics, Stanford University, 269 Campus Dr, CCSR 1155b, Stanford, 94305 CA, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation), 269 Campus Dr, CCSR 1155b, Stanford, CA 94305, USA
| | - Rachael B Chanin
- Department of Genetics, Stanford University, 269 Campus Dr, CCSR 1155b, Stanford, 94305 CA, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation), 269 Campus Dr, CCSR 1155b, Stanford, CA 94305, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, 269 Campus Dr, CCSR 1155b, Stanford, 94305 CA, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation), 269 Campus Dr, CCSR 1155b, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Trzilova D, Tamayo R. Site-Specific Recombination - How Simple DNA Inversions Produce Complex Phenotypic Heterogeneity in Bacterial Populations. Trends Genet 2020; 37:59-72. [PMID: 33008627 DOI: 10.1016/j.tig.2020.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Many bacterial species generate phenotypically heterogeneous subpopulations as a strategy for ensuring the survival of the population as a whole - an environmental stress that eradicates one subpopulation may leave other phenotypic groups unharmed, allowing the lineage to continue. Phase variation, a process that functions as an ON/OFF switch for gene expression, is one way that bacteria achieve phenotypic heterogeneity. Phase variation occurs stochastically and reversibly, and in the presence of a selective pressure the advantageous phenotype(s) predominates in the population. Phase variation can occur through multiple genetic and epigenetic mechanisms. This review focuses on conservative site-specific recombination that generates reversible DNA inversions as a genetic mechanism mediating phase variation. Recent studies have sparked a renewed interest in phase variation mediated through DNA inversion, revealing a high level of complexity beyond simple ON/OFF switching, including unusual modes of gene regulation, and highlighting an underappreciation of the use of these mechanisms by bacteria.
Collapse
Affiliation(s)
- Dominika Trzilova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Host Determinants of Expression of the Helicobacter pylori BabA Adhesin. Sci Rep 2017; 7:46499. [PMID: 28418004 PMCID: PMC5394467 DOI: 10.1038/srep46499] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Abstract
Expression of the Helicobacter pylori blood group antigen binding adhesin A (BabA) is more common in strains isolated from patients with peptic ulcer disease or gastric cancer, rather than asymptomatic colonization. Here we used mouse models to examine host determinants that affect H. pylori BabA expression. BabA expression was lost by phase variation as frequently in WT mice as in RAG2−/− mice that do not have functional B or T cells, and in MyD88−/−, TLR2−/− and TLR4−/− mice that are defective in toll like receptor signaling. The presence of other bacteria had no effect on BabA expression as shown by infection of germ free mice. Moreover, loss of BabA expression was not dependent on Leb expression or the capacity of BabA to bind Leb. Surprisingly, gender was the host determinant most associated with loss of BabA expression, which was maintained to a greater extent in male mice and was associated with greater bacterial load. These results suggest the possibility that loss of BabA expression is not driven by adaptive immunity or toll-like receptor signaling, and that BabA may have other, unrecognized functions in addition to serving as an adhesin that binds Leb.
Collapse
|
4
|
Rehm C, Wurmthaler LA, Li Y, Frickey T, Hartig JS. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp. PLoS One 2015; 10:e0144275. [PMID: 26695179 PMCID: PMC4692102 DOI: 10.1371/journal.pone.0144275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/16/2015] [Indexed: 12/04/2022] Open
Abstract
In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1–5
nucleotides (nt) are causative for phase and antigenic variation. Although an
increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs
of 6–9 nt are rare. In particular G-rich repeat sequences with the propensity
to fold into G-quadruplex (G4) structures have received little attention. In silico
analysis of prokaryotic genomes show putative G4 forming sequences to be abundant.
This report focuses on a surprisingly enriched G-rich repeat of the type
GGGNATC in Xanthomonas and cyanobacteria
such as Nostoc. We studied in detail the genomes of
Xanthomonas campestris pv. campestris ATCC 33913
(Xcc), Xanthomonas axonopodis pv.
citri str. 306 (Xac), and Nostoc
sp. strain PCC7120 (Ana). In all three organisms repeats
are spread all over the genome with an over-representation in non-coding regions.
Extensive variation of the number of repetitive units was observed with repeat
numbers ranging from two up to 26 units. However a clear preference for four units
was detected. The strong bias for four units coincides with the requirement of four
consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus
repeat sequences was found in biophysical studies utilizing CD spectroscopy. The
G-rich repeats are preferably located between aligned open reading frames (ORFs) and
are under-represented in coding regions or between divergent ORFs. The G-rich repeats
are preferentially located within a distance of 50 bp upstream of an ORF on the
anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis
of whole transcriptome sequence data showed that the majority of repeat sequences are
transcribed. The genetic loci in the vicinity of repeat regions show increased
genomic stability. In conclusion, we introduce and characterize a special class of
highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.
Collapse
Affiliation(s)
- Charlotte Rehm
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Lena A Wurmthaler
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Yuanhao Li
- Department of Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Tancred Frickey
- Department of Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
5
|
Saurabh B, Sneha S, Suvidya R, Pramod K, Shailesh B. Analysis of distribution and significance of simple sequence repeats in enteric bacteria Shigella dysenteriae SD197. Bioinformation 2011; 6:348-51. [PMID: 21814393 PMCID: PMC3143398 DOI: 10.6026/97320630006348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/28/2011] [Indexed: 11/23/2022] Open
Abstract
We have explored the possible role of SSR density in genome to generate biological information. In our study, we have checked the SSR (simple sequence repeats) status in virulent and non virulent genes of enteric bacteria to see whether the SSRs distribution contributes to virulence. The genome, plasmid and virulent genes sequences in fasta format were downloaded from NCBI GenBank and VFDB. The sequences were subjected to SSR analysis using software tool ssr.exe. The resulting data was pasted in excel sheet and further analyzed for percentage of each type of SSR. Higher nucleotide repeats have been observed in our study. Overall high density of SSRs can enhance antigenic variance of the pathogen population in a strategy that counteracts the host immune response. Frequency of A and T repeats is higher in the chromosome, plasmid and the virulence genes. However, in dinucleotide repeats the frequencies of GC/CG repeats are higher in genome, whereas plasmid has more of AT/TA repeats. Genome has trinucleotide repeats having predominantly G and C whereas plasmid has trinucleotide repeats having predominantly A and T. The repeat number obtained and percentage of repeats is higher in virulence genes as compared to other gene families. Due to the presence of this large number of SSRs, the organism has an enormous potential for generating this genomic and phenotypic diversity.
Collapse
Affiliation(s)
- Batwal Saurabh
- Sinhagad College of Engineering, Wadgaon BK, Pune - 411041
| | | | - Ranade Suvidya
- Department of chemistry, University of Pune, Maharashtra India
| | | | - Bajaj Shailesh
- Department of chemistry, University of Pune, Maharashtra India
| |
Collapse
|
6
|
Microsatellite typing to trace Aspergillus flavus infections in a hematology unit. J Clin Microbiol 2010; 48:2396-401. [PMID: 20410353 DOI: 10.1128/jcm.01269-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assessing the relatedness of strains isolated from patients and their environment is instrumental in documenting the source of preventable health care-associated life-threatening Aspergillus flavus human infection clusters. The present study aimed at identifying and selecting suitable microsatellite markers for A. flavus typing. This typing scheme was then applied to investigate the A. flavus epidemiology within a hematology unit in Sfax, Tunisia. Use of a combination of five markers made it possible to discern clusters of isolates and to substantiate the genetic diversity of A. flavus within clusters. Isolates from Tunisia and Marseille, France, displayed distinct haplotypes, indicating a highly significant geographical structuring of A. flavus. The typing of clinical and environmental A. flavus isolates in a hematology unit provided insights into its hospital epidemiology. From a heterogeneous genetic background, a cluster indicative of a clonal propagation episode within the unit could be identified. In two patients with invasive aspergillosis, the same genotype was found in clinical and environmental isolates, indicating hospital-acquired colonization and infection. In further studies, this novel microsatellite typing scheme might be instrumental in illuminating important epidemiological issues about A. flavus population genetics or epidemiology, including tracing the sources and routes of transmission.
Collapse
|
7
|
Rahim F. In silico comparison of simple sequence repeats in high nucleotides-rich genomes of microorganism. Pak J Biol Sci 2009; 11:2372-81. [PMID: 19137845 DOI: 10.3923/pjbs.2008.2372.2381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study determined the distribution of a specific group of Simple Sequence Repeats (SSRs), in genome sequences of 7 chromosomes (Shigella flexneri 2a str 301 and 2457 T, Shigella sonnei, E. coli K12, M. tuberculosis, M. leprae and S. saprophytycus) have downloaded from the GenBank database for identifying abundance, distribution and composition of SSRs. The data obtained in the present study show that: (i) Tandem repeats are widely distributed throughout the genomes. (ii) SSRs are differentially distributed among coding and non-coding regions in investigated Shigella genomes. (iii) Total frequency of SSRs in non-coding regions is higher than coding regions. (iv) In all investigated chromosomes ratio of Tri-nucleotide SSRs are much higher than randomized genomes and Di nucleotide SSRs are lower. (v) Ratio of total and mono-nucleotide SSRs in real genome is higher than randomized genomes in E. coli K12, Sh. flexneri str 301 and S. saprophyticus, while it is lower in Sh. flexneri str 2457T, Sh. sonnei and M. tuberculosis and it is approximately same in M. leprae. (vi) Frequency of codon repetitions are vary considerably depending on the type of encoded amino acid.
Collapse
Affiliation(s)
- Fakher Rahim
- Physiology Research Center, Ahwaz Jondishpour University of Medical Sciences, Ahwaz, Iran
| |
Collapse
|
8
|
Coil DA, Vandersmissen L, Ginevra C, Jarraud S, Lammertyn E, Anné J. Intragenic tandem repeat variation between Legionella pneumophila strains. BMC Microbiol 2008; 8:218. [PMID: 19077205 PMCID: PMC2639597 DOI: 10.1186/1471-2180-8-218] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 12/10/2008] [Indexed: 11/30/2022] Open
Abstract
Background Bacterial genomes harbour a large number of tandem repeats, yet the possible phenotypic effects of those found within the coding region of genes are only beginning to be examined. Evidence exists from other organisms that these repeats can be involved in the evolution of new genes, gene regulation, adaptation, resistance to environmental stresses, and avoidance of the immune system. Results In this study, we have investigated the presence and variability in copy number of intragenic tandemly repeated sequences in the genome of Legionella pneumophila, the etiological agent of a severe pneumonia known as Legionnaires' disease. Within the genome of the Philadelphia strain, we have identified 26 intragenic tandem repeat sequences using conservative selection criteria. Of these, seven were "polymorphic" in terms of repeat copy number between a large number of L. pneumophila serogroup 1 strains. These strains were collected from a wide variety of environments and patients in several geographical regions. Within this panel of strains, all but one of these seven genes exhibited statistically different patterns in repeat copy number between samples from different origins (environmental, clinical, and hot springs). Conclusion These results support the hypothesis that intragenic tandem repeats could play a role in virulence and adaptation to different environments. While tandem repeats are an increasingly popular focus of molecular typing studies in prokaryotes, including in L. pneumophila, this study is the first examining the difference in tandem repeat distribution as a function of clinical or environmental origin.
Collapse
Affiliation(s)
- David A Coil
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
9
|
Usdin K. The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res 2008; 18:1011-9. [PMID: 18593815 DOI: 10.1101/gr.070409.107] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tandem repeats are common features of both prokaryote and eukaryote genomes, where they can be found not only in intergenic regions but also in both the noncoding and coding regions of a variety of different genes. The repeat expansion diseases are a group of human genetic disorders caused by long and highly polymorphic tandem repeats. These disorders provide many examples of the effects that such repeats can have on many biological processes. While repeats in the coding sequence can result in the generation of toxic or malfunctioning proteins, noncoding repeats can also have significant effects including the generation of chromosome fragility, the silencing of the genes in which they are located, the modulation of transcription and translation, and the sequestering of proteins involved in processes such as splicing and cell architecture.
Collapse
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| |
Collapse
|
10
|
Cozzuto L, Petrillo M, Silvestro G, Di Nocera PP, Paolella G. Systematic identification of stem-loop containing sequence families in bacterial genomes. BMC Genomics 2008; 9:20. [PMID: 18201379 PMCID: PMC2267715 DOI: 10.1186/1471-2164-9-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 01/17/2008] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Analysis of non-coding sequences in several bacterial genomes brought to the identification of families of repeated sequences, able to fold as secondary structures. These sequences have often been claimed to be transcribed and fulfill a functional role. A previous systematic analysis of a representative set of 40 bacterial genomes produced a large collection of sequences, potentially able to fold as stem-loop structures (SLS). Computational analysis of these sequences was carried out by searching for families of repetitive nucleic acid elements sharing a common secondary structure. RESULTS The initial clustering procedure identified clusters of similar sequences in 29 genomes, corresponding to about 1% of the whole population. Sequences selected in this way have a substantially higher aptitude to fold into a stable secondary structure than the initial set. Removal of redundancies and regrouping of the selected sequences resulted in a final set of 92 families, defined by HMM analysis. 25 of them include all well-known SLS containing repeats and others reported in literature, but not analyzed in detail. The remaining 67 families have not been previously described. Two thirds of the families share a common predicted secondary structure and are located within intergenic regions. CONCLUSION Systematic analysis of 40 bacterial genomes revealed a large number of repeated sequence families, including known and novel ones. Their predicted structure and genomic location suggest that, even in compact bacterial genomes, a relatively large fraction of the genome consists of non-protein-coding sequences, possibly functioning at the RNA level.
Collapse
Affiliation(s)
- Luca Cozzuto
- CEINGE Biotecnologie Avanzate scarl, Via Comunale Margherita 482, 80145 Napoli, Italy.
| | | | | | | | | |
Collapse
|
11
|
The complete genome sequence of Actinobacillus pleuropneumoniae L20 (serotype 5b). J Bacteriol 2007; 190:1495-6. [PMID: 18065534 DOI: 10.1128/jb.01845-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are 16 capsule-based serotypes of Actinobacillus pleuropneumoniae, all of which are capable of causing disease in pigs. Here we report the finished and annotated genome sequence of the reference serotype 5b strain L20. This strain has a rough appearance and readily forms biofilms, as is typical for most field isolates.
Collapse
|
12
|
Tandem repeat regions within the Burkholderia pseudomallei genome and their application for high resolution genotyping. BMC Microbiol 2007; 7:23. [PMID: 17397553 PMCID: PMC1853098 DOI: 10.1186/1471-2180-7-23] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 03/30/2007] [Indexed: 11/20/2022] Open
Abstract
Background The facultative, intracellular bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. We identified and categorized tandem repeat arrays and their distribution throughout the genome of B. pseudomallei strain K96243 in order to develop a genetic typing method for B. pseudomallei. We then screened 104 of the potentially polymorphic loci across a diverse panel of 31 isolates including B. pseudomallei, B. mallei and B. thailandensis in order to identify loci with varying degrees of polymorphism. A subset of these tandem repeat arrays were subsequently developed into a multiple-locus VNTR analysis to examine 66 B. pseudomallei and 21 B. mallei isolates from around the world, as well as 95 lineages from a serial transfer experiment encompassing ~18,000 generations. Results B. pseudomallei contains a preponderance of tandem repeat loci throughout its genome, many of which are duplicated elsewhere in the genome. The majority of these loci are composed of repeat motif lengths of 6 to 9 bp with 4 to 10 repeat units and are predominately located in intergenic regions of the genome. Across geographically diverse B. pseudomallei and B.mallei isolates, the 32 VNTR loci displayed between 7 and 28 alleles, with Nei's diversity values ranging from 0.47 and 0.94. Mutation rates for these loci are comparable (>10-5 per locus per generation) to that of the most diverse tandemly repeated regions found in other less diverse bacteria. Conclusion The frequency, location and duplicate nature of tandemly repeated regions within the B. pseudomallei genome indicate that these tandem repeat regions may play a role in generating and maintaining adaptive genomic variation. Multiple-locus VNTR analysis revealed extensive diversity within the global isolate set containing B. pseudomallei and B. mallei, and it detected genotypic differences within clonal lineages of both species that were identical using previous typing methods. Given the health threat to humans and livestock and the potential for B. pseudomallei to be released intentionally, MLVA could prove to be an important tool for fine-scale epidemiological or forensic tracking of this increasingly important environmental pathogen.
Collapse
|
13
|
Romero CM, DeShazer D, Feldblyum T, Ravel J, Woods D, Kim HS, Yu Y, Ronning CM, Nierman WC. Genome sequence alterations detected upon passage of Burkholderia mallei ATCC 23344 in culture and in mammalian hosts. BMC Genomics 2006; 7:228. [PMID: 16953889 PMCID: PMC1574311 DOI: 10.1186/1471-2164-7-228] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 09/05/2006] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND More than 12,000 simple sequence repeats (SSRs) have been identified in the genome of Burkholderia mallei ATCC 23344. As a demonstrated mechanism of phase variation in other pathogenic bacteria, these may function as mutable loci leading to altered protein expression or structure variation. To determine if such alterations are occurring in vivo, the genomes of various single-colony passaged B. mallei ATCC 23344 isolates, one from each source, were sequenced from culture, a mouse, a horse, and two isolates from a single human patient, and the sequence compared to the published B. mallei ATCC 23344 genome sequence. RESULTS Forty-nine insertions and deletions (indels) were detected at SSRs in the five passaged strains, a majority of which (67.3%) were located within noncoding areas, suggesting that such regions are more tolerant of sequence alterations. Expression profiling of the two human passaged isolates compared to the strain before passage revealed alterations in the mRNA levels of multiple genes when grown in culture. CONCLUSION These data support the notion that genome variability upon passage is a feature of B. mallei ATCC23344, and that within a host B. mallei generates a diverse population of clones that accumulate genome sequence variation at SSR and other loci.
Collapse
Affiliation(s)
- Claudia M Romero
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Tamara Feldblyum
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Jacques Ravel
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Donald Woods
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta T2N 4N1, Canada
| | - H Stanley Kim
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Yan Yu
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Catherine M Ronning
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - William C Nierman
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
- The George Washington University School of Medicine, Departmentof Biochemistry and Molecular Biology, 2300 Eye Street NW, Washington, DC 20037, USA
| |
Collapse
|
14
|
Petrillo M, Silvestro G, Di Nocera PP, Boccia A, Paolella G. Stem-loop structures in prokaryotic genomes. BMC Genomics 2006; 7:170. [PMID: 16820051 PMCID: PMC1590033 DOI: 10.1186/1471-2164-7-170] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 07/04/2006] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Prediction of secondary structures in the expressed sequences of bacterial genomes allows to investigate spontaneous folding of the corresponding RNA. This is particularly relevant in untranslated mRNA regions, where base pairing is less affected by interactions with the translation machinery. Relatively large stem-loops significantly contribute to the formation of more complex secondary structures, often important for the activity of sequence elements controlling gene expression. RESULTS Systematic analysis of the distribution of stem-loop structures (SLSs) in 40 wholly-sequenced bacterial genomes is presented. SLSs were searched as stems measuring at least 12 bp, bordering loops 5 to 100 nt in length. G-U pairing in the stems was allowed. SLSs found in natural genomes are constantly more numerous and stable than those expected to randomly form in sequences of comparable size and composition. The large majority of SLSs fall within protein-coding regions but enrichment of specific, non random, SLS sub-populations of higher stability was observed within the intergenic regions of the chromosomes of several species. In low-GC firmicutes, most higher stability intergenic SLSs resemble canonical rho-independent transcriptional terminators, but very frequently feature at the 5'-end an additional A-rich stretch complementary to the 3' uridines. In all species, a clearly biased SLS distribution was observed within the intergenic space, with most concentrating at the 3'-end side of flanking CDSs. Some intergenic SLS regions are members of novel repeated sequence families. CONCLUSION In depth analysis of SLS features and distribution in 40 different bacterial genomes showed the presence of non random populations of such structures in all species. Many of these structures are plausibly transcribed, and might be involved in the control of transcription termination, or might serve as RNA elements which can enhance either the stability or the turnover of cotranscribed mRNAs. Three previously undescribed families of repeated sequences were found in Yersiniae, Bordetellae and Enterococci.
Collapse
Affiliation(s)
- Mauro Petrillo
- CEINGE Biotecnologie Avanzate scarl Via Comunale Margherita 482, 80145 Napoli, Italy
| | - Giustina Silvestro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II Via S. Pansini 5, 80131 Napoli, Italy
| | - Pier Paolo Di Nocera
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II Via S. Pansini 5, 80131 Napoli, Italy
| | - Angelo Boccia
- CEINGE Biotecnologie Avanzate scarl Via Comunale Margherita 482, 80145 Napoli, Italy
| | - Giovanni Paolella
- CEINGE Biotecnologie Avanzate scarl Via Comunale Margherita 482, 80145 Napoli, Italy
- Dipartimento SAVA Università del Molise Via De Sanctis, 86100 Campobasso, Italy
- Dipartimento di Biochimica e Biotecnologie Mediche, Università Federico II Via S. Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
15
|
Abstract
The availability of hundreds of bacterial genome sequences has altered the study of bacterial pathogenesis, affecting both design of experiments and analysis of results. Comparative genomics and genomic tools have been used to identify virulence factors and genes involved in environmental persistence of pathogens. However, a major stumbling block in the genomics revolution has been the large number of genes with unknown function that have been identified in every organism sequenced to date.
Collapse
Affiliation(s)
- David M Raskin
- Department of Microbiology & Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
16
|
Miller JH. Perspective on mutagenesis and repair: the standard model and alternate modes of mutagenesis. Crit Rev Biochem Mol Biol 2005; 40:155-79. [PMID: 15917398 DOI: 10.1080/10409230590954153] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The basic ideas of replication, mutagenesis, and repair have outlined a picture of how point mutations occur that has provided a valuable framework for theory and experiment, much as the Standard Model of particle physics has done for our concept of fundamental particles. However, alternative modes of mutagenesis are being defined that are changing our perspective of the "Standard Model" of mutagenesis, requiring an expanded model. The genome is now envisioned as being in dynamic equilibrium between a multitude of forces for mutational change and forces that counteract such change. By maintaining a delicate balance between these forces, cells avoid unwanted or excessive mutations. Yet, cells allow mutagenesis to occur under certain conditions. We can define an emerging paradigm. Namely, mechanisms exist that can direct point mutations to specific designated genes or regions of genes. In some cases, this is achieved by specific enzymes, and in other cases high mutability is programmed into the sequence of certain genes to help generate diversity. In yet additional cases, general mutability is increased under stress, and selective forces allow the recovery of favorable mutants.
Collapse
Affiliation(s)
- Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Evans JT, Hawkey PM, Smith EG, Boese KA, Warren RE, Hong G. Automated high-throughput mycobacterial interspersed repetitive unit typing of Mycobacterium tuberculosis strains by a combination of PCR and nondenaturing high-performance liquid chromatography. J Clin Microbiol 2004; 42:4175-80. [PMID: 15365008 PMCID: PMC516338 DOI: 10.1128/jcm.42.9.4175-4180.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing of Mycobacterium tuberculosis complex isolates is portable, 100% reproducible, and highly discriminatory. Nondenaturing high-performance liquid chromatography (non-dHPLC) with use of a WAVE microbial analysis system is a promising method of PCR amplicon analysis as it is low cost and requires no preanalysis processing. The aims of this study were to validate the application of WAVE microbial analysis system technology to MIRU-VNTR typing. A collection of 70 strains were cultivated in liquid culture and extracted using the QIAamp DNA minikit. Novel primers were designed to target the 12 MIRU-VNTR loci (P. Supply et al., J. Clin. Microbiol. 39:3563-3571, 2001). After amplification, each PCR product was analyzed on a WAVE microbial analysis system. The fragment size was calculated from the chromatogram, and the number of tandem repeats at each locus was determined. For the collection of 70 strains 100% concordance was achieved when comparing MIRU-VNTR profiles obtained from agarose gel electrophoresis and PCRs analyzed on a WAVE microbial analysis system. The calculated fragment sizes, obtained from the WAVE microbial analysis system, were sufficiently accurate to ensure 100% confidence when assigning the number of tandem repeats to a MIRU-VNTR locus. This study is the first to report the successful use of non-dHPLC for screening for variations in the number of MIRU-VNTRs in mycobacterial DNA. Non-dHPLC analysis was demonstrated to be a rapid, low-labor input method for the detection and analysis of MIRU-VNTR amplicons. The combination with non-dHPLC further enhances the utility of MIRU-VNTR typing.
Collapse
Affiliation(s)
- Jason T Evans
- West Midlands Public Health Laboratory, Health Protection Agency, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham B9 5SS, United Kingdom.
| | | | | | | | | | | |
Collapse
|
18
|
Lovett ST. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 2004; 52:1243-53. [PMID: 15165229 DOI: 10.1111/j.1365-2958.2004.04076.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations and rearrangements that occur by misalignment during DNA replication are frequent sources of genetic variation in bacteria. Dislocations between a replicating strand and its template at repetitive DNA sequences underlie the mechanism of these genetic events. Such misalignments can be transient or stable and can involve intramolecular or intermolecular DNA mispairing, even pairing across a replication fork. Paradoxically, these replication 'slippage' events both create and destroy repetitive sequences in bacterial genomes. This review catalogues several types of slippage errors, presents the cellular processes that act to limit them and discusses the consequences of this class of genetic events on the evolution of bacterial genomes and physiology.
Collapse
Affiliation(s)
- Susan T Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
19
|
Abstract
Phase and antigenic variation result in a heterogenic phenotype of a clonal bacterial population, in which individual cells either express the phase-variable protein(s) or not, or express one of multiple antigenic forms of the protein, respectively. This form of regulation has been identified mainly, but by no means exclusively, for a wide variety of surface structures in animal pathogens and is implicated as a virulence strategy. This review provides an overview of the many bacterial proteins and structures that are under the control of phase or antigenic variation. The context is mainly within the role of the proteins and variation for pathogenesis, which reflects the main body of literature. The occurrence of phase variation in expression of genes not readily recognizable as virulence factors is highlighted as well, to illustrate that our current knowledge is incomplete. From recent genome sequence analysis, it has become clear that phase variation may be more widespread than is currently recognized, and a brief discussion is included to show how genome sequence analysis can provide novel information, as well as its limitations. The current state of knowledge of the molecular mechanisms leading to phase variation and antigenic variation are reviewed, and the way in which these mechanisms form part of the general regulatory network of the cell is addressed. Arguments both for and against a role of phase and antigenic variation in immune evasion are presented and put into new perspective by distinguishing between a role in bacterial persistence in a host and a role in facilitating evasion of cross-immunity. Finally, examples are presented to illustrate that phase-variable gene expression should be taken into account in the development of diagnostic assays and in the interpretation of experimental results and epidemiological studies.
Collapse
Affiliation(s)
- Marjan W van der Woude
- Department of Microbiology, University of Pennsylvania, 202A Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA.
| | | |
Collapse
|
20
|
Ball LM, Bes MA, Theelen B, Boekhout T, Egeler RM, Kuijper EJ. Significance of amplified fragment length polymorphism in identification and epidemiological examination of Candida species colonization in children undergoing allogeneic stem cell transplantation. J Clin Microbiol 2004; 42:1673-9. [PMID: 15071024 PMCID: PMC387556 DOI: 10.1128/jcm.42.4.1673-1679.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 08/31/2003] [Accepted: 11/08/2003] [Indexed: 11/20/2022] Open
Abstract
Candida albicans and non-C. albicans Candida species are increasingly being isolated from patients in high-risk categories, most notably, those who have undergone stem cell transplantation (SCT). Identification of the presence of non-C. albicans Candida species early in the course of the transplant procedure is important, as these species exhibit different sensitivities to the available antifungal treatments and cause mortality at rates that vary from those for C. albicans. Amplified fragment length polymorphism (AFLP) analysis has been shown to be a reliable method of reproducibly identifying medically important Candida species. We investigated the use of serial AFLP analysis of 54 routine surveillance cultures for the identification and epidemiological examination of Candida sp. colonization in five consecutive children undergoing allogeneic SCT. One child became colonized with a C. albicans strain and remained colonized with this strain during the whole admission period. Another child had persistent colonization with a C. albicans strain with striking variations in its AFLP patterns over time, which was considered indicative of microevolution. Candida dubliniensis, Candida lusitaniae, and Saccharomyces cerevisiae were identified in the three remaining patients, with two children being simultaneously and transiently colonized with different species. These findings show that colonization with yeasts during transplantation is a complex and dynamic interaction between the host and the organism(s). In our study three strains from eight separate time points were incorrectly identified as C. albicans by a rapid enzyme test. AFLP analysis of surveillance cultures allowed more accurate and informative epidemiological evaluations of pathogenic yeasts in children during transplantation.
Collapse
Affiliation(s)
- L M Ball
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Hawkey PM, Smith EG, Evans JT, Monk P, Bryan G, Mohamed HH, Bardhan M, Pugh RN. Mycobacterial interspersed repetitive unit typing of Mycobacterium tuberculosis compared to IS6110-based restriction fragment length polymorphism analysis for investigation of apparently clustered cases of tuberculosis. J Clin Microbiol 2003; 41:3514-20. [PMID: 12904348 PMCID: PMC179797 DOI: 10.1128/jcm.41.8.3514-3520.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An evaluation of the utility of IS6110-based restriction fragment length polymorphism (RFLP) typing compared to a combination of variable number tandem repeat (VNTR) typing and mycobacterial interspersed repetitive unit (MIRU) typing was undertaken. A total of 53 patient isolates of Mycobacterium tuberculosis from four presumed episodes of cross-infection were examined. Genomic DNA was extracted from the isolates by a cetyl trimethylammonium bromide method. The number of copies of tandem repeats of the five loci ETR(A) to ETR(E) and 12 MIRU loci was determined by PCR amplification and agarose gel electrophoresis of the amplicons. VNTR typing identified the major clusters of strains in the three investigations in which they occurred (each representing a different evolutionary clade: 32333, 42235, and 32433). The majority of unrelated isolates (by epidemiology and RFLP typing) were also identified by VNTR typing. The concordance between the RFLP and MIRU typing was complete, with the exception of two isolates with RFLP patterns that differed by one band each from the rest of the major epidemiologically linked groups of isolates in investigation A. All of these isolates had identical MIRU and VNTR types. A further pair of isolates differed in the number of tandem repeat copies at two MIRU alleles but had identical RFLP patterns. The speed of the combined VNTR and MIRU typing approach enabled results for some of the investigations to be supplied in "real time," influencing choices in contact tracing. The ease of comparison of results of MIRU and VNTR typing, which are recorded as single multidigit numbers, was also found to greatly facilitate investigation management and the communication of results to health care professionals.
Collapse
Affiliation(s)
- Peter M Hawkey
- Public Health Laboratory, Heartlands Hospital, Birmingham B9 5SS, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bricker BJ, Ewalt DR, Halling SM. Brucella 'HOOF-Prints': strain typing by multi-locus analysis of variable number tandem repeats (VNTRs). BMC Microbiol 2003; 3:15. [PMID: 12857351 PMCID: PMC183870 DOI: 10.1186/1471-2180-3-15] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Accepted: 07/11/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Currently, there are very few tools available for subtyping Brucella isolates for epidemiological trace-back. Subtyping is difficult because of the genetic homogeneity within the genus. Sequencing of the genomes from three Brucella species has facilitated the search for DNA sequence variability. Recently, hypervariability among short tandem repeat sequences has been exploited for strain-typing of several bacterial pathogens. RESULTS An eight-base pair tandem repeat sequence was discovered in nine genomic loci of the B. abortus genome. Eight loci were hypervariable among the three Brucella species. A PCR-based method was developed to identify the number of repeat units (alleles) at each locus, generating strain-specific fingerprints. None of the loci exhibited species- or biovar-specific alleles. Sometimes, a species or biovar contained a specific allele at one or more loci, but the allele also occurred in other species or biovars. The technique successfully differentiated the type strains for all Brucella species and biovars, among unrelated B. abortus biovar 1 field isolates in cattle, and among B. abortus strains isolated from bison and elk. Isolates from the same herd or from short-term in vitro passage exhibited little or no variability in fingerprint pattern. Sometimes, isolates from an animal would have multiple alleles at a locus, possibly from mixed infections in enzootic areas, residual disease from incomplete depopulation of an infected herd or molecular evolution within the strain. Therefore, a mixed population or a pool of colonies from each animal and/or tissue was tested. CONCLUSION This paper describes a new method for fingerprinting Brucella isolates based on multi-locus characterization of a variable number, eight-base pair, tandem repeat. We have named this technique "HOOF-Prints" for Hypervariable Octameric Oligonucleotide Finger-Prints. The technique is highly discriminatory among Brucella species, among previously characterized Brucella strains, and among unrelated field isolates that could not be differentiated by classical methods. The method is rapid and the results are reproducible. HOOF-Printing will be most useful as a follow-up test after identification by established methods since we did not find species-specific or biovar-specific alleles. Nonetheless, this technology provides a significant advancement in brucellosis epidemiology, and consequently, will help to eliminate this disease worldwide.
Collapse
Affiliation(s)
- Betsy J Bricker
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, 2300 Dayton Rd, Ames, IA, 50010, USA
| | - Darla R Ewalt
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, National Veterinary Services Laboratories, 1800 Dayton Rd, Ames, IA, 50010, USA
| | - Shirley M Halling
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, 2300 Dayton Rd, Ames, IA, 50010, USA
| |
Collapse
|
23
|
Coenye T, Vandamme P. Simple sequence repeats and compositional bias in the bipartite Ralstonia solanacearum GMI1000 genome. BMC Genomics 2003; 4:10. [PMID: 12697060 PMCID: PMC153513 DOI: 10.1186/1471-2164-4-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Accepted: 03/17/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ralstonia solanacearum is an important plant pathogen. The genome of R. solananearum GMI1000 is organised into two replicons (a 3.7-Mb chromosome and a 2.1-Mb megaplasmid) and this bipartite genome structure is characteristic for most R. solanacearum strains. To determine whether the megaplasmid was acquired via recent horizontal gene transfer or is part of an ancestral single chromosome, we compared the abundance, distribution and composition of simple sequence repeats (SSRs) between both replicons and also compared the respective compositional biases. RESULTS Our data show that both replicons are very similar in respect to distribution and composition of SSRs and presence of compositional biases. Minor variations in SSR and compositional biases observed may be attributable to minor differences in gene expression and regulation of gene expression or can be attributed to the small sample numbers observed. CONCLUSIONS The observed similarities indicate that both replicons have shared a similar evolutionary history and thus suggest that the megaplasmid was not recently acquired from other organisms by lateral gene transfer but is a part of an ancestral R. solanacearum chromosome.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratorium voor Microbiologie, Ghent University,K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Peter Vandamme
- Laboratorium voor Microbiologie, Ghent University,K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
24
|
Abstract
We investigated 53 complete bacterial chromosomes for intrachromosomal repeats. In previous studies on eukaryote chromosomes, we proposed a model for the dynamics of repeats based on the continuous genesis of tandem repeats, followed by an active process of high deletion rate, counteracted by rearrangement events that may prevent the repeats from being deleted. The present study of long repeats in the genomes of Bacteria and Archaea suggests that our model of interspersed repeats dynamics may apply to them. Thus the duplication process might be a consequence of very ancient mechanisms shared by all three domains. Moreover, we show that there is a strong negative correlation between nucleotide composition bias and the repeat density of genomes. We hypothesise that in highly biased genomes, non-duplicated small repeats arise more frequently by random effects and are used as primers for duplication mechanisms, leading to a higher density of large repeats.
Collapse
Affiliation(s)
- G Achaz
- Structure et Dynamique des Génomes, Institut Jacques Monod, Tour 43-44, 1 degrees Etage, 4 Place Jussieu, F-75251 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
25
|
Coletta-Filho HD, Takita MA, de Souza AA, Aguilar-Vildoso CI, Machado MA. Differentiation of strains of Xylella fastidiosa by a variable number of tandem repeat analysis. Appl Environ Microbiol 2001; 67:4091-5. [PMID: 11526010 PMCID: PMC93134 DOI: 10.1128/aem.67.9.4091-4095.2001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2001] [Accepted: 06/27/2001] [Indexed: 11/20/2022] Open
Abstract
Short sequence repeats (SSRs) with a potential variable number of tandem repeat (VNTR) loci were identified in the genome of the citrus pathogen Xylella fastidiosa and used for typing studies. Although mono- and dinucleotide repeats were absent, we found several intermediate-length 7-, 8-, and 9-nucleotide repeats, which we examined for allelic polymorphisms using PCR. Five genuine VNTR loci were highly polymorphic within a set of 27 X. fastidiosa strains from different hosts. The highest average Nei's measure of genetic diversity (H) estimated for VNTR loci was 0.51, compared to 0.17 derived from randomly amplified polymorphic DNA (RAPD) analysis. For citrus X. fastidiosa strains, some specific VNTR loci had a H value of 0.83, while the maximum value given by specific RAPD loci was 0.12. Our approach using VNTR markers provides a high-resolution tool for epidemiological, genetic, and ecological analysis of citrus-specific X. fastidiosa strains.
Collapse
Affiliation(s)
- H D Coletta-Filho
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, CEP 13490-970, Cordeirópolis, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
26
|
Whatmore AM. Streptococcus pyogenes sclB encodes a putative hypervariable surface protein with a collagen-like repetitive structure. MICROBIOLOGY (READING, ENGLAND) 2001; 147:419-429. [PMID: 11158359 DOI: 10.1099/00221287-147-2-419] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus pyogenes is the causative agent in a wide range of diseases of humans of varying severity. During a study scanning the genome sequence of a serotype M1 invasive isolate SF370 for novel surface proteins, an ORF, designated sclB, was identified. The putative protein encoded by sclB contains both a signal peptide and classic Gram-positive wall-associated sequences. Comparison of the sequences of this ORF with those from a number of unrelated isolates demonstrated that sclB encodes a putative surface protein with a variable N-terminal sequence followed by a variable length tract of collagen-like GXY(n) repeats. A further feature of sclB is the presence of CAAAA repeat tracts immediately downstream of the putative start codon. The number of these pentameric repeats varies from 4 to 15 between strains and variation in repeat number results in the predicted SclB protein being either in or out of frame relative to the start codon. These observations suggest that expression of this protein may be regulated at the translational level as a result of gain or loss of CAAAA repeats. While the function of SclB remains to be elucidated, an sclB-specific transcript was detected by RT-PCR during in vitro culture. Finally, it is shown that a second gene, sclA, potentially encoding a protein with a similar extensive collagen-like structure and variable N-terminal sequence, is present in all isolates of S. pyogenes tested to date. Thus S. pyogenes harbours a novel family of structurally related and surface-exposed proteins of potential importance in the pathogenic process.
Collapse
Affiliation(s)
- Adrian M Whatmore
- Infectious Disease Research Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK1
| |
Collapse
|