1
|
Dunwell TL, Holland PWH. Diversity of human and mouse homeobox gene expression in development and adult tissues. BMC DEVELOPMENTAL BIOLOGY 2016; 16:40. [PMID: 27809766 PMCID: PMC5094009 DOI: 10.1186/s12861-016-0140-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/20/2016] [Indexed: 12/29/2022]
Abstract
Background Homeobox genes encode a diverse set of transcription factors implicated in a vast range of biological processes including, but not limited to, embryonic cell fate specification and patterning. Although numerous studies report expression of particular sets of homeobox genes, a systematic analysis of the tissue specificity of homeobox genes is lacking. Results Here we analyse publicly-available transcriptome data from human and mouse developmental stages, and adult human tissues, to identify groups of homeobox genes with similar expression patterns. We calculate expression profiles for 242 human and 278 mouse homeobox loci across a combination of 59 human and 12 mouse adult tissues, early and late developmental stages. This revealed 20 human homeobox genes with widespread expression, primarily from the TALE, CERS and ZF classes. Most homeobox genes, however, have greater tissue-specificity, allowing us to compile homeobox gene expression lists for neural tissues, immune tissues, reproductive and developmental samples, and for numerous organ systems. In mouse development, we propose four distinct phases of homeobox gene expression: oocyte to zygote; 2-cell; 4-cell to blastocyst; early to mid post-implantation. The final phase change is marked by expression of ANTP class genes. We also use these data to compare expression specificity between evolutionarily-based gene classes, revealing that ANTP, PRD, LIM and POU homeobox gene classes have highest tissue specificity while HNF, TALE, CUT and CERS are most widely expressed. Conclusions The homeobox genes comprise a large superclass and their expression patterns are correspondingly diverse, although in a broad sense related to an evolutionarily-based classification. The ubiquitous expression of some genes suggests roles in general cellular processes; in contrast, most human homeobox genes have greater tissue specificity and we compile useful homeobox datasets for particular tissues, organs and developmental stages. The identification of a set of eutherian-specific homeobox genes peaking from human 8-cell to morula stages suggests co-option of new genes to new developmental roles in evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0140-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas L Dunwell
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Peter W H Holland
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
2
|
Toshner M, Dunmore BJ, McKinney EF, Southwood M, Caruso P, Upton PD, Waters JP, Ormiston ML, Skepper JN, Nash G, Rana AA, Morrell NW. Transcript analysis reveals a specific HOX signature associated with positional identity of human endothelial cells. PLoS One 2014; 9:e91334. [PMID: 24651450 PMCID: PMC3961275 DOI: 10.1371/journal.pone.0091334] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/10/2014] [Indexed: 01/16/2023] Open
Abstract
The endothelial cell has a remarkable ability for sub-specialisation, adapted to the needs of a variety of vascular beds. The role of developmental programming versus the tissue contextual environment for this specialization is not well understood. Here we describe a hierarchy of expression of HOX genes associated with endothelial cell origin and location. In initial microarray studies, differential gene expression was examined in two endothelial cell lines: blood derived outgrowth endothelial cells (BOECs) and pulmonary artery endothelial cells. This suggested shared and differential patterns of HOX gene expression between the two endothelial lines. For example, this included a cluster on chromosome 2 of HOXD1, HOXD3, HOXD4, HOXD8 and HOXD9 that was expressed at a higher level in BOECs. Quantative PCR confirmed the higher expression of these HOXs in BOECs, a pattern that was shared by a variety of microvascular endothelial cell lines. Subsequently, we analysed publically available microarrays from a variety of adult cell and tissue types using the whole “HOX transcriptome” of all 39 HOX genes. Using hierarchical clustering analysis the HOX transcriptome was able to discriminate endothelial cells from 61 diverse human cell lines of various origins. In a separate publically available microarray dataset of 53 human endothelial cell lines, the HOX transcriptome additionally organized endothelial cells related to their organ or tissue of origin. Human tissue staining for HOXD8 and HOXD9 confirmed endothelial expression and also supported increased microvascular expression of these HOXs. Together these observations suggest a significant involvement of HOX genes in endothelial cell positional identity.
Collapse
Affiliation(s)
- Mark Toshner
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- Papworth Hospital, Cambridge, United Kingdom
| | - Benjamin J. Dunmore
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Eoin F. McKinney
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | - Paola Caruso
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Paul D. Upton
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - John P. Waters
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mark L. Ormiston
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jeremy N. Skepper
- Department of Physiology and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Gerard Nash
- School of Clinical and Experimental Medicine, Birmingham University, Birmingham, United Kingdom
| | - Amer A. Rana
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Toshner M, Dunmore BJ, McKinney EF, Southwood M, Caruso P, Upton PD, Waters JP, Ormiston ML, Skepper JN, Nash G, Rana AA, Morrell NW. Transcript analysis reveals a specific HOX signature associated with positional identity of human endothelial cells. PLoS One 2014; 1:430-5. [PMID: 23213434 PMCID: PMC3507213 DOI: 10.1242/bio.2012039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The distinct topographic Hox expression patterns observed in vascular smooth muscle cells (VSMCs) of the adult cardiovascular system suggest that these transcriptional regulators are critical for maintaining region-specific physiological properties of blood vessels. To test this proposition, we expanded the vascular Hoxc11 expression domain normally restricted to the lower limbs by utilizing an innovative integrated tetracycline regulatory system and Transgelin promoter elements to induce Hoxc11 expression universally in VSMCs of transgenic mice. Ectopic Hoxc11 expression in carotid arteries, aortic arch and descending aorta resulted in drastic vessel wall remodeling involving elastic laminae fragmentation, medial smooth muscle cell loss, and intimal lesion formation. None of these alterations were observed upon induction of Hoxc11 transgene expression in the femoral artery, i.e. the natural Hoxc11 activity domain, although this vessel was greatly enlarged, comparable to the topographically restricted vascular changes seen in Hoxc11−/− mice. To begin defining Hoxc11-controlled pathways of vascular remodeling, we performed immunolabeling studies in conjunction with co-transfection and chromatin immunoprecipitation (ChIP) assays using mouse vascular smooth muscle (MOVAS) cells. The results suggest direct transcriptional control of two members of the matrix metalloproteinase (Mmp) family, including Mmp2 and Mmp9 that are known as key players in the inception and progression of vascular remodeling events. In summary, the severe vascular abnormalities resulting from the induced dysregulated expression of a Hox gene with regional vascular patterning functions suggest that proper Hox function and regulation is critical for maintaining vascular functional integrity.
Collapse
Affiliation(s)
- Mark Toshner
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; Papworth Hospital, Cambridge, United Kingdom
| | - Benjamin J Dunmore
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Eoin F McKinney
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | - Paola Caruso
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Paul D Upton
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - John P Waters
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mark L Ormiston
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jeremy N Skepper
- Department of Physiology and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Gerard Nash
- School of Clinical and Experimental Medicine, Birmingham University, Birmingham, United Kingdom
| | - Amer A Rana
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
4
|
Pitera JE, Scambler PJ, Woolf AS. Fras1, a basement membrane-associated protein mutated in Fraser syndrome, mediates both the initiation of the mammalian kidney and the integrity of renal glomeruli. Hum Mol Genet 2008; 17:3953-64. [PMID: 18787044 PMCID: PMC2638576 DOI: 10.1093/hmg/ddn297] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
FRAS1 is mutated in some individuals with Fraser syndrome (FS) and the encoded protein is expressed in embryonic epidermal cells, localizing in their basement membrane (BM). Syndactyly and cryptophthalmos in FS are sequelae of skin fragility but the bases for associated kidney malformations are unclear. We demonstrate that Fras1 is expressed in the branching ureteric bud (UB), and that renal agenesis occurs in homozygous Fras1 null mutant blebbed (bl) mice on a C57BL6J background. In vivo, the bl/bl bud fails to invade metanephric mesenchyme which undergoes involution, events replicated in organ culture. The expression of glial cell line-derived neurotrophic factor and growth-differentiation factor 11 was defective in bl/bl renal primordia in vivo, whereas, in culture, the addition of either growth factor restored bud invasion into the mesenchyme. Mutant primordia also showed deficient expression of Hoxd11 and Six2 transcription factors, whereas the activity of bone morphogenetic protein 4, an anti-branching molecule, was upregulated. In wild types, Fras1 was also expressed by nascent nephrons. Foetal glomerular podocytes expressed Fras1 transcripts and Fras1 immunolocalized in a glomerular BM-like pattern. On a mixed background, bl mutants, and also compound mutants for bl and my, another bleb strain, sometimes survive into adulthood. These mice have two kidneys, which contain subsets of glomeruli with perturbed nephrin, podocin, integrin α3 and fibronectin expression. Thus, Fras1 protein coats branching UB epithelia and is strikingly upregulated in the nephron lineage after mesenchymal/epithelial transition. Fras1 deficiency causes defective interactions between the bud and mesenchyme, correlating with disturbed expression of key nephrogenic molecules. Furthermore, Fras1 may also be required for the formation of normal glomeruli.
Collapse
Affiliation(s)
- Jolanta E Pitera
- Nephro-Urology Unit, UCL Institute of Child Health, London WC1 N 1EH, UK
| | | | | |
Collapse
|
5
|
Adjaye J. Generation of amplified RNAs and cDNA libraries from single mammalian cells. METHODS IN MOLECULAR MEDICINE 2007; 132:117-24. [PMID: 17876080 DOI: 10.1007/978-1-59745-298-4_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the near completion of the human genome sequencing effort, it is now possible to analyze the expression of the entire human gene complement. However, a major obstacle in performing such analysis is the ability to successfully generate enough cDNA or amplified RNA from a limited number of cells, such as biopsies, blood smears, cells obtained by laser capture microscopy, and preimplantation embryonic cells and germ cells. Because these samples yield extremely small amounts of RNA, reproducible methods are needed to amplify this RNA while maintaining the original message profile. A detailed description is given for generating pools of cDNA libraries containing a high proportion of cDNAs enriched with 5'-coding sequences from as little as 1 ng of total RNA using a modified switching mechanism at 5' end of RNA transcript protocol. In addition, the T7-promoter-linked double-stranded cDNAs can be in vitro transcribed linearly using T7-RNA polymerase to generate amplified RNA that is mRNA derived. The cDNA pools can be used directly for gene-specific reverse transcriptase polymerase chain reaction or processed for ligation into vectors of choice whereas the amplified RNA can be used for microarray-based expression profiling.
Collapse
Affiliation(s)
- James Adjaye
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
6
|
Kocabas AM, Crosby J, Ross PJ, Otu HH, Beyhan Z, Can H, Tam WL, Rosa GJM, Halgren RG, Lim B, Fernandez E, Cibelli JB. The transcriptome of human oocytes. Proc Natl Acad Sci U S A 2006; 103:14027-32. [PMID: 16968779 PMCID: PMC1599906 DOI: 10.1073/pnas.0603227103] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Indexed: 11/18/2022] Open
Abstract
The identification of genes and deduced pathways from the mature human oocyte can help us better understand oogenesis, folliculogenesis, fertilization, and embryonic development. Human metaphase II oocytes were used within minutes after removal from the ovary, and its transcriptome was compared with a reference sample consisting of a mixture of total RNA from 10 different normal human tissues not including the ovary. RNA amplification was performed by using a unique protocol. Affymetrix Human Genome U133 Plus 2.0 GeneChip arrays were used for hybridizations. Compared with reference samples, there were 5,331 transcripts significantly up-regulated and 7,074 transcripts significantly down-regulated in the oocyte. Of the oocyte up-regulated probe sets, 1,430 have unknown function. A core group of 66 transcripts was identified by intersecting significantly up-regulated genes of the human oocyte with those from the mouse oocyte and from human and mouse embryonic stem cells. GeneChip array results were validated using RT-PCR in a selected set of oocyte-specific genes. Within the up-regulated probe sets, the top overrepresented categories were related to RNA and protein metabolism, followed by DNA metabolism and chromatin modification. This report provides a comprehensive expression baseline of genes expressed in in vivo matured human oocytes. Further understanding of the biological role of these genes may expand our knowledge on meiotic cell cycle, fertilization, chromatin remodeling, lineage commitment, pluripotency, tissue regeneration, and morphogenesis.
Collapse
Affiliation(s)
| | - Javier Crosby
- Unidad de Medicina Reproductiva, Clínica Las Condes, Lo Fontecilla 441, Las Condes, Santiago 759 1040, Chile
| | - Pablo J. Ross
- *Cellular Reprogramming Laboratory, Department of Animal Science and
| | - Hasan H. Otu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul 34755, Turkey; and
| | - Zeki Beyhan
- *Cellular Reprogramming Laboratory, Department of Animal Science and
| | - Handan Can
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul 34755, Turkey; and
| | | | | | - Robert G. Halgren
- *Cellular Reprogramming Laboratory, Department of Animal Science and
| | - Bing Lim
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
- Genome Institute of Singapore, Singapore 138672
| | - Emilio Fernandez
- Unidad de Medicina Reproductiva, Clínica Las Condes, Lo Fontecilla 441, Las Condes, Santiago 759 1040, Chile
| | - Jose Bernardo Cibelli
- *Cellular Reprogramming Laboratory, Department of Animal Science and
- **Physiology Department, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
7
|
Adjaye J. Whole-genome approaches for large-scale gene identification and expression analysis in mammalian preimplantation embryos. Reprod Fertil Dev 2005; 17:37-45. [PMID: 15745630 DOI: 10.1071/rd04075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 10/01/2004] [Indexed: 11/23/2022] Open
Abstract
The elucidation, unravelling and understanding of the molecular basis of transcriptional control during preimplantion development is of utmost importance if we are to intervene and eliminate or reduce abnormalities associated with growth, disease and infertility by applying assisted reproduction. Importantly, these studies should enhance our knowledge of basic reproductive biology and its application to regenerative medicine and livestock production. A major obstacle impeding progress in these areas is the ability to successfully generate molecular portraits of preimplantation embryos from their minute amounts of RNA. The present review describes the various approaches whereby classical embryology fuses with molecular biology, high-throughput genomics and systems biology to address and solve questions related to early development in mammals.
Collapse
Affiliation(s)
- James Adjaye
- Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, Ihnestrasse 73, D-14195 Berlin, Germany.
| |
Collapse
|
8
|
Thummel R, Li L, Tanase C, Sarras MP, Godwin AR. Differences in expression pattern and function between zebrafish hoxc13 orthologs: recruitment of Hoxc13b into an early embryonic role. Dev Biol 2004; 274:318-33. [PMID: 15385162 DOI: 10.1016/j.ydbio.2004.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 06/18/2004] [Accepted: 07/06/2004] [Indexed: 01/17/2023]
Abstract
Vertebrate Hox genes are generally believed to initiate expression at the primitive streak or early neural plate stages. The timing and spatial restrictions of the Hox expression patterns during these stages correlate well with their demonstrated role in axial patterning. Here we demonstrate that one zebrafish hoxc13 ortholog, hoxc13a, has an expression pattern in the developing tail bud that is consistent with the gene playing a role in axial patterning. However, the second hoxc13 ortholog, hoxc13b, is maternally expressed and is detectable in every cell of early cleavage embryos through gastrulae. In addition, both transcript and protein are detectable at these stages. At 19 h post fertilization (hpf), hoxc13b expression is up-regulated in the tail bud, becoming restricted to the tail bud by 24 hpf. Importantly, by 24 hpf, hoxc13b morphants show a specific developmental delay, which can be rescued by co-injecting synthetic capped hoxc13a or hoxc13b message. These data suggest some functional divergence due to altered expression patterns of the two hoxc13 orthologs after duplication. Further characterization of the hoxc13b morphant delay reveals that it is biphasic in nature, with the first phase of the delay occurring before gastrulation, suggesting a new role for vertebrate Hox genes before their conserved role in axial patterning. The extent of the delay does not change through 20 hpf; however, an additional delay emerges at this time. Notably, this second phase of the delay correlates with hoxc13b expression pattern becoming restricted to the tail bud.
Collapse
Affiliation(s)
- Ryan Thummel
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|