1
|
Chang CY, Ting HC, Liu CA, Su HL, Chiou TW, Harn HJ, Lin SZ, Ho TJ. Differentiation of Human Pluripotent Stem Cells Into Specific Neural Lineages. Cell Transplant 2021; 30:9636897211017829. [PMID: 34665040 PMCID: PMC8529300 DOI: 10.1177/09636897211017829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are sources of several somatic cell
types for human developmental studies, in vitro disease modeling, and
cell transplantation therapy. Improving strategies of derivation of
high-purity specific neural and glial lineages from hPSCs is critical
for application to the study and therapy of the nervous system. Here,
we will focus on the principles behind establishment of neuron and
glia differentiation methods according to developmental studies. We
will also highlight the limitations and challenges associated with the
differentiation of several “difficult” neural lineages and delay in
neuronal maturation and functional integration. To overcome these
challenges, we will introduce strategies and novel technologies aimed
at improving the differentiation of various neural lineages to expand
the application potential of hPSCs to the study of the nervous
system.
Collapse
Affiliation(s)
- Chia-Yu Chang
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Neuroscience Center, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Hsiao-Chien Ting
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ching-Ann Liu
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Neuroscience Center, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Pathology, Hualien Tzu Chi Hospital and Tzu Chi University, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
2
|
Domínguez-Frutos E, Vendrell V, Alvarez Y, Zelarayan LC, López-Hernández I, Ros M, Schimmang T. Tissue-specific requirements for FGF8 during early inner ear development. Mech Dev 2009; 126:873-81. [DOI: 10.1016/j.mod.2009.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 11/15/2022]
|
3
|
Colas A, Cartry J, Buisson I, Umbhauer M, Smith JC, Riou JF. Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus. Dev Biol 2008; 320:351-65. [DOI: 10.1016/j.ydbio.2008.05.547] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 04/30/2008] [Accepted: 05/20/2008] [Indexed: 10/22/2022]
|
4
|
Vaccaro MC, Cuccaro M, De Marco N, Campanella C. Expression of p27BBP/eIF6 is highly modulated duringXenopus laevis embryogenesis. Mol Reprod Dev 2006; 73:482-90. [PMID: 16425228 DOI: 10.1002/mrd.20449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein p27BBP/eIF6 is necessary for ribosomal function of all cells. Previous data showed that from mammals to yeast p27BBP/eIF6 is involved in the biogenesis of ribosomal subunit 60S and its association with the 60S prevents premature 80S formation regulated by PKC signaling, indicating that phosphorylation of p27BBP/eIF6 is needed for translation to occur. While in vitro p27BBP/eIF6 is constitutively expressed, and it has a high level of expression in cycling cells, in vivo its expression varies according to tissues and appears regulated by factors up to now unknown. p27BBP/eIF6 has never been investigated in developing organisms where its upregulation can be correlated with tissue growth and differentiation. In this study we have sequenced p27BBP/eIF6 cDNA and studied its expression during development of Xenopus laevis, as the first step for studying its regulation. The amino acid sequence is highly conserved with two putative PKC phosphorylation sites in serine, one site being typical of Xenopus. At the end of gastrulation, the p27BBP/eIF6 riboprobe localizes in the neural plate and in the paraxial mesoderm. In particular, from stage 24, a clear-cut localization occurs in the perspective head. In embryos exposed to teratogens, the localization of p27BBP/eIF6 riboprobe varies according to the change of head size caused by the treatment. p27BBP/eIF6 expression is particularly evident in differentiating olfactory pits, the lens, otic vesicles, and in branchial arches. Features of particular interest are p27BBP/eIF6 high level of expression in the eye field, and in the mid-hindbrain-boundary, two regions with high proliferative activity. Altogether, data indicate that a modulated expression of p27BBP/eIF6 occurs in developing anlagens in addition to a basal level of expression, and may suggest a correlation between p27BBP/eIF6 and proliferative activity. Moreover, the X. laevis cDNA isolation and characterization offer new hints for further studies in relation to potential p27BBP/eIF6 phosphorylation.
Collapse
Affiliation(s)
- Maria Carmela Vaccaro
- Department of Structural and Functional Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Palazzina D, Napoli, Italy.
| | | | | | | |
Collapse
|
5
|
Cerny R, Meulemans D, Berger J, Wilsch-Bräuninger M, Kurth T, Bronner-Fraser M, Epperlein HH. Combined intrinsic and extrinsic influences pattern cranial neural crest migration and pharyngeal arch morphogenesis in axolotl. Dev Biol 2004; 266:252-69. [PMID: 14738875 DOI: 10.1016/j.ydbio.2003.09.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cranial neural crest cells migrate in a precisely segmented manner to form cranial ganglia, facial skeleton and other derivatives. Here, we investigate the mechanisms underlying this patterning in the axolotl embryo using a combination of tissue culture, molecular markers, scanning electron microscopy and vital dye analysis. In vitro experiments reveal an intrinsic component to segmental migration; neural crest cells from the hindbrain segregate into distinct streams even in the absence of neighboring tissue. In vivo, separation between neural crest streams is further reinforced by tight juxtapositions that arise during early migration between epidermis and neural tube, mesoderm and endoderm. The neural crest streams are dense and compact, with the cells migrating under the epidermis and outside the paraxial and branchial arch mesoderm with which they do not mix. After entering the branchial arches, neural crest cells conduct an "outside-in" movement, which subsequently brings them medially around the arch core such that they gradually ensheath the arch mesoderm in a manner that has been hypothesized but not proven in zebrafish. This study, which represents the most comprehensive analysis of cranial neural crest migratory pathways in any vertebrate, suggests a dual process for patterning the cranial neural crest. Together with an intrinsic tendency to form separate streams, neural crest cells are further constrained into channels by close tissue apposition and sorting out from neighboring tissues.
Collapse
Affiliation(s)
- Robert Cerny
- Department of Anatomy, TU Dresden, Dresden 01307, Germany.
| | | | | | | | | | | | | |
Collapse
|
6
|
Shinga J, Itoh M, Shiokawa K, Taira S, Taira M. Early patterning of the prospective midbrain-hindbrain boundary by the HES-related gene XHR1 in Xenopus embryos. Mech Dev 2001; 109:225-39. [PMID: 11731236 DOI: 10.1016/s0925-4773(01)00528-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The molecular mechanisms that govern early patterning of anterior neuroectoderm (ANE) for the prospective brain region in vertebrates are largely unknown. Screening a cDNA library of Xenopus ANE led to the isolation of a Hairy and Enhancer of split- (HES)-related transcriptional repressor gene, Xenopus HES-related 1 (XHR1). XHR1 is specifically expressed in the midbrain-hindbrain boundary (MHB) region at the tailbud stage. The localized expression of XHR1 was detected as early as the early gastrula stage in the presumptive MHB region, an area just anterior to the involuting dorsal mesoderm that is demarcated by the expression of the gene Xbra. Expression of XHR1 was detected much earlier than that of other known MHB genes, XPax-2 and En-2, and also before the formation of the expression boundary between Xotx2 and Xgbx-2, suggesting that the early patterning of the presumptive MHB is independent of Xotx2 and Xgbx-2. Instead, the location of XHR1 expression appears to be determined in relation to the Xbra expression domain, since reduced or ectopic expression of Xbra altered the XHR1 expression domain according to the location of Xbra expression. In functional assays using mRNA injection, overexpression of dominant-negative forms of XHR1 in the MHB region led to marked reduction of XPax-2 and En-2 expression, and this phenotype was rescued by coexpression of wild-type XHR1. Furthermore, ectopically expressed wild-type XHR1 near the MHB region enhanced En-2 expression only in the MHB region but not in the region outside the MHB. These data suggest that XHR1 is required, but not sufficient by itself, to initiate MHB marker gene expression. Based on these data, we propose that XHR1 demarcates the prospective MHB region in the neuroectoderm in Xenopus early gastrulae.
Collapse
Affiliation(s)
- J Shinga
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | |
Collapse
|
7
|
Fuhrmann S, Chow L, Reh TA. Molecular control of cell diversification in the vertebrate retina. Results Probl Cell Differ 2001; 31:69-91. [PMID: 10929402 DOI: 10.1007/978-3-540-46826-4_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- S Fuhrmann
- Department of Biological Structure, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
8
|
Umbhauer M, Penzo-Méndez A, Clavilier L, Boucaut J, Riou J. Signaling specificities of fibroblast growth factor receptors in early Xenopus embryo. J Cell Sci 2000; 113 ( Pt 16):2865-75. [PMID: 10910771 DOI: 10.1242/jcs.113.16.2865] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Formation of mesoderm and posterior structures in early Xenopus embryos is dependent on fibroblast growth factor (FGF) signaling. Although several FGF receptors (FGFRs) are expressed in the early embryo, their respective role in these processes remains poorly understood. We provide evidence that FGFR-1 and FGFR-4 signals elicit distinct responses both in naive and neuralized ectodermal cells. We show that naive ectodermal cells expressing a constitutively active chimeric torso-FGFR-1 (t-R1) are converted into mesoderm in a Ras-dependent manner, while those expressing torso-FGFR-4 (t-R4) differentiate into epidermis without significant activation of Erk-1. In neuralized ectoderm, expression of t-R4 causes the up-regulation of the midbrain markers En-2 and Wnt-1, but not of the hindbrain nor the spinal cord markers Krox20 and Hoxb9. Mutation of tyr(776) in the phospholipase C-(gamma) binding consensus sequence YLDL of t-R4 completely abolishes En-2 and Wnt-1 induction. In contrast to t-R4, platelet derived growth factor (PDGF)-dependent FGFR-1 activation in neuralized ectodermal cells expressing a chimeric PDGFR-FGFR-1 receptor results in the expression of Krox20 and Hoxb9. A similar effect is observed when an inducible form of oncogenic Raf is expressed, therefore implicating FGFR-1 and Raf in the transduction of FGF-caudalizing signals in neural tissue. Our results suggest that FGFR-1 and FGFR-4 transduce distinct signals in embryonic cells, and mainly differ in their ability to activate the Ras/MAPK pathway.
Collapse
MESH Headings
- Animals
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Early Growth Response Protein 2
- Ectoderm/physiology
- Embryo, Nonmammalian/physiology
- Gene Expression Regulation, Developmental/physiology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- In Situ Hybridization
- MAP Kinase Signaling System/physiology
- Mesoderm/physiology
- Mutagenesis/physiology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nervous System/embryology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-raf/genetics
- Proto-Oncogene Proteins c-raf/metabolism
- RNA, Messenger/analysis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptor, Fibroblast Growth Factor, Type 4
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Up-Regulation/physiology
- Wnt Proteins
- Wnt1 Protein
- Xenopus Proteins
- Xenopus laevis
- Zebrafish Proteins
Collapse
Affiliation(s)
- M Umbhauer
- Laboratoire de Biologie Moléculaire et Cellulaire du Développement, groupe Biologie Expérimentale, UMR CNRS 7622, Université Paris VI, 75005 Paris, France
| | | | | | | | | |
Collapse
|