1
|
Newborn Screening for Pompe Disease: Pennsylvania Experience. Int J Neonatal Screen 2020; 6:ijns6040089. [PMID: 33202836 PMCID: PMC7712483 DOI: 10.3390/ijns6040089] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Pennsylvania started newborn screening for Pompe disease in February 2016. Between February 2016 and December 2019, 531,139 newborns were screened. Alpha-Glucosidase (GAA) enzyme activity is measured by flow-injection tandem mass spectrometry (FIA/MS/MS) and full sequencing of the GAA gene is performed as a second-tier test in all newborns with low GAA enzyme activity [<2.10 micromole/L/h]. A total of 115 newborns had low GAA enzyme activity and abnormal genetic testing and were referred to metabolic centers. Two newborns were diagnosed with Infantile Onset Pompe Disease (IOPD), and 31 newborns were confirmed to have Late Onset Pompe Disease (LOPD). The incidence of IOPD + LOPD was 1:16,095. A total of 30 patients were compound heterozygous for one pathogenic and one variant of unknown significance (VUS) mutation or two VUS mutations and were defined as suspected LOPD. The incidence of IOPD + LOPD + suspected LOPD was 1: 8431 in PA. We also found 35 carriers, 15 pseudodeficiency carriers, and 2 false positive newborns.
Collapse
|
2
|
Lim JA, Meena NK, Raben N. Pros and cons of different ways to address dysfunctional autophagy in Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:279. [PMID: 31392191 DOI: 10.21037/atm.2019.03.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autophagy is a major intracellular self-digestion process that brings cytoplasmic materials to the lysosome for degradation. Defective autophagy has been linked to a broad range of human disorders, including cancer, diabetes, neurodegeneration, autoimmunity, cardiovascular diseases, and myopathies. In Pompe disease, a severe neuromuscular disorder, disturbances in autophagic process manifest themselves as progressive accumulation of undegraded cellular debris in the diseased muscle cells. A growing body of evidence has connected this defect to the decline in muscle function and muscle resistance to the currently available treatment-enzyme replacement therapy (ERT). Both induction and inhibition of autophagy have been tested in pre-clinical studies in a mouse model of the disease. Here, we discuss strengths and weaknesses of different approaches to address autophagic dysfunction in the context of Pompe disease.
Collapse
Affiliation(s)
- Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Naresh Kumar Meena
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
3
|
Hunt H, Fraser K, Cave NJ, Gartrell BD, Petersen J, Roe WD. Untargeted metabolic profiling of dogs with a suspected toxic mitochondrial myopathy using liquid chromatography-mass spectrometry. Toxicon 2019; 166:46-55. [PMID: 31102596 DOI: 10.1016/j.toxicon.2019.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/22/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
Abstract
'Go Slow myopathy' (GSM) is a suspected toxic myopathy in dogs that primarily occurs in the North Island of New Zealand, and affected dogs usually have a history of consuming meat, offal or bones from wild pigs (including previously frozen and/or cooked meat). Previous epidemiological and pathological studies on GSM have demonstrated that changes in mitochondrial structure and function are most likely caused by an environmental toxin that dogs are exposed to through the ingestion of wild pig. The disease has clinical, histological and biochemical similarities to poisoning in people and animals from the plant Ageratina altissima (white snakeroot). Aqueous and lipid extracts were prepared from liver samples of 24 clinically normal dogs and 15 dogs with GSM for untargeted liquid chromatography-mass spectrometry. Group-wise comparisons of mass spectral data revealed 38 features that were significantly different (FDR<0.05) between normal dogs and those with GSM in aqueous extracts, and 316 significantly different features in lipid extracts. No definitive cause of the myopathy was identified, but alkaloids derived from several plant species were among the possible identities of features that were more abundant in liver samples from affected dogs compared to normal dogs. Mass spectral data also revealed that dogs with GSM have reduced hepatic phospholipid and sphingolipid concentrations relative to normal dogs. In addition, affected dogs had changes in the abundance of kynurenic acid, various dicarboxylic acids and N-acetylated branch chain amino acids, suggestive of mitochondrial dysfunction.
Collapse
Affiliation(s)
- H Hunt
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - K Fraser
- Food Nutrition and Health Team, Food and Bio-Based Products Group, AgResearch Grasslands Research Centre, Palmerston North, New Zealand
| | - N J Cave
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - B D Gartrell
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - J Petersen
- Norvet Services Ltd., Okaihau, New Zealand
| | - W D Roe
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
4
|
Fernandez-Mosquera L, Yambire KF, Couto R, Pereyra L, Pabis K, Ponsford AH, Diogo CV, Stagi M, Milosevic I, Raimundo N. Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis. Autophagy 2019; 15:1572-1591. [PMID: 30917721 PMCID: PMC6693470 DOI: 10.1080/15548627.2019.1586256] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are key organelles for cellular metabolism, and regulate several processes including cell death and macroautophagy/autophagy. Here, we show that mitochondrial respiratory chain (RC) deficiency deactivates AMP-activated protein kinase (AMPK, a key regulator of energy homeostasis) signaling in tissue and in cultured cells. The deactivation of AMPK in RC-deficiency is due to increased expression of the AMPK-inhibiting protein FLCN (folliculin). AMPK is found to be necessary for basal lysosomal function, and AMPK deactivation in RC-deficiency inhibits lysosomal function by decreasing the activity of the lysosomal Ca2+ channel MCOLN1 (mucolipin 1). MCOLN1 is regulated by phosphoinositide kinase PIKFYVE and its product PtdIns(3,5)P2, which is also decreased in RC-deficiency. Notably, reactivation of AMPK, in a PIKFYVE-dependent manner, or of MCOLN1 in RC-deficient cells, restores lysosomal hydrolytic capacity. Building on these data and the literature, we propose that downregulation of the AMPK-PIKFYVE-PtdIns(3,5)P2-MCOLN1 pathway causes lysosomal Ca2+ accumulation and impaired lysosomal catabolism. Besides unveiling a novel role of AMPK in lysosomal function, this study points to the mechanism that links mitochondrial malfunction to impaired lysosomal catabolism, underscoring the importance of AMPK and the complexity of organelle cross-talk in the regulation of cellular homeostasis. Abbreviation: ΔΨm: mitochondrial transmembrane potential; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATP: adenosine triphosphate; ATP6V0A1: ATPase, H+ transporting, lysosomal, V0 subbunit A1; ATP6V1A: ATPase, H+ transporting, lysosomal, V0 subbunit A; BSA: bovine serum albumin; CCCP: carbonyl cyanide-m-chlorophenylhydrazone; CREB1: cAMP response element binding protein 1; CTSD: cathepsin D; CTSF: cathepsin F; DMEM: Dulbecco’s modified Eagle’s medium; DMSO: dimethyl sulfoxide; EBSS: Earl’s balanced salt solution; ER: endoplasmic reticulum; FBS: fetal bovine serum; FCCP: carbonyl cyanide-p-trifluoromethoxyphenolhydrazone; GFP: green fluorescent protein; GPN: glycyl-L-phenylalanine 2-naphthylamide; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MCOLN1/TRPML1: mucolipin 1; MEF: mouse embryonic fibroblast; MITF: melanocyte inducing transcription factor; ML1N*2-GFP: probe used to detect PtdIns(3,5)P2 based on the transmembrane domain of MCOLN1; MTORC1: mechanistic target of rapamycin kinase complex 1; NDUFS4: NADH:ubiquinone oxidoreductase subunit S4; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; pcDNA: plasmid cytomegalovirus promoter DNA; PCR: polymerase chain reaction; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,5)P2: phosphatidylinositol-3,5-bisphosphate; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; P/S: penicillin-streptomycin; PVDF: polyvinylidene fluoride; qPCR: quantitative real time polymerase chain reaction; RFP: red fluorescent protein; RNA: ribonucleic acid; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; shRNA: short hairpin RNA; siRNA: small interfering RNA; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TMRM: tetramethylrhodamine, methyl ester, perchlorate; ULK1: unc-51 like autophagy activating kinase 1; ULK2: unc-51 like autophagy activating kinase 2; UQCRC1: ubiquinol-cytochrome c reductase core protein 1; v-ATPase: vacuolar-type H+-translocating ATPase; WT: wild-type
Collapse
Affiliation(s)
- Lorena Fernandez-Mosquera
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany.,b Doctoral Program in Molecular Medicine, Georg August University Goettingen , Goettingen , Germany
| | - King Faisal Yambire
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany.,c International Max-Planck Research School in Neuroscience , Goettingen , Germany.,d European Neuroscience Institute Goettingen, University Medical Center Goettingen and Max-Planck Society , Goettingen , Germany
| | - Renata Couto
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany.,e Doctoral Program in Molecular Biology of Cells, Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Goettingen , Goettingen , Germany
| | - Leonardo Pereyra
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany.,e Doctoral Program in Molecular Biology of Cells, Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Goettingen , Goettingen , Germany
| | - Kamil Pabis
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany
| | - Amy H Ponsford
- f Institute of Translational Medicine, University of Liverpool , Liverpool , UK
| | - Cátia V Diogo
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany
| | - Massimiliano Stagi
- f Institute of Translational Medicine, University of Liverpool , Liverpool , UK
| | - Ira Milosevic
- d European Neuroscience Institute Goettingen, University Medical Center Goettingen and Max-Planck Society , Goettingen , Germany
| | - Nuno Raimundo
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany
| |
Collapse
|
5
|
Lim JA, Sun B, Puertollano R, Raben N. Therapeutic Benefit of Autophagy Modulation in Pompe Disease. Mol Ther 2018; 26:1783-1796. [PMID: 29804932 DOI: 10.1016/j.ymthe.2018.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
The complexity of the pathogenic cascade in lysosomal storage disorders suggests that combination therapy will be needed to target various aspects of pathogenesis. The standard of care for Pompe disease (glycogen storage disease type II), a deficiency of lysosomal acid alpha glucosidase, is enzyme replacement therapy (ERT). Many patients have poor outcomes due to limited efficacy of the drug in clearing muscle glycogen stores. The resistance to therapy is linked to massive autophagic buildup in the diseased muscle. We have explored two strategies to address the problem. Genetic suppression of autophagy in muscle of knockout mice resulted in the removal of autophagic buildup, increase in muscle force, decrease in glycogen level, and near-complete clearance of lysosomal glycogen following ERT. However, this approach leads to accumulation of ubiquitinated proteins, oxidative stress, and exacerbation of muscle atrophy. Another approach involves AAV-mediated TSC knockdown in knockout muscle leading to upregulation of mTOR, inhibition of autophagy, reversal of atrophy, and efficient cellular clearance on ERT. Importantly, this approach reveals the possibility of reversing already established autophagic buildup, rather than preventing its development.
Collapse
Affiliation(s)
- Jeong-A Lim
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA; Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
6
|
|
7
|
Zharkinbekova NA, Mukhambetova GA, Kaishibayeva GS, Zhiyenbayeva BS, Zhumagulova KB, Kaishibayev SN, Iglikova AE, Suleimanova SY. [First cases of Pompe's disease in Kazakhstan]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:85-87. [PMID: 28884723 DOI: 10.17116/jnevro20171178185-87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article presents the clinical observations of two newly diagnosed patients with Pompe disease in the Republic of Kazakhstan, confirmed by genetic research.
Collapse
Affiliation(s)
- N A Zharkinbekova
- Scientific-Practical Center Smagul Kaishibayev Institute of Neurology, Almaty, Kazakhstan
| | - G A Mukhambetova
- Scientific-Practical Center Smagul Kaishibayev Institute of Neurology, Almaty, Kazakhstan
| | - G S Kaishibayeva
- Scientific-Practical Center Smagul Kaishibayev Institute of Neurology, Almaty, Kazakhstan
| | - B S Zhiyenbayeva
- Scientific-Practical Center Smagul Kaishibayev Institute of Neurology, Almaty, Kazakhstan
| | - K B Zhumagulova
- Scientific-Practical Center Smagul Kaishibayev Institute of Neurology, Almaty, Kazakhstan
| | - S N Kaishibayev
- Scientific-Practical Center Smagul Kaishibayev Institute of Neurology, Almaty, Kazakhstan
| | - A E Iglikova
- Scientific-Practical Center Smagul Kaishibayev Institute of Neurology, Almaty, Kazakhstan
| | - S Yu Suleimanova
- Scientific-Practical Center Smagul Kaishibayev Institute of Neurology, Almaty, Kazakhstan
| |
Collapse
|
8
|
Abstract
Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks, cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their substrates by fusing with endosomes or autophagosomes, or through specialized translocation mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their substrates using up to 60 different soluble hydrolases and release their products either to the cytosol through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a signaling hub that can integrate and relay external and internal nutritional information to promote cellular and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to the past and future discoveries of how the lysosome simultaneously executes and controls cellular homeostasis.
Collapse
Affiliation(s)
- Vinod K Mony
- a Department of Biology , College of Arts and Sciences, University of Virginia , Charlottesville , VA , USA
| | - Shawna Benjamin
- a Department of Biology , College of Arts and Sciences, University of Virginia , Charlottesville , VA , USA.,b Department of Cell Biology , School of Medicine, University of Virginia , Charlottesville , VA , USA
| | - Eyleen J O'Rourke
- a Department of Biology , College of Arts and Sciences, University of Virginia , Charlottesville , VA , USA.,b Department of Cell Biology , School of Medicine, University of Virginia , Charlottesville , VA , USA.,c Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
9
|
Neel BA, Zong H, Backer JM, Pessin JE. Identification of Atypical Peri-Nuclear Multivesicular Bodies in Oxidative and Glycolytic Skeletal Muscle of Aged and Pompe's Disease Mouse Models. Front Physiol 2015; 6:393. [PMID: 26733885 PMCID: PMC4685069 DOI: 10.3389/fphys.2015.00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/02/2015] [Indexed: 01/10/2023] Open
Abstract
Muscle wasting that occurs during aging or from disease pathology presents with an accumulation of lipid species termed ceroid or lipofuscin. This unique species of lipid has been characterized in various cell types but its properties and organization in skeletal muscle remains unclear. Using immunofluorescence and transmission electron microscopy, we were able to visualize and characterize an atypical lipid storing organelle in skeletal muscle. White myofibers contain two organelles at each pole of the myonuclei and red myofibers contain many of these structures in and around the perinuclear space. These organelles contain markers for late endosomes, are morphologically similar to multivesicular bodies, store lipid, and hypertrophy in aged muscle and a model of muscle wasting with an accumulation of large amounts of lipofuscin. Rapamycin treatment reduces the multivesicular body hypertrophy, restores late endosomal protein markers, and also increases the number and intensity of lipofuscin deposits. Together, these data demonstrate for the first time a perinuclear organelle in skeletal muscle that hypertrophies in muscle wasting phenotypes and is involved in endocytic lipid storage.
Collapse
Affiliation(s)
- Brian A Neel
- Department of Medicine, Price Center for Genetic and Translational Medicine, Albert Einstein College of Medicine Bronx, NY, USA
| | - Haihong Zong
- Department of Medicine, Price Center for Genetic and Translational Medicine, Albert Einstein College of Medicine Bronx, NY, USA
| | - Jonathan M Backer
- Department of Molecular Pharmacology, Albert Einstein College of MedicineBronx, NY, USA; Department of Biochemistry, Albert Einstein College of MedicineNew York, NY, USA
| | - Jeffrey E Pessin
- Department of Medicine, Price Center for Genetic and Translational Medicine, Albert Einstein College of MedicineBronx, NY, USA; Department of Molecular Pharmacology, Albert Einstein College of MedicineBronx, NY, USA
| |
Collapse
|
10
|
Nilsson MI, MacNeil LG, Kitaoka Y, Suri R, Young SP, Kaczor JJ, Nates NJ, Ansari MU, Wong T, Ahktar M, Brandt L, Hettinga BP, Tarnopolsky MA. Combined aerobic exercise and enzyme replacement therapy rejuvenates the mitochondrial-lysosomal axis and alleviates autophagic blockage in Pompe disease. Free Radic Biol Med 2015; 87:98-112. [PMID: 26001726 DOI: 10.1016/j.freeradbiomed.2015.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
Abstract
A unifying feature in the pathogenesis of aging, neurodegenerative disease, and lysosomal storage disorders is the progressive deposition of macromolecular debris impervious to enzyme catalysis by cellular waste disposal mechanisms (e.g., lipofuscin). Aerobic exercise training (AET) has pleiotropic effects and stimulates mitochondrial biogenesis, antioxidant defense systems, and autophagic flux in multiple organs and tissues. Our aim was to explore the therapeutic potential of AET as an ancillary therapy to mitigate autophagic buildup and oxidative damage and rejuvenate the mitochondrial-lysosomal axis in Pompe disease (GSD II/PD). Fourteen weeks of combined recombinant acid α-glucosidase (rhGAA) and AET polytherapy attenuated mitochondrial swelling, fortified antioxidant defense systems, reduced oxidative damage, and augmented glycogen clearance and removal of autophagic debris/lipofuscin in fast-twitch skeletal muscle of GAA-KO mice. Ancillary AET potently augmented the pool of PI4KA transcripts and exerted a mild restorative effect on Syt VII and VAMP-5/myobrevin, collectively suggesting improved endosomal transport and Ca(2+)- mediated lysosomal exocytosis. Compared with traditional rhGAA monotherapy, AET and rhGAA polytherapy effectively mitigated buildup of protein carbonyls, autophagic debris/lipofuscin, and P62/SQSTM1, while enhancing MnSOD expression, nuclear translocation of Nrf-2, muscle mass, and motor function in GAA-KO mice. Combined AET and rhGAA therapy reactivates cellular clearance pathways, mitigates mitochondrial senescence, and strengthens antioxidant defense systems in GSD II/PD. Aerobic exercise training (or pharmacologic targeting of contractile-activity-induced pathways) may have therapeutic potential for mitochondrial-lysosomal axis rejuvenation in lysosomal storage disorders and related conditions (e.g., aging and neurodegenerative disease).
Collapse
Affiliation(s)
- M I Nilsson
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - L G MacNeil
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Y Kitaoka
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - R Suri
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - S P Young
- Department of Pediatrics, Division of Medical Genetics/Duke University Medical Center, Durham, NC, USA
| | - J J Kaczor
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdansk, Poland
| | - N J Nates
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - M U Ansari
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - T Wong
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - M Ahktar
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - L Brandt
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - B P Hettinga
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - M A Tarnopolsky
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
11
|
Lim JA, Li L, Raben N. Pompe disease: from pathophysiology to therapy and back again. Front Aging Neurosci 2014; 6:177. [PMID: 25183957 PMCID: PMC4135233 DOI: 10.3389/fnagi.2014.00177] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
Pompe disease is a lysosomal storage disorder in which acid alpha-glucosidase (GAA) is deficient or absent. Deficiency of this lysosomal enzyme results in progressive expansion of glycogen-filled lysosomes in multiple tissues, with cardiac and skeletal muscle being the most severely affected. The clinical spectrum ranges from fatal hypertrophic cardiomyopathy and skeletal muscle myopathy in infants to relatively attenuated forms, which manifest as a progressive myopathy without cardiac involvement. The currently available enzyme replacement therapy (ERT) proved to be successful in reversing cardiac but not skeletal muscle abnormalities. Although the overall understanding of the disease has progressed, the pathophysiology of muscle damage remains poorly understood. Lysosomal enlargement/rupture has long been considered a mechanism of relentless muscle damage in Pompe disease. In past years, it became clear that this simple view of the pathology is inadequate; the pathological cascade involves dysfunctional autophagy, a major lysosome-dependent intracellular degradative pathway. The autophagic process in Pompe skeletal muscle is affected at the termination stage—impaired autophagosomal-lysosomal fusion. Yet another abnormality in the diseased muscle is the accelerated production of large, unrelated to ageing, lipofuscin deposits—a marker of cellular oxidative damage and a sign of mitochondrial dysfunction. The massive autophagic buildup and lipofuscin inclusions appear to cause a greater effect on muscle architecture than the enlarged lysosomes outside the autophagic regions. Furthermore, the dysfunctional autophagy affects the trafficking of the replacement enzyme and interferes with its delivery to the lysosomes. Several new therapeutic approaches have been tested in Pompe mouse models: substrate reduction therapy, lysosomal exocytosis following the overexpression of transcription factor EB and a closely related but distinct factor E3, and genetic manipulation of autophagy.
Collapse
Affiliation(s)
- Jeong-A Lim
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health Bethesda, MD, USA
| | - Lishu Li
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health Bethesda, MD, USA
| | - Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
12
|
van den Berg LEM, Drost MR, Schaart G, de Laat J, van Doorn PA, van der Ploeg AT, Reuser AJJ. Muscle fiber-type distribution, fiber-type-specific damage, and the Pompe disease phenotype. J Inherit Metab Dis 2013; 36:787-94. [PMID: 23053471 DOI: 10.1007/s10545-012-9541-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/03/2012] [Accepted: 09/11/2012] [Indexed: 10/27/2022]
Abstract
Pompe disease is a lysosomal storage disorder caused by acid α-glucosidase deficiency and characterized by progressive muscle weakness. Enzyme replacement therapy (ERT) has ameliorated patients' perspectives, but reversal of skeletal muscle pathology remains a challenge. We studied pretreatment biopsies of 22 patients with different phenotypes to investigate to what extent fiber-type distribution and fiber-type-specific damage contribute to clinical diversity. Pompe patients have the same fiber-type distribution as healthy persons, but among nonclassic patients with the same GAA mutation (c.-32-13T>G), those with early onset of symptoms tend to have more type 2 muscle fibers than those with late-onset disease. Further, it seemed that the older, more severely affected classic infantile patients and the wheelchair-bound and ventilated nonclassic patients had a greater proportion of type 2x muscle fibers. However, as in other diseases, this may be caused by physical inactivity of those patients.
Collapse
Affiliation(s)
- L E M van den Berg
- Department of Pediatrics, Division of Metabolic Diseases and Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Wei LG, Gao JQ, Liu XM, Huang JM, Li XZ. A study of glycogen storage disease with 99Tcm-MIBI gated myocardial perfusion imaging. Ir J Med Sci 2013; 182:615-20. [DOI: 10.1007/s11845-013-0939-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 03/07/2013] [Indexed: 11/24/2022]
|
14
|
Abstract
Lysosomal myopathies are hereditary myopathies characterized morphologically by the presence of autophagic vacuoles. In mammals, autophagy plays an important role for the turnover of cellular components, particularly in response to starvation or glucagons. In normal muscle, autolysosomes or autophagosomes are typically inconspicuous. In distinct neuromuscular disorders, however, lysosomes become structurally abnormal and functionally impaired, leading to the accumulation of autophagic vacuoles in myofibers. In some instances, the accumulation of autophagic vacuoles can be a prominent feature, implicating autophagy as a contributor to disease pathomechanism and/or progression. At present, there are two disorders in the muscle that are associated with a primary defect in lysosomal proteins, namely Pompe disease and Danon disease. This review will give a brief discussion on these disorders, highlighting the role of autophagy in disease progression.
Collapse
Affiliation(s)
- May Christine V Malicdan
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | |
Collapse
|
15
|
Case LE, Beckemeyer AA, Kishnani PS. Infantile Pompe disease on ERT: update on clinical presentation, musculoskeletal management, and exercise considerations. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2012; 160C:69-79. [PMID: 22252989 DOI: 10.1002/ajmg.c.31321] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enzyme replacement therapy (ERT) with alglucosidase alpha, approved by the FDA in 2006, has expanded possibilities for individuals with Pompe disease (glycogen storage disease type II, GSDII, or acid maltase deficiency). Children with infantile Pompe disease are surviving beyond infancy, some achieving independent walking and functional levels never before possible. Individuals with late-onset Pompe disease are experiencing motor and respiratory improvement and/or stabilization with slower progression of impairments. A new phenotype is emerging for those with infantile Pompe disease treated with ERT. This new phenotype appears to be distinct from the late-onset phenotype rather than a shift from infantile to late-onset phenotype that might be expected from a simple diminution of symptoms with ERT. Questions arise regarding the etiology of the distinct distribution of weakness in this new phenotype, with increasing questions regarding exercise and musculoskeletal management. Answers require an increased understanding of the muscle pathology in Pompe disease, how that muscle pathology may be impacted by ERT, and the potential impact of, and need for, other clinical interventions. This article reviews the current state of knowledge regarding the pathology of muscle involvement in Pompe disease and the potential change in muscle pathology with ERT; the newly emerging musculoskeletal and gross motor phenotype of infantile Pompe disease treated with ERT; updated recommendations regarding musculoskeletal management in Pompe disease, particularly in children now surviving longer with residual weakness impacting development and integrity of the musculoskeletal system; and the potential impact and role of exercise in infantile Pompe survivors treated with ERT.
Collapse
Affiliation(s)
- Laura E Case
- Division of Physical Therapy, Department of Community and Family Medicine, Duke University Medical Center, Durham, NC 27708, USA.
| | | | | |
Collapse
|
16
|
A case of adult Pompe disease presenting with severe fatigue and selective involvement of type 1 muscle fibers. Neuromuscul Disord 2011; 21:232-4. [DOI: 10.1016/j.nmd.2010.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/18/2010] [Accepted: 11/30/2010] [Indexed: 11/21/2022]
|
17
|
Raben N, Hill V, Shea L, Takikita S, Baum R, Mizushima N, Ralston E, Plotz P. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet 2008; 17:3897-908. [PMID: 18782848 DOI: 10.1093/hmg/ddn292] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The role of autophagy, a catabolic lysosome-dependent pathway, has recently been recognized in a variety of disorders, including Pompe disease, the genetic deficiency of the glycogen-degrading lysosomal enzyme acid-alpha glucosidase. Accumulation of lysosomal glycogen, presumably transported from the cytoplasm by the autophagic pathway, occurs in multiple tissues, but pathology is most severe in skeletal and cardiac muscle. Skeletal muscle pathology also involves massive autophagic buildup in the core of myofibers. To determine if glycogen reaches the lysosome via autophagy and to ascertain whether autophagic buildup in Pompe disease is a consequence of induction of autophagy and/or reduced turnover due to defective fusion with lysosomes, we generated muscle-specific autophagy-deficient Pompe mice. We have demonstrated that autophagy is not required for glycogen transport to lysosomes in skeletal muscle. We have also found that Pompe disease involves induction of autophagy but manifests as a functional deficiency of autophagy because of impaired autophagosomal-lysosomal fusion. As a result, autophagic substrates, including potentially toxic aggregate-prone ubiquitinated proteins, accumulate in Pompe myofibers and may cause profound muscle damage.
Collapse
Affiliation(s)
- Nina Raben
- Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1820, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW A dynamic network of anabolic and catabolic pathways regulates skeletal muscle mass in adult organisms. Muscle atrophy is the detrimental outcome of an imbalance of this network. The purpose of this review is to provide a critical evaluation of different forms of muscle atrophy from a mechanistic and therapeutic point of view. RECENT FINDINGS The identification and molecular characterization of distinct pathways implicated in the pathogenesis of muscle atrophy have revealed potential targets for therapeutic interventions. However, an effective application of these therapies requires a better understanding of the relative contribution of these pathways to the development of muscle atrophy in distinct pathological conditions. SUMMARY We propose that the decline in anabolic signals ('passive atrophy') and activation of catabolic pathways ('active atrophy') contribute differently to the pathogenesis of muscle atrophy associated with distinct diseases or unfavorable conditions. Interestingly, these pathways might converge on common transcriptional effectors, suggesting that an optimal intervention should be directed to targets at the chromatin level. We provide the rationale for the use of epigenetic drugs such as deacetylase inhibitors, which target multiple signaling pathways implicated in the pathogenesis of muscle atrophy.
Collapse
Affiliation(s)
- Valentina Guasconi
- Dulbecco Telethon Institute (DTI) at Fondazione Santa Lucia/EBRI, Rome, Italy
| | - Pier Lorenzo Puri
- Dulbecco Telethon Institute (DTI) at Fondazione Santa Lucia/EBRI, Rome, Italy
- The Burnham Institute for Medical Research, California, USA
| |
Collapse
|
19
|
Schoser BGH, Müller-Höcker J, Horvath R, Gempel K, Pongratz D, Lochmüller H, Müller-Felber W. Adult-onset glycogen storage disease type 2: clinico-pathological phenotype revisited. Neuropathol Appl Neurobiol 2007; 33:544-59. [PMID: 17573812 DOI: 10.1111/j.1365-2990.2007.00839.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The need for clinical awareness and diagnostic precision of glycogen storage disease type 2 (GSD2) has increased, as enzyme replacement therapy has become available. So far, only small series have reported the muscle pathology of late-onset GSD2. We reassessed 43 muscle biopsies of 38 GSD2 patients. In all patients the diagnosis of GSD2 has been established by biochemistry and/or mutational analysis of the GAA gene. Additionally to the expected morphological features, ultrastructural analysis revealed a high incidence of autophagic vacuoles, lipofuscin debris, structural Z-line disorganization and histological neurogenic-like pattern that were not thoroughly appreciated, previously. Comparing age at onset and morphology, excessive vacuolar and autophagic myopathy and mitochondrial disorganization of virtually all fibres is common in infants. At juvenile onset, a more moderate vacuolization without significant differences in overall morphology is notable. At late-onset, the spectrum of vacuolar myopathy is more divergent, ranging from almost normal to severe. Here pronounced secondary alterations are observed that include lipofuscin debris, autophagic vacuoles with residual lysosomal bodies and granular inclusions, structural mitochondrial and Z-line texture alterations. Moreover, there is a high incidence of subtle neurogenic-like alteration in all subtypes. Nineteen patients were genetically tested; in 15 patients the common leaky splicing mutation c.-45T>G (or IVS1-13T>G) in intron1 of the GAA gene was found on at least one allele, facilitating genetic screening. In our patients, GAA genotype appears not to be associated with secondary alterations such as autophagic vacuoles, structural alterations or neurogenic-like changes. These findings may have implications for our understanding of the pathogenesis of GSD2 and for assessing therapeutic success of enzyme replacement therapy.
Collapse
Affiliation(s)
- B G H Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Fukuda T, Roberts A, Plotz PH, Raben N. Acid alpha-glucosidase deficiency (Pompe disease). Curr Neurol Neurosci Rep 2007; 7:71-7. [PMID: 17217857 DOI: 10.1007/s11910-007-0024-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The development and recent approval of recombinant acid alpha-glucosidase for enzyme replacement therapy have been major milestones in Pompe disease research. Acid alpha-glucosidase is the enzyme responsible for degradation of glycogen polymers to glucose in the acidic milieu of the lysosomes. Cardiac and skeletal muscles are the two major tissues affected by the accumulation of glycogen within the lysosomes. Both cardiomyopathy and skeletal muscle myopathy are observed in patients with complete enzyme deficiency; this form of the disease is fatal within the first year of life. Skeletal muscle myopathy eventually leading to respiratory insufficiency is the predominant manifestation of partial enzyme deficiency. The recombinant enzyme alglucosidase alfa is the first drug ever approved for this devastating disorder. This review discusses the benefits and the shortcomings of the new therapy.
Collapse
Affiliation(s)
- Tokiko Fukuda
- Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Clinical Center, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
22
|
Bifsha P, Landry K, Ashmarina L, Durand S, Seyrantepe V, Trudel S, Quiniou C, Chemtob S, Xu Y, Gravel RA, Sladek R, Pshezhetsky AV. Altered gene expression in cells from patients with lysosomal storage disorders suggests impairment of the ubiquitin pathway. Cell Death Differ 2006; 14:511-23. [PMID: 16888648 DOI: 10.1038/sj.cdd.4402013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
By comparing mRNA profiles in cultured fibroblasts from patients affected with lysosomal storage diseases, we identified differentially expressed genes common to these conditions. These studies, confirmed by biochemical experiments, demonstrated that lysosomal storage is associated with downregulation of ubiquitin C-terminal hydrolase, UCH-L1 in the cells of eight different lysosomal disorders, as well as in the brain of a mouse model of Sandhoff disease. Induction of lysosomal storage by the cysteine protease inhibitor E-64 also reduced UCH-L1 mRNA, protein level and activity. All cells exhibiting lysosomal storage contained ubiquitinated protein aggregates and showed reduced levels of free ubiquitin and decreased proteasome activity. The caspase-mediated apoptosis in E-64-treated fibroblasts was reversed by transfection with a UCH-L1 plasmid, and increased after downregulation of UCH-L1 by siRNA, suggesting that UCH-L1 deficiency and impairment of the ubiquitin-dependent protein degradation pathway can contribute to the increased cell death observed in many lysosomal storage disorders.
Collapse
Affiliation(s)
- P Bifsha
- Sainte-Justine Hospital, Department of Pediatrics and Biochemistry, University of Montreal, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Pompe disease (Glycogen storage disease type II, GSDII, or acid maltase deficiency) is an autosomal recessive disorder characterized by deficiency of acid alpha-glucosidase resulting in intra-lysosomal accumulation of glycogen and leading to progressive muscle dysfunction. The natural history of infantile-onset Pompe disease is characterized by hypertrophic cardiomyopathy and profound generalized weakness presenting in the first few months of life, with rapid progression and death usually occurring by one year of age. Late-onset Pompe disease is characterized by onset of symptoms after one year of age, less severe or absence of cardiac involvement and slower progression, with symptoms primarily related to progressive dysfunction of skeletal muscles and respiratory muscle involvement. Recent clinical trials of enzyme replacement therapy have begun to allow greater opportunity for potential improvement in motor status, function, and survival than ever before, with hopes of moving toward maximizing physical function for individuals with Pompe disease. Children are living longer with some achieving independent sitting, creeping, and walking-milestones typically never achieved in the untreated natural history of the disorder. With increased survival, clinical management based on an understanding of the pathology and pathokinesiology of motor function gains importance. This article reviews current knowledge regarding the motor system in Pompe disease and provides an overview of physical therapy management of Pompe disease, including management strategies for individuals on enzyme replacement therapy.
Collapse
Affiliation(s)
- Laura Elizabeth Case
- Division of Physical Therapy, Department of Community and Family Medicine, School of Medicine, Duke University Medical Center, Durham, NC 27707, USA.
| | | |
Collapse
|
24
|
Hesselink RP, Schaart G, Wagenmakers AJM, Drost MR, van der Vusse GJ. Age-related morphological changes in skeletal muscle cells of acid α-glucosidase knockout mice. Muscle Nerve 2006; 33:505-13. [PMID: 16372321 DOI: 10.1002/mus.20482] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glycogen storage disease type II (GSDII), caused by a genetic defect in acid alpha-glucosidase (AGLU), leads to a decline in muscle contractility caused by both muscle wasting and a decrease in muscle quality, i.e., force generated per unit muscle mass. A previous study has shown that loss of muscle mass can only explain one-third of the decrease in contractile performance. Here we report on changes in the intramyocellular structural organization in a mouse knockout model (AGLU(-/-) mice) as a possible cause for the decline in muscle quality. Swollen, glycogen-filled lysosomes and centrally localized cores with cellular debris partially contribute to the decline in muscle quality. Altered localization and deposition of cytoskeletal proteins desmin and titin may reflect adaptive mechanisms at the age of 13 months, but a decline in quality at 20 months of age. The early deposition of lipofuscin in AGLU-deficient myocytes (13 months) is most likely a reflection of enhanced oxidative stress, which may also affect muscle quality. These collective findings, on the one hand, may explain the decrease in tissue quality and, on the other, may represent markers for efficacy of therapeutic interventions to restore muscle function in patients suffering from GSDII.
Collapse
Affiliation(s)
- Reinout P Hesselink
- Department of Movement Sciences, Cardiovascular Research Institute Maastricht, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Bechet D, Tassa A, Taillandier D, Combaret L, Attaix D. Lysosomal proteolysis in skeletal muscle. Int J Biochem Cell Biol 2005; 37:2098-114. [PMID: 16125113 DOI: 10.1016/j.biocel.2005.02.029] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 02/09/2005] [Accepted: 02/22/2005] [Indexed: 01/06/2023]
Abstract
Lysosomal proteases are abundantly expressed in fetal muscles, but poorly represented in the adult skeletal muscles. The lysosomal proteolytic system is nonetheless stimulated in adult muscles in a variety of pathological conditions. Furthermore, recent investigations describe autophagosomes in muscle fibers in vitro and in vivo, and report myopathies with excessive autophagy. This review presents our current knowledge about the lysosomal proteolytic system and summarizes the evidences pertaining to the role of lysosomes and autophagosomes in muscle physiology and pathology.
Collapse
Affiliation(s)
- Daniel Bechet
- Human Nutrition Research Center of Clermont-Ferrand, Nutrition and Protein Metabolism Unit, INRA UR551, 63122 Ceyrat, France.
| | | | | | | | | |
Collapse
|
26
|
Xu F, Ding E, Migone F, Serra D, Schneider A, Chen YT, Amalfitano A. Glycogen storage in multiple muscles of old GSD-II mice can be rapidly cleared after a single intravenous injection with a modified adenoviral vector expressing hGAA. J Gene Med 2005; 7:171-8. [PMID: 15515143 DOI: 10.1002/jgm.660] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Glycogen storage disease II (GSD-II) is an autosomal recessive lysosomal storage disease, due to acid-alpha-glucosidase (GAA) deficiency. The disease is characterized by massive glycogen accumulation in the cardiac and skeletal muscles. There is early onset (infantile, also known as Pompe disease) as well as late onset (juvenile and adult) forms of GSD-II. Few studies have been published to date that have explored the consequences of delivering a potential therapy to either late onset GSD-II subjects, and/or early onset patients with long-established muscle pathology. One recent report utilizing GAA-KO mice transgenically expressing human GAA (hGAA) suggested that long-established disease in both cardiac and skeletal muscle is likely to prove resistant to therapies. To investigate the potential for disease reversibility in old GSD-II mice, we studied their responsiveness to exogenous hGAA exposure via a gene therapy approach that we have previously shown to be efficacious in young GAA-KO mice. METHODS An [E1-, polymerase-] adenoviral vector encoding hGAA was intravenously injected into two groups of aged GAA-KO mice; GAA expression and tissue glycogen reduction were evaluated. RESULTS After vector injection, we found that extremely high amounts of hepatically secreted hGAA could be produced, and subsequently taken up by multiple muscle tissues in the old GAA-KO mice by 17 days post-injection (dpi). As a result, all muscle groups tested in the old GAA-KO mice showed significant glycogen reductions by 17 dpi, relative to that of age-matched, but mock-injected GAA-KO mice. For example, glycogen reduction in heart was 84%, in quadriceps 46%, and in diaphragm 73%. Our data also showed that the uptake and the subsequent intracellular processing of virally expressed hGAA were not impaired in older muscles. CONCLUSIONS Overall, the previously reported 'resistance' of old GAA-KO muscles to exogenous hGAA replacement approaches can be rapidly overcome after a single intravenous injection with a modified adenoviral vector expressing hGAA.
Collapse
Affiliation(s)
- Fang Xu
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Xu F, Ding E, Liao SX, Migone F, Dai J, Schneider A, Serra D, Chen YT, Amalfitano A. Improved efficacy of gene therapy approaches for Pompe disease using a new, immune-deficient GSD-II mouse model. Gene Ther 2004; 11:1590-8. [PMID: 15356673 DOI: 10.1038/sj.gt.3302314] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glycogen storage disease type II (GSD-II) is a lysosomal storage disorder in which the lack of human acid-alpha glucosidase (hGAA) activity results in massive accumulations of glycogen in cardiac and skeletal muscle fibers. Affected individuals die of cardiorespiratory failure secondary to the skeletal and/or cardiac muscle involvement. Recombinant hGAA enzyme replacement therapy (ERT) is currently in clinical trials and, although promising, ERT may be limited by large-scale production issues and/or the need for frequent infusions. These limitations could be circumvented or augmented by gene therapy strategies. Previous findings in our lab demonstrated that hepatic targeting of a modified adenovirus vector expressing human GAA was able to correct the glycogen accumulation in multiple affected muscles in the GAA-KO mice, by virtue of high-level, hepatic secretion of hGAA. However, although the vector persisted and expressed hGAA for 6 months in the liver, plasma hGAA was not detectable beyond 10 dpi (days postinjection), and reaccumulation of glycogen was observed. Two possibilities may have contributed to this phenomenon, the shut down of the CMV promoter and/or the onset of high levels of anti-hGAA antibodies. In order to test these and other possibilities, we have now developed an immune-deficient mouse model of GSD-II by interbreeding GAA-KO mice with severe combined immune-deficient (SCID) mice, generating double knockout, GAA-KO/SCID mice. In this new mouse model, we evaluated the efficacy of an [E1-, polymerase-] AdhGAA vector, in the absence of anti-hGAA antibody responses. After intravenous injection, GAA detection in the plasma was prolonged for at least 6 months secondary to the lack of anti-hGAA antibody production in all of the treated mice. GAA-KO/SCID mice treated with high doses of viral vector demonstrated longer durations of glycogen correction in both skeletal and cardiac muscles, relative to mice injected with lower doses of the vector. Notably, within 2 weeks of vector injection, muscle strength and coordination was normalized, and the improved muscle function persisted for at least 6 months. In summary, this new mouse model of GSD-II now makes it possible to assess the full potential for efficacy of any GAA-expressing vector (and/or ERT) contemplated for use in GSD-II gene therapy, without the negative influence that anti-hGAA antibodies entail.
Collapse
Affiliation(s)
- F Xu
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schaart G, Hesselink RP, Keizer HA, van Kranenburg G, Drost MR, Hesselink MKC. A modified PAS stain combined with immunofluorescence for quantitative analyses of glycogen in muscle sections. Histochem Cell Biol 2004; 122:161-9. [PMID: 15322861 DOI: 10.1007/s00418-004-0690-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2004] [Indexed: 10/26/2022]
Abstract
Simultaneous analyses of glycogen in sections with other subcellular constituents within the same section will provide detailed information on glycogen deposition and the processes involved. To date, staining protocols for quantitative glycogen analyses together with immunofluorescence in the same section are lacking. We aimed to: (1) optimise PAS staining for combination with immunofluorescence, (2) perform quantitative glycogen analyses in tissue sections, (3) evaluate the effect of section thickness on PAS-derived data and (4) examine if semiquantitative glycogen data were convertible to genuine glycogen values. Conventional PAS was successfully modified for combined use with immunofluorescence. Transmitted light microscopic examination of glycogen was successfully followed by semiquantification of glycogen using microdensitometry. Semiquantitative data correlated perfectly with glycogen content measured biochemically in the same sample (r2=0.993, P<0.001). Using a calibration curve (r2=0.945, P<0.001) derived from a custom-made external standard with incremental glycogen content, we converted the semiquantitative data to genuine glycogen values. The converted semiquantitative data were comparable with the glycogen values assessed biochemically (P=0.786). In addition we showed that for valid comparison of glycogen content between sections, thickness should remain constant. In conclusion, the novel protocol permits the combined use of PAS with immunofluorescence and shows valid conversion of data obtained by microdensitometry to genuine glycogen data.
Collapse
Affiliation(s)
- Gert Schaart
- Department of Movement Sciences, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Kondomerkos DJ, Kalamidas SA, Kotoulas OB. An electron microscopic and biochemical study of the effects of glucagon on glycogen autophagy in the liver and heart of newborn rats. Microsc Res Tech 2004; 63:87-93. [PMID: 14722905 DOI: 10.1002/jemt.20000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The effects of glucagon on the ultrastructural appearance and acid glucosidase activities in the liver and heart of newborn rats were studied. Liver or heart glycogen-hydrolyzing activity of acid glucosidase increased 3 hours after birth and gradually decreased from 3 to 9 hours. Maltose-hydrolyzing activity of acid glucosidase also rose 3 hours after birth, maintained a plateau between 3 and 6 hours, and fell at 9 hours. The administration of glucagon increased autophagic activity in the hepatocytes at the age of 6 hours. Glycogen inside the autophagic vacuoles was decreased, apparently due to the increased glycogen degradation. Glycogen-hydrolyzing activity was elevated in both the liver and the heart. Maltose-hydrolyzing activity was elevated in the liver, but not in the heart. The results of this study suggest that the glycogen-hydrolyzing and maltose-hydrolyzing activities of acid glucosidase are due to different enzymes. Glucagon's effect on the glycogen-hydrolyzing acid glucosidase activity and autophagosomal morphology is similar in both the liver and the heart.
Collapse
Affiliation(s)
- D J Kondomerkos
- Department of Anatomy, Histology and Embryology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| | | | | |
Collapse
|