1
|
Xie Z, Song P, Zhong Y, Guo J, Gui L, Li M. Medaka gcnf is a component of chromatoid body during spermiogenesis. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Kavarthapu R, Dufau ML. Germ Cell Nuclear Factor (GCNF/RTR) Regulates Transcription of Gonadotropin-Regulated Testicular RNA Helicase (GRTH/DDX25) in Testicular Germ Cells--The Androgen Connection. Mol Endocrinol 2015; 29:1792-804. [PMID: 26484580 DOI: 10.1210/me.2015-1198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH) (GRTH/DDX25), is a testis-specific protein essential for completion of spermatogenesis. Transgenic mice carrying 5'-flanking regions of the GRTH gene/green fluorescence protein (GFP) reporter revealed a region (-6.4/-3.6 kb) which directs its expression in germ cells (GCs) via androgen action. This study identifies a functional cis-binding element on the GRTH gene for GC nuclear factor (GCNF) (GCNF/RTR) required to regulate GRTH gene expression in postmeiotic testis GCs and explore the action of androgen on GCNF and GRTH transcription/expression. GCNF expression decreased in mice testis upon flutamide (androgen receptor antagonist) treatment, indicating the presence of an androgen/GCNF network to direct GRTH expression in GC. Binding studies and chromatin immunoprecipitation demonstrated specific association of GCNF to a consensus half-site (-5270/-5252) of the GRTH gene in both round spermatids and spermatocytes, which was abolished by flutamide treatment in round spermatids. Moreover, flutamide treatment of wild-type mice caused selective reduction of GCNF and GRTH in round spermatids. GCNF knock-down in seminiferous tubules from GRTH-transgenic mice (dark zone, round spermatid rich) caused decreased GFP expression. Exposure of tubules to flutamide caused decrease in GCNF and GFP expression, whereas androgen exposure induced significant increase. Our studies provide evidence for actions of androgen on GCNF cell-specific regulation of GRTH expression in GC. GRTH associates with GCNF mRNA, its absence caused increase on GCNF expression and mRNA stability indicative of a negative autocrine regulation of GCNF by GRTH. These in vivo/in vitro models link androgen actions to GC through GCNF, as regulated transfactor that controls transcription/expression of GRTH.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria L Dufau
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
3
|
Revisiting the role of GCNF in embryonic development. Semin Cell Dev Biol 2013; 24:679-86. [PMID: 24029702 DOI: 10.1016/j.semcdb.2013.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
GCNF (NR6A1) is essential for embryonic development. GCNF belongs to the nuclear receptor (NR) gene family, it is distantly related to other NRs and is the only member of subfamily 6. As the ligand for GCNF has not been identified, GCNF is designated an orphan nuclear receptor. GCNF has been found to be a transcriptional repressor, through specific binding to DR0 response elements, which is found in the Oct4 proximal promoter for example. GCNF is expressed widely in early mouse embryos, and later in the developing nervous system. GCNF knockout mouse embryos die around E10.5. GCNF is required for the restriction of Oct4 expression to primordial germ cells after gastrulation. GCNF is expressed in ES/EC cells and during their differentiation, and has been reported to be required for pluripotency gene repression during retinoic acid (RA)-induced mES cell differentiation. GCNF can interact with DNA methylation proteins, and is suggested to recruit DNA methylation complexes to repress and silence Oct4 expression. Nuclear receptor regulation in embryonic development is a complex process, as different nuclear receptors have overlapping and distinct functions. In-depth exploration of GCNF function and mechanism of action will help to comprehensively understand the nuclear receptor regulation in embryonic development.
Collapse
|
4
|
Gurtan AM, Ravi A, Rahl PB, Bosson AD, JnBaptiste CK, Bhutkar A, Whittaker CA, Young RA, Sharp PA. Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts. Genes Dev 2013; 27:941-54. [PMID: 23630078 DOI: 10.1101/gad.215376.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are critical to proliferation, differentiation, and development. Here, we characterize gene expression in murine Dicer-null adult mesenchymal stem cell lines, a fibroblast cell type. Loss of Dicer leads to derepression of let-7 targets at levels that exceed 10-fold to 100-fold with increases in transcription. Direct and indirect targets of this miRNA belong to a mid-gestation embryonic program that encompasses known oncofetal genes as well as oncogenes not previously associated with an embryonic state. Surprisingly, this mid-gestation program represents a distinct period that occurs between the pluripotent state of the inner cell mass at embryonic day 3.5 (E3.5) and the induction of let-7 upon differentiation at E10.5. Within this mid-gestation program, we characterize the let-7 target Nr6a1, an embryonic transcriptional repressor that regulates gene expression in adult fibroblasts following miRNA loss. In total, let-7 is required for the continual suppression of embryonic gene expression in adult cells, a mechanism that may underlie its tumor-suppressive function.
Collapse
Affiliation(s)
- Allan M Gurtan
- David H. Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kurth T, Weiche S, Vorkel D, Kretschmar S, Menge A. Histology of plastic embedded amphibian embryos and larvae. Genesis 2011; 50:235-50. [DOI: 10.1002/dvg.20821] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 12/27/2022]
|
6
|
Nuclear Receptors in Regulation of Mouse ES Cell Pluripotency and Differentiation. PPAR Res 2011; 2007:61563. [PMID: 18274628 PMCID: PMC2233893 DOI: 10.1155/2007/61563] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 06/11/2007] [Indexed: 12/25/2022] Open
Abstract
Embryonic stem (ES) cells have great therapeutic potential because they are capable of indefinite self-renewal and have the potential to differentiate into over 200 different cell types that compose the human body. The switch from the pluripotent phenotype to a differentiated cell involves many complex signaling pathways including those involving LIF/Stat3 and the transcription factors Sox2, Nanog and Oct-4. Many nuclear receptors play an important role in the maintenance of pluripotence (ERRβ, SF-1, LRH-1, DAX-1) repression of the ES cell phenotype (RAR, RXR, GCNF) and also the differentiation of ES cells (PPARγ). Here we review the roles of the nuclear receptors involved in regulating these important processes in ES cells.
Collapse
|
7
|
Chute JP, Ross JR, McDonnell DP. Minireview: Nuclear receptors, hematopoiesis, and stem cells. Mol Endocrinol 2009; 24:1-10. [PMID: 19934345 DOI: 10.1210/me.2009-0332] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) regulate a panoply of biological processes, including the function and development of cells within the hematopoietic and immune system, such as erythrocytes, monocytes, and lymphocytes. Significantly less is known regarding the function of NRs in regulating the fate of hematopoietic stem cells (HSCs), the self-renewing, pluripotent cells that give rise to the entirety of the blood and immune systems throughout the lifetime of an individual. Several recent studies suggest, either directly or indirectly, a role for members of the NR family in regulating the differentiation and self-renewal of HSCs, embryonic stem cells, and induced pluripotent stem cells. Herein, we review in detail the function of specific NRs in controlling HSC and other stem cell fate and propose a framework through which these observations can be translated into therapeutic amplification of HSCs for clinical purposes.
Collapse
Affiliation(s)
- John P Chute
- Division of Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
8
|
David R, Brenner C, Stieber J, Schwarz F, Brunner S, Vollmer M, Mentele E, Müller-Höcker J, Kitajima S, Lickert H, Rupp R, Franz WM. MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat Cell Biol 2008; 10:338-45. [PMID: 18297060 DOI: 10.1038/ncb1696] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/28/2008] [Indexed: 12/22/2022]
Abstract
ES-cell-based cardiovascular repair requires an in-depth understanding of the molecular mechanisms underlying the differentiation of cardiovascular ES cells. A candidate cardiovascular-fate inducer is the bHLH transcription factor MesP1. As one of the earliest markers, it is expressed specifically in almost all cardiovascular precursors and is required for cardiac morphogenesis. Here we show that MesP1 is a key factor sufficient to induce the formation of ectopic heart tissue in vertebrates and increase cardiovasculogenesis by ES cells. Electrophysiological analysis showed all subtypes of cardiac ES-cell differentiation. MesP1 overexpression and knockdown experiments revealed a prominent function of MesP1 in a gene regulatory cascade, causing Dkk-1-mediated blockade of canonical Wnt-signalling. Independent evidence from ChIP and in vitro DNA-binding studies, expression analysis in wild-type and MesP knockout mice, and reporter assays confirm that Dkk-1 is a direct target of MesP1. Further analysis of the regulatory networks involving MesP1 will be required to preprogramme ES cells towards a cardiovascular fate for cell therapy and cardiovascular tissue engineering. This may also provide a tool to elicit cardiac transdifferentiation in native human adult stem cells.
Collapse
Affiliation(s)
- R David
- Medizinische Klinik und Poliklinik I, Klinikum Grosshadern der LMU, D-81377 München, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mikawa S, Morozumi T, Shimanuki SI, Hayashi T, Uenishi H, Domukai M, Okumura N, Awata T. Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor, germ cell nuclear factor (NR6A1). Genome Res 2007; 17:586-93. [PMID: 17416745 PMCID: PMC1855175 DOI: 10.1101/gr.6085507] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The number of vertebrae in pigs varies and is associated with meat productivity. Wild boars, which are ancestors of domestic pigs, have 19 vertebrae. In comparison, European commercial breeds have 21-23 vertebrae, probably owing to selective breeding for enlargement of body size. We previously identified two quantitative trait loci (QTL) for the number of vertebrae on Sus scrofa chromosomes (SSC) 1 and 7. These QTL explained an increase of more than two vertebrae. Here, we performed a map-based study to define the QTL region on SSC1. By using three F2 experimental families, we performed interval mapping and recombination analyses and defined the QTL within a 1.9-cM interval. Then we analyzed the linkage disequilibrium of microsatellite markers in this interval and found that 10 adjacent markers in a 300-kb region were almost fixed in European commercial breeds. Genetic variation of the markers was observed in Asian local breeds or wild boars. This region encoded an orphan nuclear receptor, germ cell nuclear factor (NR6A1, formerly known as GCNF), which contained an amino acid substitution (Pro192Leu) coincident with the QTL. This substitution altered the binding activity of NR6A1 to its corepressors, nuclear receptor-associated protein 80 (RAP80) and nuclear receptor corepressor 1 (NCOR1). In addition, somites of mouse embryos demonstrated expression of NR6A1 protein. Together, these results suggest that NR6A1 is a strong candidate for one of the QTL that influence number of vertebrae in pigs.
Collapse
Affiliation(s)
- Satoshi Mikawa
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chung ACK, Xu X, Niederreither KA, Cooney AJ. Loss of orphan nuclear receptor GCNF function disrupts forebrain development and the establishment of the isthmic organizer. Dev Biol 2006; 293:13-24. [PMID: 16530751 DOI: 10.1016/j.ydbio.2005.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 11/17/2005] [Accepted: 12/06/2005] [Indexed: 02/06/2023]
Abstract
The isthmic organizer, which is located at the midbrain-hindbrain boundary, is important for midbrain development. The mechanism by which the development of the organizer is initiated and maintained is not well understood. Inactivation of the gene encoding the orphan nuclear receptor, GCNF, diminishes the expression of secreted signaling molecules, Fgf8 and Wnt1, the paired box genes Pax2/5, En1/2, and homeodomain transcription factor Gbx2; all of which are essential for isthmic organizer function. In addition, full neuronal differentiation is not observed in the midbrain region of GCNF-/- embryos. Increased cell death may contribute to the loss of midbrain structure in GCNF-/- embryos. These results indicate that GCNF is required for establishment of the isthmic organizer, thereby regulating the midbrain development.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Apoptosis/physiology
- Cell Differentiation/physiology
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Down-Regulation
- Ectoderm/metabolism
- Fibroblast Growth Factor 8/biosynthesis
- Fibroblast Growth Factor 8/genetics
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/genetics
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Mesencephalon/abnormalities
- Mesencephalon/embryology
- Mesencephalon/metabolism
- Mice
- Mice, Knockout
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Neurons/cytology
- Nuclear Receptor Subfamily 6, Group A, Member 1
- Organizers, Embryonic/abnormalities
- Organizers, Embryonic/embryology
- Organizers, Embryonic/metabolism
- Otx Transcription Factors/biosynthesis
- Otx Transcription Factors/genetics
- Phosphoproteins/biosynthesis
- Phosphoproteins/genetics
- Prosencephalon/abnormalities
- Prosencephalon/embryology
- Prosencephalon/metabolism
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Somites/metabolism
Collapse
Affiliation(s)
- Arthur C-K Chung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
11
|
|
12
|
Arima K, Shiotsugu J, Niu R, Khandpur R, Martinez M, Shin Y, Koide T, Cho KWY, Kitayama A, Ueno N, Chandraratna RAS, Blumberg B. Global analysis of RAR-responsive genes in the Xenopus neurula using cDNA microarrays. Dev Dyn 2005; 232:414-31. [PMID: 15614783 DOI: 10.1002/dvdy.20231] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Retinoid signaling is important for patterning the vertebrate hindbrain and midaxial regions. We recently showed that signaling through retinoic acid receptors (RARs) is essential for anteroposterior patterning along the entire body axis. To further investigate the mechanisms through which RARs act, we used microarray analysis to investigate the effects of modulating RAR activity on target gene expression. We identified 334 up-regulated genes (92% of which were validated), including known RA-responsive genes, known genes that have never been proposed as RA targets and many hypothetical and unidentified genes (n = 166). Sixty-seven validated down-regulated genes were identified, including known RA-responsive genes and anterior marker genes. The expression patterns of selected up-regulated genes (n = 45) were examined at neurula stages using whole-mount in situ hybridization. We found that most of these genes were expressed in the neural tube and many were expressed in anterior tissues such as neural crest, brain, eye anlagen, and cement gland. Some were expressed in tissues such as notochord, somites, pronephros, and blood islands, where retinoic acid (RA) plays established roles in organogenesis. Members of this set of newly identified RAR target genes are likely to play important roles in neural patterning and organogenesis under the control of RAR signaling pathways, and their further characterization will expand our understanding of RA signaling during development.
Collapse
Affiliation(s)
- Kayo Arima
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Koziollek-Drechsler I, Sattler U, Zechel C. The expression level of GCNF affects fate choice during neural differentiation of PCC7 cells. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/sita.200400041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
David R, Groebner M, Franz WM. Magnetic Cell Sorting Purification of Differentiated Embryonic Stem Cells Stably Expressing Truncated Human CD4 as Surface Marker. Stem Cells 2005; 23:477-82. [PMID: 15790768 DOI: 10.1634/stemcells.2004-0177] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryonic stem (ES) cells offer great potential in regenerative medicine and tissue engineering. Clinical applications are still hampered by the lack of protocols for gentle, high-yield isolation of specific cell types for transplantation expressing no immunogenic markers. We describe labeling of stably transfected ES cells expressing a human CD4 molecule lacking its intracellular domain (DeltaCD4) under control of the phosphoglycerate kinase promoter for magnetic cell sorting (MACS). To track the labeled ES cells, we fused DeltaCD4 to an intracellular enhanced green fluorescent protein domain (DeltaCD4EGFP). We showed functionality of the membrane-bound fluorescent fusion protein and its suitability for MACS leading to purities greater than 97%. Likewise, expression of DeltaCD4 yielded up to 98.5% positive cells independently of their differentiation state. Purities were not limited by the initial percentage of DeltaCD4(+) cells, ranging from 0.6%-16%. The viability of MACS-selected cells was demonstrated by reaggregation and de novo formation of embryoid bodies developing all three germ layers. Thus, expression of DeltaCD4 in differentiated ES cells may enable rapid, high-yield purification of a desired cell type for tissue engineering and transplantation studies.
Collapse
Affiliation(s)
- Robert David
- Klinikum Grosshadern, Marchioninistrasse 15, 81377 Münich, Germany
| | | | | |
Collapse
|
15
|
Sattler U, Samochocki M, Maelicke A, Zechel C. The expression level of the orphan nuclear receptor GCNF (germ cell nuclear factor) is critical for neuronal differentiation. Mol Endocrinol 2004; 18:2714-26. [PMID: 15297607 DOI: 10.1210/me.2004-0251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The germ cell nuclear factor (GCNF) is essential for normal embryonic development and gametogenesis. To test the prediction that GCNF is additionally required for neuronal differentiation, we used the mouse embryonal carcinoma cell line PCC7-Mz1, which represents an advantageous model to study neuronal cells from the stage of fate choice until the acquirement of functional competence. We generated stable transfectants that express gcnf sense or antisense RNA under the control of a tetracycline-regulated promoter. After retinoic acid-induced withdrawal from the cell cycle, sense clones developed a neuron network with changed properties, and the time course of neuron maturation was shortened. Consistent with these data, differentiation of neuronal precursor cells was impaired in antisense cultures. This involved a delay in 1) the down-regulation of nestin, a marker for undifferentiated neuroepithelial cells and stem cells of the central nervous system, and 2) up-regulation of the somatodendritic protein microtubule-associated protein 2 and the synaptic vesicle protein synaptophysin. Neuronal cells in the antisense cultures acquired functional competence, although with a significant delay. Our data propose that the level of GCNF is critical for differentiation and maturation of neuronal precursor cells.
Collapse
Affiliation(s)
- Ulrike Sattler
- Institute of Physiological Biochemistry and Pathobiochemistry, Johannes Gutenberg University, Medical School, Duesberg Weg 6, 55099 Mainz, Germany
| | | | | | | |
Collapse
|
16
|
Chung AC, Cooney AJ. The varied roles of nuclear receptors during vertebrate embryonic development. NUCLEAR RECEPTOR SIGNALING 2003; 1:e007. [PMID: 16604179 PMCID: PMC1402219 DOI: 10.1621/nrs.01007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Accepted: 06/16/2003] [Indexed: 11/20/2022]
Abstract
Nuclear receptors comprise a superfamily of sequence-specific transcription factors whose members have diverse roles during development. This review will summarize the developmental roles of selected members of the nuclear receptor superfamily.
Collapse
|
17
|
Barreto G, Reintsch W, Kaufmann C, Dreyer C. The function of Xenopus germ cell nuclear factor (xGCNF) in morphogenetic movements during neurulation. Dev Biol 2003; 257:329-42. [PMID: 12729562 DOI: 10.1016/s0012-1606(03)00109-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The germ cell nuclear factor (GCNF, NR6A1) is a nuclear orphan receptor first described in the mouse testis and subsequently identified as an essential transcription factor in vertebrate embryogenesis. Here, we analyze the phenotype of Xenopus embryos after depletion of embryonic GCNF (xEmGCNF) protein using a specific morpholino antisense oligonucleotide. Morphological defects after xEmGCNF knockdown became obvious from neurulation onward. Among the abnormalities observed, defective formation of the neural tube and a short and curved main body axis were the most remarkable traits. Histological analysis, lineage tracing of injected blastomeres, and Keller sandwich explants revealed that xEmGCNF function is required for different patterns of cell intercalation during neurulation and consequently for the sequence of morphogenetic movements leading to formation of the neural tube. Further characterization of the phenotype at the molecular level showed an abnormal distribution of the extracellular matrix protein fibronectin and a reduction in the expression level of the integrin subunits alpha5 and alpha6, the limiting components of the laminin and fibronectin receptors, respectively. We propose integrin-mediated cell-matrix interaction as a process that requires xEmGCNF function and provides, in concert with cadherins-mediated cell-cell interactions, a molecular basis for morphogenetic cell movements during neurulation.
Collapse
Affiliation(s)
- Guillermo Barreto
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 35/V, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
18
|
Yang G, Zhang YL, Buchold GM, Jetten AM, O'Brien DA. Analysis of germ cell nuclear factor transcripts and protein expression during spermatogenesis. Biol Reprod 2003; 68:1620-30. [PMID: 12606326 DOI: 10.1095/biolreprod.102.012013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Germ cell nuclear factor (GCNF), an orphan receptor in the nuclear receptor superfamily, is expressed predominantly in developing germ cells in the adult mouse. Two Gcnf transcripts (7.4 and 2.1 kilobase [kb]) encoded by a single copy gene are expressed in the testis of several mammalian species. To identify features that regulate Gcnf expression, we characterized the structure and sequence of the mouse gene and its two transcripts and determined the expression profile of the GCNF protein during spermatogenesis. Genomic fragments spanning part of the 5'-untranslated region (UTR), the coding sequence, and the complete 3'-UTR (approximately 80 kb) were isolated and sequenced. The 3'-UTRs of the two transcripts are quite distinct. The 7.4 kb transcript, which appears earlier in spermatogenesis, has a very long 3'-UTR of 4451 nucleotides. In contrast, the 2.1 kb transcript, which is expressed predominantly during the haploid phase of spermatogenesis, has a 3'-UTR that is only 202 nucleotides in length. Additional analyses indicate that both transcripts share the same coding region and are associated with polysomes. A single GCNF protein band was detected in testis extracts by Western blotting with a specific antiserum. Immunohistochemical analysis showed that GCNF is localized in the nuclei of pachytene spermatocytes and round spermatids. GCNF is first detectable in early pachytene spermatocytes (stage II) and is continuously expressed until spermatids begin to elongate in stage IX. Although GCNF is generally distributed throughout the nucleus, it is particularly prominent in heterochromatic regions at some stages and in condensed chromosomes undergoing the meiotic divisions. This expression profile suggests that GCNF plays a role in transcriptional regulation during meiosis and the early haploid phase of spermatogenesis.
Collapse
Affiliation(s)
- Genyan Yang
- The Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | | | | | |
Collapse
|
19
|
Barreto G, Borgmeyer U, Dreyer C. The germ cell nuclear factor is required for retinoic acid signaling during Xenopus development. Mech Dev 2003; 120:415-28. [PMID: 12676320 DOI: 10.1016/s0925-4773(03)00018-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The germ cell nuclear factor (GCNF, NR6A1) is a nuclear orphan receptor that functions as a transcriptional repressor and is transiently expressed in mammalian carcinoma cells during retinoic acid (RA) induced neuronal differentiation. During Xenopus laevis development, the spatiotemporal expression pattern of embryonic GCNF (xEmGCNF) suggests a role in anteroposterior specification of the neuroectoderm. Here, we show that RA treatment of Xenopus embryos enhances xEmGCNF expression. Moreover, we present evidence for the relevance of this finding in the context of primary neurogenesis and hindbrain development. During early development of the central nervous system, RA signals promote posterior transformation of the neuroectoderm and increase the number of cells undergoing primary neurogenesis. Our loss-of-function analyses using a xEmGCNF-specific morpholino antisense oligonucleotide indicate that xEmGCNF is required for the effect of RA on primary neurogenesis. This may be caused by transcriptional regulation of the gene encoding the RA-degrading enzyme CYP26, since this gene is derepressed after depletion of xEmGCNF and an antimorph of xEmGCNF directly activates transcription of CYP26, also in absence of protein synthesis. The effect of xEmGCNF knockdown on hindbrain patterning is similar to conditions of reduced RA signaling, which may be caused by a reduction of RAR gamma expression specifically in the presumptive hindbrain.
Collapse
Affiliation(s)
- Guillermo Barreto
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstr. 35/V, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
20
|
Lan ZJ, Gu P, Xu X, Cooney AJ. Expression of the orphan nuclear receptor, germ cell nuclear factor, in mouse gonads and preimplantation embryos. Biol Reprod 2003; 68:282-9. [PMID: 12493724 DOI: 10.1095/biolreprod.102.008151] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Germ cell nuclear factor (GCNF, NR6A1) is an orphan member of the nuclear receptor superfamily and functions as a repressor of gene transcription. GCNF mRNA is expressed in postgastrulation mouse embryos and is required for normal mouse embryonic development. In adult mice, GCNF transcripts are predominantly expressed in spermatogenic cells and growing oocytes of the gonads. To extend this observation to the protein level, we generated and characterized a specific antibody against GCNF. Using this antibody we found that GCNF protein was exclusively present in postmeiotic spermatogenic cells of the testis in 21- and 56-day-old mice. In the ovary, GCNF protein was present in the cytoplasm of oocytes from primary to preovulatory follicles. GCNF protein was also present in unfertilized oocytes and preimplantation embryos. The presence of GCNF protein in adult mouse gonads indicates that GCNF may play a role during gametogenesis. Our results also show that GCNF in early embryos is a maternal protein and could be involved in the regulation of zygotic gene expression and preimplantation embryonic development.
Collapse
Affiliation(s)
- Zi-Jian Lan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
21
|
Lan ZJ, Chung ACK, Xu X, DeMayo FJ, Cooney AJ. The embryonic function of germ cell nuclear factor is dependent on the DNA binding domain. J Biol Chem 2002; 277:50660-7. [PMID: 12381721 DOI: 10.1074/jbc.m209586200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Germ cell nuclear factor (GCNF), an orphan nuclear receptor, is essential for mouse embryogenesis. GCNF specifically binds to a DR0 response element via its DNA binding domain (DBD) in vitro and functions as a repressor of gene transcription. To further study the role of GCNF during embryogenesis, we have employed a Cre/loxP strategy and generated a line of GCNF mutant mice (GCNF(lox/lox)) in which the 243-base pair DBD-encoding exon has been deleted in the germline. However, the ligand binding domain (LBD) of GCNF is still expressed at the mRNA and protein levels in the GCNF(lox/lox) mice. GCNF(lox/lox) mice die at 9.5-10.5 days postcoitum. The tailbuds of these mutant embryos protrude outside the yolk sac. Expression of Oct-4 in the somatic cells of GCNF(lox/lox) embryos at 8.25 days postcoitum was not silenced as in the GCNF(+/+) embryos. Therefore, GCNF(lox/lox) mice phenocopy the GCNF(-/-) mice. Our results indicate that the DBD is essential for the function of GCNF during early mouse embryogenesis, and that the LBD does not mediate any function independent of the DBD at this stage of embryonic development. Our results also suggest that GCNF is indeed a transcriptional factor that represses gene transcription mediated via its DBD.
Collapse
Affiliation(s)
- Zi-Jian Lan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
22
|
Schohl A, Barreto G, Joos TO, Dreyer C. Oocytes and embryos of Xenopus laevis express two different isoforms of germ cell nuclear factor (GCNF, NR6A1). Mech Dev 2002; 118:261-4. [PMID: 12351198 DOI: 10.1016/s0925-4773(02)00281-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The germ cell nuclear factor (GCNF) is a nuclear orphan receptor and a putative regulator of the pluripotent state of cells. Although it was first described in mouse germ cells, GCNF is also expressed in mouse and Xenopus embryos. By means of 5'RACE we have identified a novel isoform of Xenopus laevis GCNF that is predominantly expressed in germ cells, whereas both the oocyte and embryonic forms are expressed during Xenopus embryogenesis. EST database search revealed that the homologues of both isoforms are also transcribed in Xenopus tropicalis.
Collapse
Affiliation(s)
- Anne Schohl
- Max-Planck-Institut fuer Entwicklungsbiologie, Spemannstrasse 35/V, D-72076 Tubingen, Germany
| | | | | | | |
Collapse
|
23
|
Yan Z, Kim YS, Jetten AM. RAP80, a novel nuclear protein that interacts with the retinoid-related testis-associated receptor. J Biol Chem 2002; 277:32379-88. [PMID: 12080054 DOI: 10.1074/jbc.m203475200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we describe the characterization of a novel nuclear protein, referred to as RAP80. The RAP80 cDNA was cloned from a human testis cDNA library and encodes a 719-amino acid protein containing two potential CX(2)CX(11)HX(3)C-type zinc finger motifs at its carboxyl-terminal region. Analysis of its genomic structure revealed that the RAP80 gene covers more than 90 kb and consists of 15 exons and 14 introns. Fluorescence in situ hybridization mapped the RAP80 gene to human chromosome 5q35. RAP80 mRNA is expressed in many human tissues, but its expression is particularly high in testis. In situ hybridization showed that RAP80 is highly expressed in germ cells of mouse testis but is not differentially regulated during spermatogenesis. Confocal microscopy showed that RAP80 is localized to the nucleus, where it is distributed in a speckled pattern. Deletion analysis showed that a bipartite nuclear localization signal at the amino terminus is important in mediating nuclear transport of RAP80. Monohybrid analysis showed that RAP80 might function as an active repressor of transcription. Mammalian two-hybrid analysis demonstrated that RAP80 was able to interact with the retinoid-related testis-associated receptor (RTR), an orphan receptor that has been implicated in the control of embryonic development and spermatogenesis. Pull-down analysis showed that RAP80 and RTR physically interact in vitro. Deletion and point mutation analyses revealed that part of the hinge domain of RTR is required for this interaction. RAP80 is able to inhibit the interaction of RTR with the co-repressor N-CoR likely by competing with N-CoR for RTR binding. Our results suggest that RAP80 may be functioning as a modulator of RTR signaling.
Collapse
Affiliation(s)
- Zhijiang Yan
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
24
|
Mehta DV, Kim YS, Dixon D, Jetten AM. Characterization of the expression of the retinoid-related, testis-associated receptor (RTR) in trophoblasts. Placenta 2002; 23:281-7. [PMID: 11969338 DOI: 10.1053/plac.2001.0779] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have provided evidence indicating that the nuclear orphan receptor RTR plays an important role during embryonic development and in spermatogenesis. In this study, we examine the expression of RTR in murine placenta and several human placental choriocarcinoma cell lines. Northern blot analysis showed high expression of RTR mRNA in placental tissue. In contrast to murine testis, which contains 7.4 and 2.3 kb transcripts, placental tissue expressed only the larger transcript. Examination of RTR expression in murine placental tissue by immunohistochemistry demonstrated the presence of RTR protein in the nuclei of giant trophoblasts and spongiotrophoblasts. RTR mRNA was also expressed in rat choriocarcinoma Rcho-1 cells and in the human placental choriocarcinoma cell lines BeWo, JAR, and JEG-3. In trophoblasts, RTR was co-expressed with the estrogen-related receptors ERR alpha and ERR beta. Giant trophoblast differentiation in Rcho-1 cells, characterized by induction of placental lactogen I (PL-I), was accompanied by a steady decrease in the expression of RTR mRNA and down-regulation of ERR beta expression while levels of ERR alpha mRNA did not change significantly. RTR was able to inhibit ERR alpha-mediated transactivation through the consensus RTR-response element (RTRE) likely by competing with ERR alpha for binding to the RTRE. These results suggest the possibility of cross-talk between RTR and ERR alpha receptor signalling pathways in trophoblasts.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Line
- Choriocarcinoma/genetics
- Choriocarcinoma/metabolism
- DNA-Binding Proteins
- Female
- Gene Expression
- Humans
- Immunohistochemistry
- Male
- Mice
- Nuclear Receptor Subfamily 6, Group A, Member 1
- Pregnancy
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptor Cross-Talk
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Testis/metabolism
- Trophoblasts/cytology
- Trophoblasts/metabolism
- Uterine Neoplasms/genetics
- Uterine Neoplasms/metabolism
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
- D V Mehta
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
25
|
Reintsch WE, Hausen P. Dorsoventral differences in cell-cell interactions modulate the motile behaviour of cells from the Xenopus gastrula. Dev Biol 2001; 240:387-403. [PMID: 11784071 DOI: 10.1006/dbio.2001.0478] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When groups of cells from the inner marginal zone (mesendoderm) of the early Xenopus gastrula are placed on a fibronectin-coated substratum, the explants of the dorsal region spread into monolayers whereas those from the ventral region, though they adhere to the substratum, do not show this spreading reaction. This different behaviour is not reflected in the in vitro behaviour of the respective cells kept in isolation. No difference between dorsal and ventral cells was observed, when they were tested for lamellipodia-driven spreading, movement over the substratum or properties of integrin- and cadherin-mediated adhesion. However, cell contacts between individual dorsal cells are significantly less stable than those between ventral cells. The higher flexibility of the cell-cell contacts seems to determine the spreading behaviour of the dorsal explants, which includes lamellipodia-driven outward movement of the peripheral cells, rearrangements of the cells, building up a horizontal tension within the aggregate and intercalation of cells from above into the bottom layer. Ventral explants lack these properties. Staining for F-actin revealed a decisive difference of the supracellular organisation of the cytoskeleton that underlies the morphology of the different types of explants. Evidence for a higher flexibility of cell-cell contacts in the dorsal mesendoderm was also obtained in SEM studies on gastrulating embryos. Dorsal mesendodermal cells show stronger protrusive activity as compared to ventral mesendodermal cells. The meaning of these observations for the mechanisms of morphogenetic movements during gastrulation is central to the discussion.
Collapse
Affiliation(s)
- W E Reintsch
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Zellbiologie, Spemannstrasse 35, Tübingen, 72076, Germany
| | | |
Collapse
|
26
|
David R, Ahrens K, Wedlich D, Schlosser G. Xenopus Eya1 demarcates all neurogenic placodes as well as migrating hypaxial muscle precursors. Mech Dev 2001; 103:189-92. [PMID: 11335132 DOI: 10.1016/s0925-4773(01)00355-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We cloned two isoforms of the Xenopus Eya1 orthologue. They show identical patterns of expression that closely resemble the previously described expression of XSix1, but partly differ from the expression of Eya1 in other vertebrates. XEya1 is expressed in the somites and hypaxial muscle precursors, but not in the pronephros. Moreover, all ectodermal placodes except the lens placode strongly express XEya1. At neural plate stages, ectodermal XEya1 expression starts in two domains, the anterior neural folds and a domain lateral to the neural folds. At tailbud stages, XEya1 expression continues in the adenohypophysis, all neurogenic placodes and placodally-derived structures including cranial ganglia, the otic vesicle and lateral line primordia.
Collapse
Affiliation(s)
- R David
- Department of Biochemistry, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany. . de
| | | | | | | |
Collapse
|
27
|
Chung AC, Katz D, Pereira FA, Jackson KJ, DeMayo FJ, Cooney AJ, O'Malley BW. Loss of orphan receptor germ cell nuclear factor function results in ectopic development of the tail bud and a novel posterior truncation. Mol Cell Biol 2001; 21:663-77. [PMID: 11134352 PMCID: PMC86646 DOI: 10.1128/mcb.21.2.663-677.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dynamic embryonic expression of germ cell nuclear factor (GCNF), an orphan nuclear receptor, suggests that it may play an important role during early development. To determine the physiological role of GCNF, we have generated a targeted mutation of the GCNF gene in mice. Germ line mutation of the GCNF gene proves that the orphan nuclear receptor is essential for embryonic survival and normal development. GCNF(-/-) embryos cannot survive beyond 10.5 days postcoitum (dpc), probably due to cardiovascular failure. Prior to death, GCNF(-/-) embryos suffer significant defects in posterior development. Unlike GCNF(+/+) embryos, GCNF(-/-) embryos do not turn and remain in a lordotic position, the majority of the neural tube remains open, and the hindgut fails to close. GCNF(-/-) embryos also suffer serious defects in trunk development, specifically in somitogenesis, which terminates by 8.75 dpc. The maximum number of somites in GCNF(-/-) embryos is 13 instead of 25 as in the GCNF(+/+) embryos. Interestingly, the tailbud of GCNF(-/-) embryos develops ectopically outside the yolk sac. Indeed, alterations in expression of multiple marker genes were identified in the posterior of GCNF(-/-) embryos, including the primitive streak, the node, and the presomitic mesoderm. These results suggest that GCNF is required for maintenance of somitogenesis and posterior development and is essential for embryonic survival. These results suggest that GCNF regulates a novel and critical developmental pathway involved in normal anteroposterior development.
Collapse
Affiliation(s)
- A C Chung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
David R, Wedlich D. Xenopus cadherin-6 is expressed in the central and peripheral nervous system and in neurogenic placodes. Mech Dev 2000; 97:187-90. [PMID: 11025223 DOI: 10.1016/s0925-4773(00)00411-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have cloned the cDNAs encoding the two Xenopus laevis cadherin-6 pseudoalleles (Xcad-6 and Xcad-6'), which belong to the classical type II cadherin subfamily. During embryogenesis, Xcad-6 expression starts at early neurula and increases dramatically until tadpole stages. Whole-mount in situ hybridization revealed that the transcripts are localized in the developing brain and eye. However, most prominent expression was found in the peripheral nervous system, including a major proportion of lateral line structures. Our results implicate an important contribution of cadherin-6 to the formation of placode derived nerves in Xenopus, an observation which has not been described for other species.
Collapse
Affiliation(s)
- R David
- Abt. Biochemie, Universität Ulm, Albert-Einstein-Allee 11, D-89081, Ulm, Germany.
| | | |
Collapse
|
29
|
Schmitz TP, Süsens U, Borgmeyer U. DNA binding, protein interaction and differential expression of the human germ cell nuclear factor. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1446:173-80. [PMID: 10524192 DOI: 10.1016/s0167-4781(99)00079-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mouse germ cell nuclear factor (mGCNF) is an orphan nuclear receptor implicated in diverse biological processes, including gametogenesis, embryonic development and embryonal carcinoma cell differentiation. We have examined the binding and regulation of the human orthologue, hGCNF, expressed in the teratocarcinoma-derived cell line NTera-2/clone D1 (NT2/D1). Binding of GCNF to the direct repeat of the sequence -AGGTCA- (DR-0) is conserved in mammalia. The formation of interspecies dimers of the in vitro synthesized proteins suggests that cellular GCNF binding is mediated by homodimers. Both the mouse and the human protein bind in concert with cellular factors to DNA. Treatment of NT2/D1 cells with all-trans retinoic acid (atRA) is accompanied first by an up-regulation followed later by a down-regulation of hGCNF and its mRNA. Temporary up-regulation in NT2/D1 cells after treatment with atRA suggests that hGCNF is important for human neural determination and differentiation.
Collapse
Affiliation(s)
- T P Schmitz
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Germany
| | | | | |
Collapse
|
30
|
Abstract
Cells in the presumptive neural ectoderm of Xenopus are committed to neural fate through a process called neural induction, which may involve proteins that antagonize BMP signaling pathways. To identify genes that are induced by the BMP antagonists and that may be involved in subsequent neural patterning, we used a suppression PCR-based subtraction screen. Here we investigate the prospective activities and functions of one of the genes, a nuclear orphan receptor previously described as xGCNF. In animal cap assays, xGCNF synergizes with ectopic chordin to induce the midbrain-hindbrain marker engrailed-2 (En-2). In Keller explants, which rely on endogenous factors for neural induction, similar increases in En-2 are observed. Expression in embryos of a dominant interfering form of xGCNF reduces the expression of endogenous En-2 and Krox-20. These gain-of-function and prospective loss-of-function experiments, taken with the observation that xGCNF is expressed in the early neural plate and is elevated in the prospective midbrain-hindbrain region, which subsequently expresses En-2, suggest that xGCNF may play a role in regulating En-2 and thus midbrain-hindbrain identity.
Collapse
Affiliation(s)
- K Song
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | |
Collapse
|