1
|
Forschack N, Oxner M, Müller MM. The consequences of color chromaticity on electrophysiological measures of attentional deployment in visual search. iScience 2025; 28:112252. [PMID: 40241762 PMCID: PMC12002620 DOI: 10.1016/j.isci.2025.112252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/17/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
We investigated to what extent color vividness of visual items influences how humans prioritize information in a search task. For this, color chromaticity was manipulated over two search experiments. While recording the electroencephalogram, participants searched for a shape of certain color among three other shapes, when it emerged from a stream of flickering gray placeholders. Each location was tagged with a specific frequency evoking the steady-state-visual-evoked potential (SSVEP) allowing to track attentional deployment on multiple items. Color vividness boosted SSVEP amplitudes independent of item type, i.e., targets or distractors, while leaving other measures of attentional deployment-event-related potentials and alpha-band amplitudes-mostly unaffected. Interestingly, relative modulation of target and distractor SSVEP amplitudes was comparable between experiments suggesting similar attentional deployment. The results highlight that attentional deployment to search items depends on low-level stimulus features that need to be controlled to allow for inferences about capture or suppression of individual items.
Collapse
Affiliation(s)
- Norman Forschack
- Wilhelm Wundt Department of Psychology, University of Leipzig, Leipzig, Germany
| | - Matt Oxner
- Wilhelm Wundt Department of Psychology, University of Leipzig, Leipzig, Germany
| | - Matthias M. Müller
- Wilhelm Wundt Department of Psychology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Gundlach C, Müller MM. Increased visual alpha-band activity during self-paced finger tapping does not affect early visual stimulus processing. Psychophysiology 2024; 61:e14707. [PMID: 39380314 PMCID: PMC11579237 DOI: 10.1111/psyp.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Alpha-band activity is thought to be involved in orchestrating neural processing within and across brain regions relevant to various functions such as perception, cognition, and motor activity. Across different studies, attenuated alpha-band activity has been linked to increased neural excitability. Yet, there have been conflicting results concerning the consequences of alpha-band modulations for early sensory processing. We here examined whether movement-related alterations in visual alpha-band activity affected the early sensory processing of visual stimuli. For this purpose, in an EEG experiment, participants were engaged in a voluntary finger-tapping task while passively viewing flickering dots. We found extensive and expected movement-related amplitude modulations of motor alpha- and beta-band activity with event-related-desynchronization (ERD) before and during, and event-related-synchronization (ERS) after single voluntary finger taps. Crucially, while a visual alpha-band ERS accompanied the motor alpha-ERD before and during each finger tap, flicker-evoked Steady-State-Visually-Evoked-Potentials (SSVEPs), as a marker of early visual sensory gain, were not modulated in amplitude. As early sensory stimulus processing was unaffected by amplitude-modulated visual alpha-band activity, this argues against the idea that alpha-band activity represents a mechanism by which early sensory gain modulation is implemented. The distinct neural dynamics of visual alpha-band activity and early sensory processing may point to distinct and multiplexed neural selection processes in visual processing.
Collapse
Affiliation(s)
- C. Gundlach
- Wilhelm Wundt Institute for Psychology, Experimental Psychology and MethodsUniversität LeipzigLeipzigGermany
| | - M. M. Müller
- Wilhelm Wundt Institute for Psychology, Experimental Psychology and MethodsUniversität LeipzigLeipzigGermany
| |
Collapse
|
3
|
Denison RN, Tian KJ, Heeger DJ, Carrasco M. Anticipatory and evoked visual cortical dynamics of voluntary temporal attention. Nat Commun 2024; 15:9061. [PMID: 39433743 PMCID: PMC11494016 DOI: 10.1038/s41467-024-53406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
We can often anticipate the precise moment when a stimulus will be relevant for our behavioral goals. Voluntary temporal attention, the prioritization of sensory information at task-relevant time points, enhances visual perception. However, the neural mechanisms of voluntary temporal attention have not been isolated from those of temporal expectation, which reflects timing predictability rather than relevance. Here we use time-resolved steady-state visual evoked responses (SSVER) to investigate how temporal attention dynamically modulates visual activity when temporal expectation is controlled. We recorded magnetoencephalography while participants directed temporal attention to one of two sequential grating targets with predictable timing. Meanwhile, a co-localized SSVER probe continuously tracked visual cortical modulations both before and after the target stimuli. We find that in the pre-target period, the SSVER gradually ramps up as the targets approach, reflecting temporal expectation. Furthermore, we find a low-frequency modulation of the SSVER, which shifts approximately half a cycle in phase according to which target is attended. In the post-target period, temporal attention to the first target transiently modulates the SSVER shortly after target onset. Thus, temporal attention dynamically modulates visual cortical responses via both periodic pre-target and transient post-target mechanisms to prioritize sensory information at precise moments.
Collapse
Affiliation(s)
- Rachel N Denison
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
- Department of Psychology, New York University, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| | - Karen J Tian
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
- Department of Psychology, New York University, New York, NY, USA.
| | - David J Heeger
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
4
|
Dundon NM, Stuber A, Bullock T, Garcia JO, Babenko V, Rizor E, Yang D, Giesbrecht B, Grafton ST. Cardiac-Sympathetic Contractility and Neural Alpha-Band Power: Cross-Modal Collaboration during Approach-Avoidance Conflict. J Neurosci 2024; 44:e2008232024. [PMID: 39214705 PMCID: PMC11466073 DOI: 10.1523/jneurosci.2008-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
As evidence mounts that the cardiac-sympathetic nervous system reacts to challenging cognitive settings, we ask if these responses are epiphenomenal companions or if there is evidence suggesting a more intertwined role of this system with cognitive function. Healthy male and female human participants performed an approach-avoidance paradigm, trading off monetary reward for painful electric shock, while we recorded simultaneous electroencephalographic and cardiac-sympathetic signals. Participants were reward sensitive but also experienced approach-avoidance "conflict" when the subjective appeal of the reward was near equivalent to the revulsion of the cost. Drift-diffusion model parameters suggested that participants managed conflict in part by integrating larger volumes of evidence into choices (wider decision boundaries). Late alpha-band (neural) dynamics were consistent with widening decision boundaries serving to combat reward sensitivity and spread attention more fairly to all dimensions of available information. Independently, wider boundaries were also associated with cardiac "contractility" (an index of sympathetically mediated positive inotropy). We also saw evidence of conflict-specific "collaboration" between the neural and cardiac-sympathetic signals. In states of high conflict, the alignment (i.e., product) of alpha dynamics and contractility were associated with a further widening of the boundary, independent of either signal's singular association. Cross-trial coherence analyses provided additional evidence that the autonomic systems controlling cardiac-sympathetics might influence the assessment of information streams during conflict by disrupting or overriding reward processing. We conclude that cardiac-sympathetic control might play a critical role, in collaboration with cognitive processes, during the approach-avoidance conflict in humans.
Collapse
Affiliation(s)
- Neil M Dundon
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Freiburg, Freiburg 79104, Germany
| | - Alexander Stuber
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106
| | - Tom Bullock
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106
| | - Javier O Garcia
- Humans in Complex Systems Division, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005
| | - Viktoriya Babenko
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106
- BIOPAC Systems Inc., Goleta, California 93117
| | - Elizabeth Rizor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, California 93106
| | - Dengxian Yang
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106
- Department of Computer Science, University of California, Santa Barbara, California 93106
| | - Barry Giesbrecht
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, California 93106
| | - Scott T Grafton
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| |
Collapse
|
5
|
Duecker K, Doelling KB, Breska A, Coffey EBJ, Sivarao DV, Zoefel B. Challenges and Approaches in the Study of Neural Entrainment. J Neurosci 2024; 44:e1234242024. [PMID: 39358026 PMCID: PMC11450538 DOI: 10.1523/jneurosci.1234-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
When exposed to rhythmic stimulation, the human brain displays rhythmic activity across sensory modalities and regions. Given the ubiquity of this phenomenon, how sensory rhythms are transformed into neural rhythms remains surprisingly inconclusive. An influential model posits that endogenous oscillations entrain to external rhythms, thereby encoding environmental dynamics and shaping perception. However, research on neural entrainment faces multiple challenges, from ambiguous definitions to methodological difficulties when endogenous oscillations need to be identified and disentangled from other stimulus-related mechanisms that can lead to similar phase-locked responses. Yet, recent years have seen novel approaches to overcome these challenges, including computational modeling, insights from dynamical systems theory, sophisticated stimulus designs, and study of neuropsychological impairments. This review outlines key challenges in neural entrainment research, delineates state-of-the-art approaches, and integrates findings from human and animal neurophysiology to provide a broad perspective on the usefulness, validity, and constraints of oscillatory models in brain-environment interaction.
Collapse
Affiliation(s)
- Katharina Duecker
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Keith B Doelling
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Paris F-75012, France
| | - Assaf Breska
- Max-Planck Institute for Biological Cybernetics, D-72076 Tübingen, Germany
| | | | - Digavalli V Sivarao
- Department of Pharmaceutical Sciences, East Tennessee State University, Johnson City, Tennessee 37614
| | - Benedikt Zoefel
- Centre de Recherche Cerveau et Cognition (CerCo), UMR 5549 CNRS - Université Paul Sabatier Toulouse III, Toulouse F-31052, France
| |
Collapse
|
6
|
Wei Y, Wang Y, Okazaki YO, Kitajo K, So RHY. Motion sickness resistant people showed suppressed steady-state visually evoked potential (SSVEP) under vection-inducing stimulation. Cogn Neurodyn 2024; 18:1525-1537. [PMID: 39104676 PMCID: PMC11297854 DOI: 10.1007/s11571-023-09991-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 08/07/2024] Open
Abstract
Visual stimulation can generate illusory self-motion perception (vection) and cause motion sickness among susceptible people, but the underlying neural mechanism is not fully understood. In this study, SSVEP responses to visual stimuli presented in different parts of the visual field are examined in individuals with different susceptibilities to motion sickness to identify correlates of motion sickness. Alpha band SSVEP data were collected from fifteen university students when they were watching roll-vection-inducing visual stimulation containing: (1) an achromatic checkerboard flickering at 8.6 Hz in the central visual field (CVF) and (2) rotating dots pattern flickering at 12 Hz in the peripheral visual field. Rotating visual stimuli provoked explicit roll-vection perception in all participants. The motion sickness resistant participants showed reduced SSVEP response to CVF checkerboard during vection, while the motion sickness susceptible participants showed increased SSVEP response. The changes of SSVEP in the presence of vection significantly correlated with individual motion sickness susceptibility and rated scores on simulator sickness symptoms. Discussion on how the findings can support the sensory conflict theory is presented. Results offer a new perspective on vection and motion sickness susceptibility. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09991-7.
Collapse
Affiliation(s)
- Yue Wei
- Department of Basic Psychology, School of Psychology, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen, 518060 China
- HKUST-Shenzhen Research Institute, 9 Yuexing First Road, South Area, Hi-Tech Park, Nanshan, Shenzhen, 518057 China
- Bio-Engineering Graduate Program, School of Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yixuan Wang
- HKUST-Shenzhen Research Institute, 9 Yuexing First Road, South Area, Hi-Tech Park, Nanshan, Shenzhen, 518057 China
- Bio-Engineering Graduate Program, School of Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuka O. Okazaki
- Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585 Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585 Japan
| | - Keiichi Kitajo
- Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585 Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585 Japan
- CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Richard H. Y. So
- HKUST-Shenzhen Research Institute, 9 Yuexing First Road, South Area, Hi-Tech Park, Nanshan, Shenzhen, 518057 China
- Bio-Engineering Graduate Program, School of Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Industrial Engineering and Decision Analytics, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
7
|
Pan Y, Frisson S, Federmeier KD, Jensen O. Early parafoveal semantic integration in natural reading. eLife 2024; 12:RP91327. [PMID: 38968325 PMCID: PMC11226228 DOI: 10.7554/elife.91327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024] Open
Abstract
Humans can read and comprehend text rapidly, implying that readers might process multiple words per fixation. However, the extent to which parafoveal words are previewed and integrated into the evolving sentence context remains disputed. We investigated parafoveal processing during natural reading by recording brain activity and eye movements using MEG and an eye tracker while participants silently read one-line sentences. The sentences contained an unpredictable target word that was either congruent or incongruent with the sentence context. To measure parafoveal processing, we flickered the target words at 60 Hz and measured the resulting brain responses (i.e. Rapid Invisible Frequency Tagging, RIFT) during fixations on the pre-target words. Our results revealed a significantly weaker tagging response for target words that were incongruent with the previous context compared to congruent ones, even within 100ms of fixating the word immediately preceding the target. This reduction in the RIFT response was also found to be predictive of individual reading speed. We conclude that semantic information is not only extracted from the parafovea but can also be integrated with the previous context before the word is fixated. This early and extensive parafoveal processing supports the rapid word processing required for natural reading. Our study suggests that theoretical frameworks of natural reading should incorporate the concept of deep parafoveal processing.
Collapse
Affiliation(s)
- Yali Pan
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Steven Frisson
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Kara D Federmeier
- Department of Psychology, Program in Neuroscience, and the Beckman Institute for Advanced Science and Technology, University of IllinoisChampaignUnited States
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
8
|
Phangwiwat T, Phunchongharn P, Wongsawat Y, Chatnuntawech I, Wang S, Chunharas C, Sprague TC, Woodman GF, Itthipuripat S. Sustained attention operates via dissociable neural mechanisms across different eccentric locations. Sci Rep 2024; 14:11188. [PMID: 38755251 PMCID: PMC11099062 DOI: 10.1038/s41598-024-61171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
In primates, foveal and peripheral vision have distinct neural architectures and functions. However, it has been debated if selective attention operates via the same or different neural mechanisms across eccentricities. We tested these alternative accounts by examining the effects of selective attention on the steady-state visually evoked potential (SSVEP) and the fronto-parietal signal measured via EEG from human subjects performing a sustained visuospatial attention task. With a negligible level of eye movements, both SSVEP and SND exhibited the heterogeneous patterns of attentional modulations across eccentricities. Specifically, the attentional modulations of these signals peaked at the parafoveal locations and such modulations wore off as visual stimuli appeared closer to the fovea or further away towards the periphery. However, with a relatively higher level of eye movements, the heterogeneous patterns of attentional modulations of these neural signals were less robust. These data demonstrate that the top-down influence of covert visuospatial attention on early sensory processing in human cortex depends on eccentricity and the level of saccadic responses. Taken together, the results suggest that sustained visuospatial attention operates differently across different eccentric locations, providing new understanding of how attention augments sensory representations regardless of where the attended stimulus appears.
Collapse
Affiliation(s)
- Tanagrit Phangwiwat
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand
- Big Data Experience Center (BX), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10600, Thailand
- Department of Computer Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand
| | - Phond Phunchongharn
- Big Data Experience Center (BX), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10600, Thailand
- Department of Computer Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand
| | - Yodchanan Wongsawat
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Itthi Chatnuntawech
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sisi Wang
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Chaipat Chunharas
- Cognitive Clinical and Computational Neuroscience Center of Excellence, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Thomas C Sprague
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Geoffrey F Woodman
- Department of Psychology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Sirawaj Itthipuripat
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand.
- Big Data Experience Center (BX), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10600, Thailand.
- Department of Psychology, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
9
|
Batterink LJ, Mulgrew J, Gibbings A. Rhythmically Modulating Neural Entrainment during Exposure to Regularities Influences Statistical Learning. J Cogn Neurosci 2024; 36:107-127. [PMID: 37902580 DOI: 10.1162/jocn_a_02079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The ability to discover regularities in the environment, such as syllable patterns in speech, is known as statistical learning. Previous studies have shown that statistical learning is accompanied by neural entrainment, in which neural activity temporally aligns with repeating patterns over time. However, it is unclear whether these rhythmic neural dynamics play a functional role in statistical learning or whether they largely reflect the downstream consequences of learning, such as the enhanced perception of learned words in speech. To better understand this issue, we manipulated participants' neural entrainment during statistical learning using continuous rhythmic visual stimulation. Participants were exposed to a speech stream of repeating nonsense words while viewing either (1) a visual stimulus with a "congruent" rhythm that aligned with the word structure, (2) a visual stimulus with an incongruent rhythm, or (3) a static visual stimulus. Statistical learning was subsequently measured using both an explicit and implicit test. Participants in the congruent condition showed a significant increase in neural entrainment over auditory regions at the relevant word frequency, over and above effects of passive volume conduction, indicating that visual stimulation successfully altered neural entrainment within relevant neural substrates. Critically, during the subsequent implicit test, participants in the congruent condition showed an enhanced ability to predict upcoming syllables and stronger neural phase synchronization to component words, suggesting that they had gained greater sensitivity to the statistical structure of the speech stream relative to the incongruent and static groups. This learning benefit could not be attributed to strategic processes, as participants were largely unaware of the contingencies between the visual stimulation and embedded words. These results indicate that manipulating neural entrainment during exposure to regularities influences statistical learning outcomes, suggesting that neural entrainment may functionally contribute to statistical learning. Our findings encourage future studies using non-invasive brain stimulation methods to further understand the role of entrainment in statistical learning.
Collapse
|
10
|
Mathôt S, Berberyan H, Büchel P, Ruuskanen V, Vilotijević A, Kruijne W. Effects of pupil size as manipulated through ipRGC activation on visual processing. Neuroimage 2023; 283:120420. [PMID: 37871758 DOI: 10.1016/j.neuroimage.2023.120420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/25/2023] Open
Abstract
The size of the eyes' pupils determines how much light enters the eye and also how well this light is focused. Through this route, pupil size shapes the earliest stages of visual processing. Yet causal effects of pupil size on vision are poorly understood and rarely studied. Here we introduce a new way to manipulate pupil size, which relies on activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) to induce sustained pupil constriction. We report the effects of both experimentally induced and spontaneous changes in pupil size on visual processing as measured through EEG. We compare these to the effects of stimulus intensity and covert visual attention, because previous studies have shown that these factors all have comparable effects on some common measures of early visual processing, such as detection performance and steady-state visual evoked potentials; yet it is still unclear whether these are superficial similarities, or rather whether they reflect similar underlying processes. Using a mix of neural-network decoding, ERP analyses, and time-frequency analyses, we find that induced pupil size, spontaneous pupil size, stimulus intensity, and covert visual attention all affect EEG responses, mainly over occipital and parietal electrodes, but-crucially-that they do so in qualitatively different ways. Induced and spontaneous pupil-size changes mainly modulate activity patterns (but not overall power or intertrial coherence) in the high-frequency beta range; this may reflect an effect of pupil size on oculomotor activity and/ or visual processing. In addition, spontaneous (but not induced) pupil size tends to correlate positively with intertrial coherence in the alpha band; this may reflect a non-causal relationship, mediated by arousal. Taken together, our findings suggest that pupil size has qualitatively different effects on visual processing from stimulus intensity and covert visual attention. This shows that pupil size as manipulated through ipRGC activation strongly affects visual processing, and provides concrete starting points for further study of this important yet understudied earliest stage of visual processing.
Collapse
Affiliation(s)
- Sebastiaan Mathôt
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands.
| | | | - Philipp Büchel
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| | - Veera Ruuskanen
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| | - Ana Vilotijević
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| | - Wouter Kruijne
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| |
Collapse
|
11
|
Phangwiwat T, Punchongham P, Wongsawat Y, Chatnuntawech I, Wang S, Chunharas C, Sprague T, Woodman GF, Itthipuripat S. Sustained attention operates via dissociable neural mechanisms across different eccentric locations. RESEARCH SQUARE 2023:rs.3.rs-3562186. [PMID: 37986807 PMCID: PMC10659535 DOI: 10.21203/rs.3.rs-3562186/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In primates, foveal and peripheral vision have distinct neural architectures and functions. However, it has been debated if selective attention operates via the same or different neural mechanisms across eccentricities. We tested these alternative accounts by examining the effects of selective attention on the steady-state visually evoked potential (SSVEP) and the fronto-parietal signal measured via EEG from human subjects performing a sustained visuospatial attention task. With a negligible level of eye movements, both SSVEP and SND exhibited the heterogeneous patterns of attentional modulations across eccentricities. Specifically, the attentional modulations of these signals peaked at the parafoveal locations and such modulations wore off as visual stimuli appeared closer to the fovea or further away towards the periphery. However, with a relatively higher level of eye movements, the heterogeneous patterns of attentional modulations of these neural signals were less robust. These data demonstrate that the top-down influence of covert visuospatial attention on early sensory processing in human cortex depends on eccentricity and the level of saccadic responses. Taken together, the results suggest that sustained visuospatial attention operates differently across different eccentric locations, providing new understanding of how attention augments sensory representations regardless of where the attended stimulus appears.
Collapse
Affiliation(s)
- Tanagrit Phangwiwat
- Department of Computer Engineering, King Mongkut's University of Technology Thonburi
| | - Phond Punchongham
- Department of Computer Engineering, King Mongkut's University of Technology Thonburi
| | - Yodchanan Wongsawat
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University
| | - Itthi Chatnuntawech
- National Nanotechnology Center, National Science and Technology Development Agency
| | - Sisi Wang
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam
| | - Chaipat Chunharas
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society
| | - Thomas Sprague
- Psychological and Brain Science, 251, University of California Santa Barbara
| | | | - Sirawaj Itthipuripat
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi
| |
Collapse
|
12
|
Minarik T, Berger B, Jensen O. Optimal parameters for rapid (invisible) frequency tagging using MEG. Neuroimage 2023; 281:120389. [PMID: 37751812 PMCID: PMC10577447 DOI: 10.1016/j.neuroimage.2023.120389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023] Open
Abstract
Frequency tagging has been demonstrated to be a useful tool for identifying representational-specific neuronal activity in the auditory and visual domains. However, the slow flicker (<30 Hz) applied in conventional frequency tagging studies is highly visible and might entrain endogenous neuronal oscillations. Hence, stimulation at faster frequencies that is much less visible and does not interfere with endogenous brain oscillatory activity is a promising new tool. In this study, we set out to examine the optimal stimulation parameters of rapid frequency tagging (RFT/RIFT) with magnetoencephalography (MEG) by quantifying the effects of stimulation frequency, size and position of the flickering patch. Rapid frequency tagging using flickers above 50 Hz results in almost invisible stimulation which does not interfere with slower endogenous oscillations; however, the signal is weaker as compared to tagging at slower frequencies so certainty over the optimal parameters of stimulation delivery are crucial. The here presented results examining the frequency range between 60 Hz and 96 Hz suggest that RFT induces brain responses with decreasing strength up to about 84 Hz. In addition, even at the smallest flicker patch (2°) focally presented RFT induces a significant and measurable oscillatory brain signal (steady state visual evoked potential/field, SSVEP/F) at the stimulation frequency (66 Hz); however, the elicited response increases with patch size. While focal RFT presentation elicits the strongest response, off-centre presentations do generally mainly elicit a measureable response if presented below the horizontal midline. Importantly, the results also revealed considerable individual differences in the neuronal responses to RFT stimulation. Finally, we discuss the comparison of oscillatory measures (coherence and power) and sensor types (planar gradiometers and magnetometers) in order to achieve optimal outcomes. Based on our extensive findings we set forward concrete recommendations for using rapid frequency tagging in human cognitive neuroscience investigations.
Collapse
Affiliation(s)
- Tamas Minarik
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark.
| | - Barbara Berger
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Denmark
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, United Kingdom
| |
Collapse
|
13
|
Gundlach C, Wehle S, Müller MM. Early sensory gain control is dominated by obligatory and global feature-based attention in top-down shifts of combined spatial and feature-based attention. Cereb Cortex 2023; 33:10286-10302. [PMID: 37536059 DOI: 10.1093/cercor/bhad282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
What are the dynamics of global feature-based and spatial attention, when deployed together? In an attentional shifting experiment, flanked by three control experiments, we investigated neural temporal dynamics of combined attentional shifts. For this purpose, orange- and blue-frequency-tagged spatially overlapping Random Dot Kinematograms were presented in the left and right visual hemifield to elicit continuous steady-state-visual-evoked-potentials. After being initially engaged in a fixation cross task, participants were at some point in time cued to shift attention to one of the Random Dot Kinematograms, to detect and respond to brief coherent motion events, while ignoring all such events in other Random Dot Kinematograms. The analysis of steady-state visual-evoked potentials allowed us to map time courses and dynamics of early sensory-gain modulations by attention. This revealed a time-invariant amplification of the to-be attended color both at the attended and the unattended side, followed by suppression for the to-be-ignored color at attended and unattended sides. Across all experiments, global and obligatory feature-based selection dominated early sensory gain modulations, whereas spatial attention played a minor modulatory role. However, analyses of behavior and neural markers such as alpha-band activity and event-related potentials to target- and distractor-event processing, revealed clear modulations by spatial attention.
Collapse
Affiliation(s)
- Christopher Gundlach
- Experimental Psychology and Methods, Universität Leipzig, Leipzig 04107, Germany
| | - Sebastian Wehle
- Experimental Psychology and Methods, Universität Leipzig, Leipzig 04107, Germany
| | - Matthias M Müller
- Experimental Psychology and Methods, Universität Leipzig, Leipzig 04107, Germany
| |
Collapse
|
14
|
Tsoneva T, Garcia-Molina G, Desain P. Electrophysiological model of human temporal contrast sensitivity based on SSVEP. Front Neurosci 2023; 17:1180829. [PMID: 37599998 PMCID: PMC10433170 DOI: 10.3389/fnins.2023.1180829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
The present study aims to connect the psychophysical research on the human visual perception of flicker with the neurophysiological research on steady-state visual evoked potentials (SSVEPs) in the context of their application needs and current technological developments. In four experiments, we investigated whether a temporal contrast sensitivity model could be established based on the electrophysiological responses to repetitive visual stimulation and, if so, how this model compares to the psychophysical models of flicker visibility. We used data from 62 observers viewing periodic flicker at a range of frequencies and modulation depths sampled around the perceptual visibility thresholds. The resulting temporal contrast sensitivity curve (TCSC) was similar in shape to its psychophysical counterpart, confirming that the human visual system is most sensitive to repetitive visual stimulation at frequencies between 10 and 20 Hz. The electrophysiological TCSC, however, was below the psychophysical TCSC measured in our experiments for lower frequencies (1-50 Hz), crossed it when the frequency was 50 Hz, and stayed above while decreasing at a slower rate for frequencies in the gamma range (40-60 Hz). This finding provides evidence that SSVEPs could be measured even without the conscious perception of flicker, particularly at frequencies above 50 Hz. The cortical and perceptual mechanisms that apply at higher temporal frequencies, however, do not seem to directly translate to lower frequencies. The presence of harmonics, which show better response for many frequencies, suggests non-linear processing in the visual system. These findings are important for the potential applications of SSVEPs in studying, assisting, or augmenting human cognitive and sensorimotor functions.
Collapse
Affiliation(s)
- Tsvetomira Tsoneva
- Department of Digital Engagement, Cognition and Behavior, Philips Research, Eindhoven, Netherlands
- Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Gary Garcia-Molina
- Sleep Number Labs, San Jose, CA, United States
- Center for Sleep and Consciousness, University of Wisconsin, Madison, WI, United States
| | - Peter Desain
- Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
15
|
Sato A, Nakatani S. Independent bilateral-eye stimulation for gaze pattern recognition based on steady-state pupil light reflex. J Neural Eng 2022; 19. [PMID: 36583387 DOI: 10.1088/1741-2552/acab31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Objective:recently, pupil oscillations synchronized with steady visual stimuli were used as input for an interface. The proposed system, inspired by a brain-computer interface based on steady-state visual evoked potentials, does not require contact with the participant. However, the pupil oscillation mechanism limits the stimulus frequency to 2.5 Hz or less, making it hard to enhance the information transfer rate (ITR).Approach:here, we compared multiple conditions for stimulation to increase the ITR of the pupil vibration-based interface, which were called monocular-single, monocular-superposed, and binocular-independent conditions. The binocular-independent condition stimulates each eye at different frequencies respectively and mixes them by using the visual stereoscopic perception of users. The monocular-superposed condition stimulates both eyes by a mixed signal of two different frequencies. We selected the shape of the stimulation signal, evaluated the amount of spectral leakage in the monocular-superposed and binocular-independent conditions, and compared the power spectrum density at the stimulation frequency. Moreover, 5, 10, and 15 patterns of stimuli were classified in each condition.Main results:a square wave, which causes an efficient pupil response, was used as the stimulus. Spectral leakage at the beat frequency was higher in the monocular-superposed condition than in the binocular-independent one. The power spectral density of stimulus frequencies was greatest in the monocular-single condition. Finally, we could classify the 15-stimulus pattern, with ITRs of 14.4 (binocular-independent, using five frequencies), 14.5 (monocular-superimposed, using five frequencies), and 23.7 bits min-1(monocular-single, using 15 frequencies). There were no significant differences for the binocular-independent and monocular-superposed conditions.Significance:this paper shows a way to increase the number of stimuli that can be simultaneously displayed without decreasing ITR, even when only a small number of frequencies are available. This could lead to the provision of an interface based on pupil oscillation to a wider range of users.
Collapse
Affiliation(s)
- Ariki Sato
- Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Shintaro Nakatani
- Graduate School of Sustainability Science, Tottori University, Tottori, Japan.,Faculty of Engineering, Tottori University, Advanced Mechanical and Electronic System Research Center, Tottori University, Tottori, Japan
| |
Collapse
|
16
|
Brickwedde M, Bezsudnova Y, Kowalczyk A, Jensen O, Zhigalov A. Application of rapid invisible frequency tagging for brain computer interfaces. J Neurosci Methods 2022; 382:109726. [PMID: 36228894 PMCID: PMC7615063 DOI: 10.1016/j.jneumeth.2022.109726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/20/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Brain-computer interfaces (BCI) based on steady-state visual evoked potentials (SSVEPs/SSVEFs) are among the most commonly used BCI systems. They require participants to covertly attend to visual objects flickering at specified frequencies. The attended location is decoded online by analysing the power of neuronal responses at the flicker frequency. NEW METHOD We implemented a novel rapid invisible frequency-tagging technique, utilizing a state-of-the-art projector with refresh rates of up to 1440 Hz. We flickered the luminance of visual objects at 56 and 60 Hz, which was invisible to participants but produced strong neuronal responses measurable with magnetoencephalography (MEG). The direction of covert attention, decoded from frequency-tagging responses, was used to control an online BCI PONG game. RESULTS Our results show that seven out of eight participants were able to play the pong game controlled by the frequency-tagging signal, with average accuracies exceeding 60 %. Importantly, participants were able to modulate the power of the frequency-tagging response within a 1-second interval, while only seven occipital sensors were required to reliably decode the neuronal response. COMPARISON WITH EXISTING METHODS In contrast to existing SSVEP-based BCI systems, rapid frequency-tagging does not produce a visible flicker. This extends the time-period participants can use it without fatigue, by avoiding distracting visual input. Furthermore, higher frequencies increase the temporal resolution of decoding, resulting in higher communication rates. CONCLUSION Using rapid invisible frequency-tagging opens new avenues for fundamental research and practical applications. In combination with novel optically pumped magnetometers (OPMs), it could facilitate the development of high-speed and mobile next-generation BCI systems.
Collapse
Affiliation(s)
- Marion Brickwedde
- Centre for Human Brain Health, University of Birmingham, United Kingdom; Charité, Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin, Berlin, Germany.
| | - Yulia Bezsudnova
- Centre for Human Brain Health, University of Birmingham, United Kingdom.
| | - Anna Kowalczyk
- Centre for Human Brain Health, University of Birmingham, United Kingdom.
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, United Kingdom.
| | - Alexander Zhigalov
- Centre for Human Brain Health, University of Birmingham, United Kingdom; Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, United Kingdom.
| |
Collapse
|
17
|
Forschack N, Gundlach C, Hillyard S, Müller MM. Dynamics of attentional allocation to targets and distractors during visual search. Neuroimage 2022; 264:119759. [PMID: 36417950 DOI: 10.1016/j.neuroimage.2022.119759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/18/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022] Open
Abstract
There is much debate about the neural mechanisms that achieve suppression of salient distracting stimuli during visual search. The proactive suppression hypothesis asserts that if exposed to the same distractors repeatedly, these stimuli are actively inhibited before attention can be shifted to them. A contrasting proposal holds that attention is initially captured by salient distractors but is subsequently withdrawn. By concurrently measuring stimulus-driven and intrinsic brain potentials in 36 healthy human participants, we obtained converging evidence against early proactive suppression of distracting input. Salient distractors triggered negative event-related potentials (N1pc/N2pc), enhanced the steady-state visual evoked potential (SSVEP) relative to non-salient (filler) stimuli, and suppressed contralateral relative to ipsilateral alpha-band amplitudes-three electrophysiological measure associated with the allocation of attention-even though these distractors did not interfere with behavioral responses to the search targets. Furthermore, these measures indicated that both stimulus-driven and goal-driven allocations of attention occurred in conjunction with one another, with the goal-driven effect enhancing and prolonging the stimulus-driven effect. These results provide a new perspective on the traditional dichotomy between bottom-up and top-down attentional allocation. Control experiments revealed that continuous marking of the locations at which the search display items were presented resulted in a dramatic and unexpected conversion of the target-elicited N2pc into a shorter-latency N1pc in association with faster reaction times to the targets.
Collapse
Affiliation(s)
- Norman Forschack
- Wilhelm Wundt Department of Psychology, University of Leipzig, Germany.
| | | | - Steven Hillyard
- University of California, San Diego, USA; Leibniz Institute of Neurobiology, Magdeburg, Germany
| | - Matthias M Müller
- Wilhelm Wundt Department of Psychology, University of Leipzig, Germany
| |
Collapse
|
18
|
Neuropsychological and Neurophysiological Mechanisms behind Flickering Light Stimulus Processing. BIOLOGY 2022; 11:biology11121720. [PMID: 36552230 PMCID: PMC9774938 DOI: 10.3390/biology11121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The aim of this review is to summarise current knowledge about flickering light and the underlying processes that occur during its processing in the brain. Despite the growing interest in the topic of flickering light, its clinical applications are still not well understood. Studies using EEG indicate an appearing synchronisation of brain wave frequencies with the frequency of flickering light, and hopefully, it could be used in memory therapy, among other applications. Some researchers have focused on using the flicker test as an indicator of arousal, which may be useful in clinical studies if the background for such a relationship is described. Since flicker testing has a risk of inducing epileptic seizures, however, every effort must be made to avoid high-risk combinations, which include, for example, red-blue light flashing at 15 Hz. Future research should focus on the usage of neuroimaging methods to describe the specific neuropsychological and neurophysiological processes occurring in the brain during the processing of flickering light so that its clinical utility can be preliminarily determined and randomised clinical trials can be initiated to test existing reports.
Collapse
|
19
|
Peykarjou S, Langeloh M, Baccolo E, Rossion B, Pauen S. Superior neural individuation of mother's than stranger's faces by five months of age. Cortex 2022; 155:264-276. [PMID: 36044787 DOI: 10.1016/j.cortex.2022.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/22/2021] [Accepted: 07/07/2022] [Indexed: 01/23/2023]
Abstract
Human adults are better at recognizing different views of a given face as belonging to the same person when that person is familiar rather than unfamiliar. To clarify the developmental origin of this well-established phenomenon, one group of five-month-olds (N = 22) was presented with pictures of four different unfamiliar female faces at a fixed rate (6 Hz, 166 msec stimulus onset asynchrony), interrupted every 5th stimulus (1.2 Hz) by either their mother's face (mother oddball condition) or, in different stimulation sequences, a stranger's face (stranger oddball condition). In another group of five-month-olds (N = 17), stimulation sequences were reversed such that their mothers' or a given stranger's face were repeated at 6 Hz and interrupted every 5 stimuli by pictures of different female faces (mother standard, stranger standard conditions, respectively). Twelve variable images of each identity served as stimulus material. Besides clear frequency-tagged EEG responses at the 6 Hz stimulation rate over the medial occipital region in all conditions, significant activity at 1.2 Hz and harmonics (2.4 Hz, etc.) was observed in this region, reflecting selective responses to facial identity across changes of views. This effect was strongest when the mother's face was immediately repeated at every stimulation cycle (mother standard). Overall, these observations point to an early developmental advantage of identifying a familiar face presented from different views during immediate stimulus repetition.
Collapse
Affiliation(s)
| | - Miriam Langeloh
- Department of Psychology, Heidelberg University, Heidelberg, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Elisa Baccolo
- Università Degli Studi di Milano-Bicocca, Milan, Italy
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France
| | - Sabina Pauen
- Department of Psychology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
20
|
Wong-Kee-You AMB, Loveridge-Easther C, Mueller C, Simon N, Good WV. The impact of early exposure to general anesthesia on visual and neurocognitive development. Surv Ophthalmol 2022; 68:539-555. [PMID: 35970232 DOI: 10.1016/j.survophthal.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Every year millions of children are exposed to general anesthesia while undergoing surgical and diagnostic procedures. In the field of ophthalmology, 44,000 children are exposed to general anesthesia annually for strabismus surgery alone. While it is clear that general anesthesia is necessary for sedation and pain minimization during surgical procedures, the possibility of neurotoxic impairments from its exposure is of concern. In animals there is strong evidence linking early anesthesia exposure to abnormal neural development. but in humans the effects of anesthesia are debated. In humans many aspects of vision develop within the first year of life, making the visual system vulnerable to early adverse experiences and potentially vulnerable to early exposure to general anesthesia. We attempt to address whether the visual system is affected by early postnatal exposure to general anesthesia. We first summarize key mechanisms that could account for the neurotoxic effects of general anesthesia on the developing brain and review existing literature on the effects of early anesthesia exposure on the visual system in both animals and humans and on neurocognitive development in humans. Finally, we conclude by proposing future directions for research that could address unanswered questions regarding the impact of general anesthesia on visual development.
Collapse
Affiliation(s)
| | - Cam Loveridge-Easther
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA; University of Auckland, Auckland, New Zealand
| | - Claudia Mueller
- Sutter Health, San Francisco, CA, USA; Stanford Children's Health, Palo Alto, CA, USA
| | | | - William V Good
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA.
| |
Collapse
|
21
|
Yang H, Paller KA, van Vugt M. The steady state visual evoked potential (SSVEP) tracks "sticky" thinking, but not more general mind-wandering. Front Hum Neurosci 2022; 16:892863. [PMID: 36034124 PMCID: PMC9402933 DOI: 10.3389/fnhum.2022.892863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
For a large proportion of our daily lives, spontaneously occurring thoughts tend to disengage our minds from goal-directed thinking. Previous studies showed that EEG features such as the P3 and alpha oscillations can predict mind-wandering to some extent, but only with accuracies of around 60%. A potential candidate for improving prediction accuracy is the Steady-State Visual Evoked Potential (SSVEP), which is used frequently in single-trial contexts such as brain-computer interfaces as a marker of the direction of attention. In this study, we modified the sustained attention to response task (SART) that is usually employed to measure spontaneous thought to incorporate the SSVEP elicited by a 12.5-Hz flicker. We then examined whether the SSVEP could track and allow for the prediction of the stickiness and task-relatedness dimensions of spontaneous thought. Our results show that the SSVEP evoked by flickering words was able to distinguish between more and less sticky thinking but not between whether a participant was on- or off-task. This suggests that the SSVEP is able to track spontaneous thinking when it is strongly disengaged from the task (as in the sticky form of off-task thinking) but not off-task thought in general. Future research should determine the exact dimensions of spontaneous thought to which the SSVEP is most sensitive.
Collapse
Affiliation(s)
- Hang Yang
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, Netherlands
| | - Ken A. Paller
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - Marieke van Vugt
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, Netherlands
| |
Collapse
|
22
|
Kritzman L, Eidelman-Rothman M, Keil A, Freche D, Sheppes G, Levit-Binnun N. Steady-state visual evoked potentials differentiate between internally and externally directed attention. Neuroimage 2022; 254:119133. [PMID: 35339684 DOI: 10.1016/j.neuroimage.2022.119133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
While attention to external visual stimuli has been extensively studied, attention directed internally towards mental contents (e.g., thoughts, memories) or bodily signals (e.g., breathing, heartbeat) has only recently become a subject of increased interest, due to its relation to interoception, contemplative practices and mental health. The present study aimed at expanding the methodological toolbox for studying internal attention, by examining for the first time whether the steady-state visual evoked potential (ssVEP), a well-established measure of attention, can differentiate between internally and externally directed attention. To this end, we designed a task in which flickering dots were used to generate ssVEPs, and instructed participants to count visual targets (external attention condition) or their heartbeats (internal attention condition). We compared the ssVEP responses between conditions, along with alpha-band activity and the heartbeat evoked potential (HEP) - two electrophysiological measures associated with internally directed attention. Consistent with our hypotheses, we found that both the magnitude and the phase synchronization of the ssVEP decreased when attention was directed internally, suggesting that ssVEP measures are able to differentiate between internal and external attention. Additionally, and in line with previous findings, we found larger suppression of parieto-occipital alpha-band activity and an increase of the HEP amplitude in the internal attention condition. Furthermore, we found a trade-off between changes in ssVEP response and changes in HEP and alpha-band activity: when shifting from internal to external attention, increase in ssVEP response was related to a decrease in parieto-occipital alpha-band activity and HEP amplitudes. These findings suggest that shifting between external and internal directed attention prompts a re-allocation of limited processing resources that are shared between external sensory and interoceptive processing.
Collapse
Affiliation(s)
- Lior Kritzman
- School of Psychological Sciences, Tel Aviv University, Israel; Sagol Center for Brain and Mind, Reichman University, Israel.
| | | | - Andreas Keil
- Center for the Study of Emotion & Attention, University of Florida, USA
| | - Dominik Freche
- Sagol Center for Brain and Mind, Reichman University, Israel; Physics of Complex Systems, Weizmann Institute of Science, Israel
| | - Gal Sheppes
- School of Psychological Sciences, Tel Aviv University, Israel
| | | |
Collapse
|
23
|
Shioiri S, Sasada T, Nishikawa R. Visual attention around a hand location localized by proprioceptive information. Cereb Cortex Commun 2022; 3:tgac005. [PMID: 35224493 PMCID: PMC8867302 DOI: 10.1093/texcom/tgac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/12/2022] Open
Abstract
Facilitation of visual processing has been reported in the space near the hand. To understand the underlying mechanism of hand proximity attention, we conducted experiments that isolated hand-related effects from top–down attention, proprioceptive information from visual information, the position effect from the influence of action, and the distance effect from the peripersonal effect. The flash-lag effect was used as an index of attentional modulation. Because the results showed that the flash-lag effect was smaller at locations near the hand, we concluded that there was a facilitation effect of the visual stimuli around the hand location identified through proprioceptive information. This was confirmed by conventional reaction time measures. We also measured steady-state visual evoked potential (SSVEP) in order to investigate the spatial properties of hand proximity attention and top–down attention. The results showed that SSVEP reflects the effect of top–down attention but not that of hand proximity attention. This suggests that the site of hand proximity attention is at a later stage of visual processing, assuming that SSVEP responds to neural activities at the early stages. The results of left-handers differed from those of right-handers, and this is discussed in relation to handedness variation.
Collapse
Affiliation(s)
- Satoshi Shioiri
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Takumi Sasada
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Ryota Nishikawa
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
24
|
Forschack N, Gundlach C, Hillyard S, Müller MM. Electrophysiological Evidence for Target Facilitation Without Distractor Suppression in Two-Stimulus Search Displays. Cereb Cortex 2022; 32:3816-3828. [PMID: 35034125 DOI: 10.1093/cercor/bhab450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
This study used electrophysiological measures to investigate how attention is deployed to target and distractor stimuli during visual search using search displays with a small set-size. Participants viewed randomized sequences of two-item displays that consisted of either a target and a distractor (differing in color) or a pair of task-irrelevant filler stimuli having a third color, all presented in an ongoing stream of flickering gray circles. The allocation of attention was assessed by concurrent recordings of steady-state visual evoked potentials (SSVEPs) elicited by the flickering displays and perturbations of the endogenous alpha rhythm following each type of display. The aim was to test a central prediction of the signal suppression hypothesis, namely that the processing of distractors will be proactively suppressed below the level of filler stimuli. Amplitude modulations of both the SSVEP and the lateralized alpha rhythm provided converging evidence against early proactive suppression of highly salient distractors. Instead, these electrophysiological measures were consistent with the view that in this type of two-stimulus search task there is an initial capture of attention by all color-change stimuli (targets, distractors, and fillers) followed by a further focusing of attention upon the target, with no evidence for suppression of the distractor.
Collapse
Affiliation(s)
- Norman Forschack
- Wilhelm-Wundt-Institute of Psychology, University of Leipzig, Leipzig, Germany
| | | | - Steven Hillyard
- University of California, San Diego, CA, USA
- Leibniz Institute of Neurobiology, Magdeburg, Germany
| | - Matthias M Müller
- Wilhelm-Wundt-Institute of Psychology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
25
|
Mahajan Y, Ching A, Watson T, Kim J, Davis C. Effect of sustained selective attention on steady-state visual evoked potentials. Exp Brain Res 2021; 240:249-261. [PMID: 34727219 DOI: 10.1007/s00221-021-06251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
Visual-spatial selective attention enhances the processing of task-relevant visual events while suppressing the processing of irrelevant ones. In this study, we employed a frequency-tagging paradigm to investigate how sustained visual-spatial attention modulates the first harmonic and second harmonic steady-state visual evoked potentials (SSVEPs). Unlike previous studies, that investigated stimulation durations of 10 s or less, we tested a 30-s period. SSVEPs were elicited by simultaneously presenting to the right and left visual hemifields two pattern reversal checkerboard stimuli modulating at 7.14 Hz and 11.11 Hz. Participants were cued to selectively attend to one visual hemifield while ignoring the other. Behavioral results indicated that participants selectively attended to the cued visual hemifield. When participants attended to the visual stimuli, there were larger second harmonic SSVEPs but no attentional modulation of first harmonics. The results are consistent with the proposal that neural populations underlying first, and second harmonics have distinct functional roles, i.e., first harmonics' mechanisms preserve stimulus properties and are resistant to attentional gain, whereas second harmonics mediate attentional modulation. This interpretation is supported by a gain control theory of selective attention.
Collapse
Affiliation(s)
- Yatin Mahajan
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Locked Bag 1797, Penrith, Sydney, NSW, Australia.
| | - April Ching
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tamara Watson
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Locked Bag 1797, Penrith, Sydney, NSW, Australia.,School of Social Sciences and Psychology, Western Sydney University, Sydney, Australia
| | - Jeesun Kim
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Locked Bag 1797, Penrith, Sydney, NSW, Australia
| | - Chris Davis
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Locked Bag 1797, Penrith, Sydney, NSW, Australia
| |
Collapse
|
26
|
Armengol-Urpi A, Salazar-Gomez AF, Sarma SE. A Novel Approach to Decode Covert Spatial Attention Using SSVEP and Single-Frequency Phase-Coded Stimuli. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5694-5699. [PMID: 34892414 DOI: 10.1109/embc46164.2021.9630688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper investigates for the first time the use of single-frequency phase-coded stimuli to detect covert visuo-spatial attention (CVSA) with steady-state visual evoked potentials (SSVEP). Two 15Hz pattern-onset stimulations were encoded with opposite phases and simultaneously presented on a LCD monitor. The effects of attending each stimulus on the amplitudes and phases of the evoked SSVEPs across the visual cortex are explored. A real-time CVSA classification experiment was simulated offline with 9 BCI-naive subjects, achieving an average classification accuracy of 88.4 ± 8% SE. Our results are, to our knowledge, the first report that CVSA can be decoded with SSVEP using single-frequency phase-coded stimuli. This opens opportunities for attention-tracking applications with largely increased number of targets.
Collapse
|
27
|
Lobo T, Brookes MJ, Bauer M. Can the causal role of brain oscillations be studied through rhythmic brain stimulation? J Vis 2021; 21:2. [PMID: 34727165 PMCID: PMC8572434 DOI: 10.1167/jov.21.12.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Many studies have investigated the causal relevance of brain oscillations using rhythmic stimulation, either through direct-brain or sensory stimulation. Yet, how intrinsic rhythms interact with the externally generated rhythm is largely unknown. We presented a flickered (60 Hz) visual grating or its correspondent unflickered stimulus in a psychophysical change detection task during simultaneous magnetoencephalography recordings to humans to test the effect of visual entrainment on induced gamma oscillations. Notably, we generally observed the coexistence of the broadband induced gamma rhythm with the entrained flicker rhythm (reliably measured in each participant), with the peak frequency of the induced response remaining unaltered in approximately half of participants—relatively independently of their native frequency. However, flicker increased broadband induced gamma power, and this was stronger in participants with a native frequency closer to the flicker frequency (resonance) and led to strong phase entrainment. Presence of flicker did not change behavior itself but profoundly altered brain behavior correlates across the sample: While broadband induced gamma oscillations correlated with reaction times for unflickered stimuli (as known previously), for the flicker, the amplitude of the entrained flicker rhythm (but no more the induced oscillation) correlated with reaction times. This, however, strongly depended on whether a participant's peak frequency shifted to the entrained rhythm. Our results suggests that rhythmic brain stimulation leads to a coexistence of two partially independent oscillations with heterogeneous effects across participants on the downstream relevance of these rhythms for behavior. This may explain the inconsistency of findings related to external entrainment of brain oscillations and poses further questions toward causal manipulations of brain oscillations in general.
Collapse
Affiliation(s)
- Tanya Lobo
- School of Psychology, University of Nottingham, University Park, Nottingham, UK.,
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, University of Nottingham, University Park, Nottingham, UK.,
| | - Markus Bauer
- School of Psychology, University of Nottingham, University Park, Nottingham, UK.,
| |
Collapse
|
28
|
van Zoest W, Huber-Huber C, Weaver MD, Hickey C. Strategic Distractor Suppression Improves Selective Control in Human Vision. J Neurosci 2021; 41:7120-7135. [PMID: 34244360 PMCID: PMC8372027 DOI: 10.1523/jneurosci.0553-21.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/28/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
Our visual environment is complicated, and our cognitive capacity is limited. As a result, we must strategically ignore some stimuli to prioritize others. Common sense suggests that foreknowledge of distractor characteristics, like location or color, might help us ignore these objects. But empirical studies have provided mixed evidence, often showing that knowing about a distractor before it appears counterintuitively leads to its attentional selection. What has looked like strategic distractor suppression in the past is now commonly explained as a product of prior experience and implicit statistical learning, and the long-standing notion the distractor suppression is reflected in α band oscillatory brain activity has been challenged by results appearing to link α to target resolution. Can we strategically, proactively suppress distractors? And, if so, does this involve α? Here, we use the concurrent recording of human EEG and eye movements in optimized experimental designs to identify behavior and brain activity associated with proactive distractor suppression. Results from three experiments show that knowing about distractors before they appear causes a reduction in electrophysiological indices of covert attentional selection of these objects and a reduction in the overt deployment of the eyes to the location of the objects. This control is established before the distractor appears and is predicted by the power of cue-elicited α activity over the visual cortex. Foreknowledge of distractor characteristics therefore leads to improved selective control, and α oscillations in visual cortex reflect the implementation of this strategic, proactive mechanism.SIGNIFICANCE STATEMENT To behave adaptively and achieve goals we often need to ignore visual distraction. Is it easier to ignore distracting objects when we know more about them? We recorded eye movements and electrical brain activity to determine whether foreknowledge of distractor characteristics can be used to limit processing of these objects. Results show that knowing the location or color of a distractor stops us from attentionally selecting it. A neural signature of this inhibition emerges in oscillatory alpha band brain activity, and when this signal is strong, selective processing of the distractor decreases. Knowing about the characteristics of task-irrelevant distractors therefore increases our ability to focus on task-relevant information, in this way gating information processing in the brain.
Collapse
Affiliation(s)
- Wieske van Zoest
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, England
- Centre for Mind/Brain Sciences, University of Trento, 38068 Trento, Italy
| | - Christoph Huber-Huber
- Centre for Mind/Brain Sciences, University of Trento, 38068 Trento, Italy
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Matthew D Weaver
- Centre for Mind/Brain Sciences, University of Trento, 38068 Trento, Italy
| | - Clayton Hickey
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, England
- Centre for Mind/Brain Sciences, University of Trento, 38068 Trento, Italy
| |
Collapse
|
29
|
Bachman MD, Hunter MN, Huettel SA, Woldorff MG. Disruptions of Sustained Spatial Attention Can Be Resistant to the Distractor's Prior Reward Associations. Front Hum Neurosci 2021; 15:666731. [PMID: 34393738 PMCID: PMC8363301 DOI: 10.3389/fnhum.2021.666731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Attention can be involuntarily biased toward reward-associated distractors (value-driven attentional capture, VDAC). Yet past work has primarily demonstrated this distraction phenomenon during a particular set of circumstances: transient attentional orienting to potentially relevant stimuli occurring in our visual environment. Consequently, it is not well-understood if reward-based attentional capture can occur under other circumstances, such as during sustained visuospatial attention. Using EEG, we investigated whether associating transient distractors with reward value would increase their distractibility and lead to greater decrements in concurrent sustained spatial attention directed elsewhere. Human participants learned to associate three differently colored, laterally presented squares with rewards of varying magnitude (zero, small, and large). These colored squares were then periodically reintroduced as distractors at the same lateral locations during a demanding sustained-attention rapid-serial-visual-presentation (RSVP) task at the midline. Behavioral and neural evidence indicated that participants had successfully learned and maintained the reward associations to the distractors. During the RSVP task, consistent with prior work, we found that the distractors generated dips in the instantaneous amplitude of the steady-state visual evoked potentials (SSVEPs) elicited by the midline RSVP stimuli, indicating that the distractors were indeed transiently disrupting sustained spatial attention. Contrary to our hypotheses, however, the magnitude of this dip did not differ by the magnitude of the distractor’s reward associations. These results indicate that while sustained spatial attention can be impaired by the introduction of distractors at another location, the main distraction process is resistant to the distractors’ reward associations, thus providing evidence of an important boundary condition to value-driven attentional capture.
Collapse
Affiliation(s)
- Matthew D Bachman
- Center for Cognitive Neuroscience, Duke University, Durham, NC, United States.,Department of Psychology & Neuroscience, Duke University, Durham, NC, United States
| | - Madison N Hunter
- Department of Psychology & Neuroscience, Duke University, Durham, NC, United States
| | - Scott A Huettel
- Center for Cognitive Neuroscience, Duke University, Durham, NC, United States.,Department of Psychology & Neuroscience, Duke University, Durham, NC, United States
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke University, Durham, NC, United States.,Department of Psychology & Neuroscience, Duke University, Durham, NC, United States.,Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC, United States
| |
Collapse
|
30
|
Zhang G, Cui Y, Zhang Y, Cao H, Zhou G, Shu H, Yao D, Xia Y, Chen K, Guo D. Computational exploration of dynamic mechanisms of steady state visual evoked potentials at the whole brain level. Neuroimage 2021; 237:118166. [PMID: 34000401 DOI: 10.1016/j.neuroimage.2021.118166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 01/23/2023] Open
Abstract
Periodic visual stimulation can induce stable steady-state visual evoked potentials (SSVEPs) distributed in multiple brain regions and has potential applications in both neural engineering and cognitive neuroscience. However, the underlying dynamic mechanisms of SSVEPs at the whole-brain level are still not completely understood. Here, we addressed this issue by simulating the rich dynamics of SSVEPs with a large-scale brain model designed with constraints of neuroimaging data acquired from the human brain. By eliciting activity of the occipital areas using an external periodic stimulus, our model was capable of replicating both the spatial distributions and response features of SSVEPs that were observed in experiments. In particular, we confirmed that alpha-band (8-12 Hz) stimulation could evoke stronger SSVEP responses; this frequency sensitivity was due to nonlinear entrainment and resonance, and could be modulated by endogenous factors in the brain. Interestingly, the stimulus-evoked brain networks also exhibited significant superiority in topological properties near this frequency-sensitivity range, and stronger SSVEP responses were demonstrated to be supported by more efficient functional connectivity at the neural activity level. These findings not only provide insights into the mechanistic understanding of SSVEPs at the whole-brain level but also indicate a bright future for large-scale brain modeling in characterizing the complicated dynamics and functions of the brain.
Collapse
Affiliation(s)
- Ge Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
| | - Yan Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
| | - Yangsong Zhang
- School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hefei Cao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
| | - Guanyu Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
| | - Haifeng Shu
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China; School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Yang Xia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
| | - Ke Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
| | - Daqing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China.
| |
Collapse
|
31
|
Nelli S, Malpani A, Boonjindasup M, Serences JT. Individual Alpha Frequency Determines the Impact of Bottom-Up Drive on Visual Processing. Cereb Cortex Commun 2021; 2:tgab032. [PMID: 34296177 PMCID: PMC8171796 DOI: 10.1093/texcom/tgab032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Endogenous alpha oscillations propagate from higher-order to early visual cortical regions, consistent with the observed modulation of these oscillations by top-down factors. However, bottom-up manipulations also influence alpha oscillations, and little is known about how these top-down and bottom-up processes interact to impact behavior. To address this, participants performed a detection task while viewing a stimulus flickering at multiple alpha band frequencies. Bottom-up drive at a participant's endogenous alpha frequency either impaired or enhanced perception, depending on the frequency, but not amplitude, of their endogenous alpha oscillation. Fast alpha drive impaired perceptual performance in participants with faster endogenous alpha oscillations, while participants with slower oscillations displayed enhanced performance. This interaction was reflected in slower endogenous oscillatory dynamics in participants with fast alpha oscillations and more rapid dynamics in participants with slow endogenous oscillations when receiving high-frequency bottom-up drive. This central tendency may suggest that driving visual circuits at alpha band frequencies that are away from the peak alpha frequency improves perception through dynamical interactions with the endogenous oscillation. As such, studies that causally manipulate neural oscillations via exogenous stimulation should carefully consider interacting effects of bottom-up drive and endogenous oscillations on behavior.
Collapse
Affiliation(s)
- Stephanie Nelli
- Neurosciences Graduate Program, University of California, San Diego, CA 92093, USA
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | | | | | - John T Serences
- Neurosciences Graduate Program, University of California, San Diego, CA 92093, USA
- Department of Psychology, San Diego, CA 92093, USA
- Kavli Institute for Brain and Mind, University of California, San Diego, CA 92093, USA
| |
Collapse
|
32
|
Lingelbach K, Dreyer AM, Schöllhorn I, Bui M, Weng M, Diederichs F, Rieger JW, Petermann-Stock I, Vukelić M. Brain Oscillation Entrainment by Perceptible and Non-perceptible Rhythmic Light Stimulation. FRONTIERS IN NEUROERGONOMICS 2021; 2:646225. [PMID: 38235231 PMCID: PMC10790848 DOI: 10.3389/fnrgo.2021.646225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/02/2021] [Indexed: 01/19/2024]
Abstract
Objective and Background: Decades of research in the field of steady-state visual evoked potentials (SSVEPs) have revealed great potential of rhythmic light stimulation for brain-computer interfaces. Additionally, rhythmic light stimulation provides a non-invasive method for entrainment of oscillatory activity in the brain. Especially effective protocols enabling non-perceptible rhythmic stimulation and, thereby, reducing eye fatigue and user discomfort are favorable. Here, we investigate effects of (1) perceptible and (2) non-perceptible rhythmic light stimulation as well as attention-based effects of the stimulation by asking participants to focus (a) on the stimulation source directly in an overt attention condition or (b) on a cross-hair below the stimulation source in a covert attention condition. Method: SSVEPs at 10 Hz were evoked with a light-emitting diode (LED) driven by frequency-modulated signals and amplitudes of the current intensity either below or above a previously estimated individual threshold. Furthermore, we explored the effect of attention by asking participants to fixate on the LED directly in the overt attention condition and indirectly attend it in the covert attention condition. By measuring electroencephalography, we analyzed differences between conditions regarding the detection of reliable SSVEPs via the signal-to-noise ratio (SNR) and functional connectivity in occipito-frontal(-central) regions. Results: We could observe SSVEPs at 10 Hz for the perceptible and non-perceptible rhythmic light stimulation not only in the overt but also in the covert attention condition. The SNR and SSVEP amplitudes did not differ between the conditions and SNR values were in all except one participant above significance thresholds suggested by previous literature indicating reliable SSVEP responses. No difference between the conditions could be observed in the functional connectivity in occipito-frontal(-central) regions. Conclusion: The finding of robust SSVEPs even for non-intrusive rhythmic stimulation protocols below an individual perceptibility threshold and without direct fixation on the stimulation source reveals strong potential as a safe stimulation method for oscillatory entrainment in naturalistic applications.
Collapse
Affiliation(s)
- Katharina Lingelbach
- Fraunhofer Institute for Industrial Engineering, Human-Technology Interaction, Stuttgart, Germany
- Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Alexander M. Dreyer
- Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Michael Bui
- Fraunhofer Institute for Industrial Engineering, Human-Technology Interaction, Stuttgart, Germany
| | - Michael Weng
- Volkswagen AG, Group Innovation, Wolfsburg, Germany
| | - Frederik Diederichs
- Fraunhofer Institute for Industrial Engineering, Human-Technology Interaction, Stuttgart, Germany
| | - Jochem W. Rieger
- Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
| | | | - Mathias Vukelić
- Fraunhofer Institute for Industrial Engineering, Human-Technology Interaction, Stuttgart, Germany
| |
Collapse
|
33
|
Adam KCS, Chang L, Rangan N, Serences JT. Steady-State Visually Evoked Potentials and Feature-based Attention: Preregistered Null Results and a Focused Review of Methodological Considerations. J Cogn Neurosci 2021; 33:695-724. [PMID: 33416444 PMCID: PMC8354379 DOI: 10.1162/jocn_a_01665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Feature-based attention is the ability to selectively attend to a particular feature (e.g., attend to red but not green items while looking for the ketchup bottle in your refrigerator), and steady-state visually evoked potentials (SSVEPs) measured from the human EEG signal have been used to track the neural deployment of feature-based attention. Although many published studies suggest that we can use trial-by-trial cues to enhance relevant feature information (i.e., greater SSVEP response to the cued color), there is ongoing debate about whether participants may likewise use trial-by-trial cues to voluntarily ignore a particular feature. Here, we report the results of a preregistered study in which participants either were cued to attend or to ignore a color. Counter to prior work, we found no attention-related modulation of the SSVEP response in either cue condition. However, positive control analyses revealed that participants paid some degree of attention to the cued color (i.e., we observed a greater P300 component to targets in the attended vs. the unattended color). In light of these unexpected null results, we conducted a focused review of methodological considerations for studies of feature-based attention using SSVEPs. In the review, we quantify potentially important stimulus parameters that have been used in the past (e.g., stimulation frequency, trial counts) and we discuss the potential importance of these and other task factors (e.g., feature-based priming) for SSVEP studies.
Collapse
|
34
|
Soh C, Wessel JR. Unexpected Sounds Nonselectively Inhibit Active Visual Stimulus Representations. Cereb Cortex 2021; 31:1632-1646. [PMID: 33140100 DOI: 10.1093/cercor/bhaa315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
The brain's capacity to process unexpected events is key to cognitive flexibility. The most well-known effect of unexpected events is the interruption of attentional engagement (distraction). We tested whether unexpected events interrupt attentional representations by activating a neural mechanism for inhibitory control. This mechanism is most well characterized within the motor system. However, recent work showed that it is automatically activated by unexpected events and can explain some of their nonmotor effects (e.g., on working memory representations). Here, human participants attended to lateralized flickering visual stimuli, producing steady-state visual evoked potentials (SSVEPs) in the scalp electroencephalogram. After unexpected sounds, the SSVEP was rapidly suppressed. Using a functional localizer (stop-signal) task and independent component analysis, we then identified a fronto-central EEG source whose activity indexes inhibitory motor control. Unexpected sounds in the SSVEP task also activated this source. Using single-trial analyses, we found that subcomponents of this source differentially relate to sound-induced SSVEP changes: While its N2 component predicted the subsequent suppression of the attended-stimulus SSVEP, the P3 component predicted the suppression of the SSVEP to the unattended stimulus. These results shed new light on the processes underlying fronto-central control signals and have implications for phenomena such as distraction and the attentional blink.
Collapse
Affiliation(s)
- Cheol Soh
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52245, USA
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52245, USA.,Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
35
|
Vieweg P, Müller MM. Shifting Attention in Feature Space: Fast Facilitation of the To-Be-Attended Feature Is Followed by Slow Inhibition of the To-Be-Ignored Feature. J Cogn Neurosci 2020; 33:651-661. [PMID: 33378245 DOI: 10.1162/jocn_a_01669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In an explorative study, we investigated the time course of attentional selection shifts in feature-based attention in early visual cortex by means of steady-state visual evoked potentials (SSVEPs). To this end, we presented four flickering random dot kinematograms with red/blue, horizontal/vertical bars, respectively. Given the oscillatory nature of SSVEPs, we were able to investigate neural temporal dynamics of facilitation and inhibition/suppression when participants shifted attention either within (i.e., color to color) or between feature dimensions (i.e., color to orientation). Extending a previous study of our laboratory [Müller, M. M., Trautmann, M., & Keitel, C. Early visual cortex dynamics during top-down modulated shifts of feature-selective attention. Journal of Cognitive Neuroscience, 28, 643-655, 2016] to a full factorial design, we replicated a critical finding of our previous study: Facilitation of color was quickest, regardless of the origin of the shift (from color or orientation). Furthermore, facilitation of the newly to-be-attended and inhibition/suppression of the then to-be-ignored feature is not a time-invariant process that occurs instantaneously, but a biphasic one with longer time delays between the two processes. Interestingly, inhibition/suppression of the to-be-ignored feature after the shifting cue had a much longer latency with between- compared to within-dimensional shifts (by about 130-150 msec). The exploratory nature of our study is reasoned by two limiting factors: (a) Identical to our precursor study, we found no attentional SSVEP amplitude time course modulation for orientation, and (b) the signal-to-noise ratio for single trials was too poor to allow for reliable statistical testing of the latencies that were obtained with running t tests of averaged data.
Collapse
|
36
|
Griffiths O, Gwinn OS, Russo S, Baetu I, Nicholls MER. Reinforcement history shapes primary visual cortical responses: An SSVEP study. Biol Psychol 2020; 158:108004. [PMID: 33290847 DOI: 10.1016/j.biopsycho.2020.108004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Efficient learning requires allocating limited attentional resources to meaningful stimuli and away from irrelevant stimuli. This prioritization may occur via covert attention, evident in the activity of the visual cortex. We used steady-state visual evoked potentials (SSVEPs) to assess whether associability-driven changes in stimulus processing were evident in visuocortical responses. Participants were trained on a learned-predictiveness protocol, whereby one stimulus on each trial accurately predicted the correct response for that trial, and the other was irrelevant. In a second phase the task was arranged so that all cues were objectively predictive. Participants' overt attention (eye gaze) was affected by each cue's reinforcement history, as was their covert attention (SSVEP responses). These biases persisted into Phase 2 when all stimuli were objectively predictive, thereby demonstrating that learned attentional processes are evident in basic sensory processing, and exert an effect on covert attention above and beyond the effects of overt gaze bias.
Collapse
Affiliation(s)
- Oren Griffiths
- College of Education, Psychology, and Social Work, Flinders University, Adelaide, 5042, Australia.
| | - O Scott Gwinn
- College of Education, Psychology, and Social Work, Flinders University, Adelaide, 5042, Australia
| | - Salvatore Russo
- College of Education, Psychology, and Social Work, Flinders University, Adelaide, 5042, Australia
| | - Irina Baetu
- School of Psychology, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Michael E R Nicholls
- College of Education, Psychology, and Social Work, Flinders University, Adelaide, 5042, Australia
| |
Collapse
|
37
|
Exploring the temporal dynamics of inhibition of return using steady-state visual evoked potentials. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:1349-1364. [PMID: 33236297 DOI: 10.3758/s13415-020-00846-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/25/2020] [Indexed: 11/08/2022]
Abstract
Inhibition of return is characterized by delayed responses to previously attended locations when the interval between stimuli is long enough. The present study employed steady-state visual evoked potentials (SSVEPs) as a measure of attentional modulation to explore the nature and time course of input- and output-based inhibitory cueing mechanisms that each slow response times at previously stimulated locations under different experimental conditions. The neural effects of behavioral inhibition were examined by comparing post-cue SSVEPs between cued and uncued locations measured across two tasks that differed only in the response modality (saccadic or manual response to targets). Grand averages of SSVEP amplitudes for each condition showed a reduction in amplitude at cued locations in the window of 100-500 ms post-cue, revealing an early, short-term decrease in the responses of neurons that can be attributed to sensory adaptation, regardless of response modality. Because primary visual cortex has been found to be one of the major sources of SSVEP signals, the results suggest that the SSVEP modulations observed were caused by input-based inhibition that occurred in V1, or visual areas earlier than V1, as a consequence of reduced visual input activity at previously cued locations. No SSVEP modulations were observed in either response condition late in the cue-target interval, suggesting that neither late input- nor output-based IOR modulates SSVEPs. These findings provide further electrophysiological support for the theory of multiple mechanisms contributing to behavioral cueing effects.
Collapse
|
38
|
Davidson MJ, Mithen W, Hogendoorn H, van Boxtel JJA, Tsuchiya N. The SSVEP tracks attention, not consciousness, during perceptual filling-in. eLife 2020; 9:e60031. [PMID: 33170121 PMCID: PMC7682990 DOI: 10.7554/elife.60031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Research on the neural basis of conscious perception has almost exclusively shown that becoming aware of a stimulus leads to increased neural responses. By designing a novel form of perceptual filling-in (PFI) overlaid with a dynamic texture display, we frequency-tagged multiple disappearing targets as well as their surroundings. We show that in a PFI paradigm, the disappearance of a stimulus and subjective invisibility is associated with increases in neural activity, as measured with steady-state visually evoked potentials (SSVEPs), in electroencephalography (EEG). We also find that this increase correlates with alpha-band activity, a well-established neural measure of attention. These findings cast doubt on the direct relationship previously reported between the strength of neural activity and conscious perception, at least when measured with current tools, such as the SSVEP. Instead, we conclude that SSVEP strength more closely measures changes in attention.
Collapse
Affiliation(s)
- Matthew J Davidson
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
- Department of Experimental Psychology, Faculty of Medicine, University of OxfordOxfordUnited Kingdom
| | - Will Mithen
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
| | - Hinze Hogendoorn
- Melbourne School of Psychological Sciences, University of MelbourneMelbourneAustralia
| | - Jeroen JA van Boxtel
- Discipline of Psychology, Faculty of Health, University of CanberraCanberraAustralia
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
- Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT)SuitaJapan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gunKyotoJapan
| |
Collapse
|
39
|
Minami T, Azuma K, Nakauchi S. Steady-state visually evoked potential is modulated by the difference of recognition condition. PLoS One 2020; 15:e0235309. [PMID: 32614860 PMCID: PMC7332023 DOI: 10.1371/journal.pone.0235309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/13/2020] [Indexed: 11/18/2022] Open
Abstract
Recent researches revealed that the EEG component caused by the flickering visual stimulus, which is called steady-state visually evoked potential (SSVEP), might be a potential index for object recognition. This study examined whether SSVEP reflects different states during object recognition. In one trial, a binary image (BI), which is difficult to recognize, was followed by a grayscale image (GI) of the same object as the answer. Both BI and GI were presented in a flickering manner at a frequency of 7.5 Hz. Participants were first asked to answer whether they could recognize BI. Then, after GI was shown, participants were requested to answer whether they recognized it. We analyzed the evoked and induced component of SSVEPs from the two recognition conditions. As a result, the SSVEPs to BI were significantly larger than that to GI. In addition, induced component to GI after the BI was unrecognized was smaller than after the BI was recognized. The present data provide evidence that SSVEPs reflect a transition of cognitive state to ambiguous figures is reflected.
Collapse
Affiliation(s)
- Tetsuto Minami
- Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- * E-mail:
| | - Kazuki Azuma
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Shigeki Nakauchi
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
40
|
Ko LW, Chikara RK, Lee YC, Lin WC. Exploration of User's Mental State Changes during Performing Brain-Computer Interface. SENSORS 2020; 20:s20113169. [PMID: 32503162 PMCID: PMC7308896 DOI: 10.3390/s20113169] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 01/27/2023]
Abstract
Substantial developments have been established in the past few years for enhancing the performance of brain–computer interface (BCI) based on steady-state visual evoked potential (SSVEP). The past SSVEP-BCI studies utilized different target frequencies with flashing stimuli in many different applications. However, it is not easy to recognize user’s mental state changes when performing the SSVEP-BCI task. What we could observe was the increasing EEG power of the target frequency from the user’s visual area. BCI user’s cognitive state changes, especially in mental focus state or lost-in-thought state, will affect the BCI performance in sustained usage of SSVEP. Therefore, how to differentiate BCI users’ physiological state through exploring their neural activities changes while performing SSVEP is a key technology for enhancing the BCI performance. In this study, we designed a new BCI experiment which combined working memory task into the flashing targets of SSVEP task using 12 Hz or 30 Hz frequencies. Through exploring the EEG activity changes corresponding to the working memory and SSVEP task performance, we can recognize if the user’s cognitive state is in mental focus or lost-in-thought. Experiment results show that the delta (1–4 Hz), theta (4–7 Hz), and beta (13–30 Hz) EEG activities increased more in mental focus than in lost-in-thought state at the frontal lobe. In addition, the powers of the delta (1–4 Hz), alpha (8–12 Hz), and beta (13–30 Hz) bands increased more in mental focus in comparison with the lost-in-thought state at the occipital lobe. In addition, the average classification performance across subjects for the KNN and the Bayesian network classifiers were observed as 77% to 80%. These results show how mental state changes affect the performance of BCI users. In this work, we developed a new scenario to recognize the user’s cognitive state during performing BCI tasks. These findings can be used as the novel neural markers in future BCI developments.
Collapse
Affiliation(s)
- Li-Wei Ko
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (L.-W.K.); (W.-C.L.)
| | - Rupesh Kumar Chikara
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Chieh Lee
- Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Wen-Chieh Lin
- Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan;
- Correspondence: (L.-W.K.); (W.-C.L.)
| |
Collapse
|
41
|
Friedl WM, Keil A. Effects of Experience on Spatial Frequency Tuning in the Visual System: Behavioral, Visuocortical, and Alpha-band Responses. J Cogn Neurosci 2020; 32:1153-1169. [PMID: 31933434 DOI: 10.1162/jocn_a_01524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Using electrophysiology and a classic fear conditioning paradigm, this work examined adaptive visuocortical changes in spatial frequency tuning in a sample of 50 undergraduate students. High-density EEG was recorded while participants viewed 400 total trials of individually presented Gabor patches of 10 different spatial frequencies. Patches were flickered to produce sweep steady-state visual evoked potentials (ssVEPs) at a temporal frequency of 13.33 Hz, with stimulus contrast ramping up from 0% to 41% Michelson over the course of each 2800-msec trial. During the final 200 trials, a selected range of Gabor stimuli (either the lowest or highest spatial frequencies, manipulated between participants) were paired with an aversive 90-dB white noise auditory stimulus. Changes in spatial frequency tuning from before to after conditioning for paired and unpaired gratings were evaluated at the behavioral and electrophysiological level. Specifically, ssVEP amplitude changes were evaluated for lateral inhibition and generalization trends, whereas change in alpha band (8-12 Hz) activity was tested for a generalization trend across spatial frequencies, using permutation-controlled F contrasts. Overall time courses of the sweep ssVEP amplitude envelope and alpha-band power were orthogonal, and ssVEPs proved insensitive to spatial frequency conditioning. Alpha reduction (blocking) was most pronounced when viewing fear-conditioned spatial frequencies, with blocking decreasing along the gradient of spatial frequencies preceding conditioned frequencies, indicating generalization across spatial frequencies. Results suggest that alpha power reduction-conceptually linked to engagement of attention and alertness/arousal mechanisms-to fear-conditioned stimuli operates independently of low-level spatial frequency processing (indexed by ssVEPs) in primary visual cortex.
Collapse
|
42
|
Gundlach C, Moratti S, Forschack N, Müller MM. Spatial Attentional Selection Modulates Early Visual Stimulus Processing Independently of Visual Alpha Modulations. Cereb Cortex 2020; 30:3686-3703. [PMID: 31907512 DOI: 10.1093/cercor/bhz335] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/18/2019] [Accepted: 12/17/2019] [Indexed: 01/06/2023] Open
Abstract
The capacity-limited human brain is constantly confronted with a huge amount of sensory information. Selective attention is needed for biasing neural processing towards relevant information and consequently allows meaningful interaction with the environment. Activity in the alpha-band has been proposed to be related to top-down modulation of neural inhibition and could thus represent a viable candidate to control the priority of stimulus processing. It is, however, unknown whether modulations in the alpha-band directly relate to changes in the sensory gain control of the early visual cortex. Here, we used a spatial cueing paradigm while simultaneously measuring ongoing alpha-band oscillations and steady-state visual evoked potentials (SSVEPs) as a marker of continuous early sensory processing in the human visual cortex. Thereby, the effects of spatial attention for both of these signals and their potential interactions were assessed. As expected, spatial attention modulated both alpha-band and SSVEP responses. However, their modulations were independent of each other and the corresponding activity profiles differed across task demands. Thus, our results challenge the view that modulations of alpha-band activity represent a mechanism that directly alters or controls sensory gain. The potential role of alpha-band oscillations beyond sensory processing will be discussed in light of the present results.
Collapse
Affiliation(s)
- C Gundlach
- Experimental Psychology and Methods, Universität Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - S Moratti
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain.,Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Spain
| | - N Forschack
- Experimental Psychology and Methods, Universität Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - M M Müller
- Experimental Psychology and Methods, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
43
|
Gwinn OS, Jiang F. Hemispheric Asymmetries in Deaf and Hearing During Sustained Peripheral Selective Attention. JOURNAL OF DEAF STUDIES AND DEAF EDUCATION 2020; 25:1-9. [PMID: 31407782 PMCID: PMC6951033 DOI: 10.1093/deafed/enz030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have shown that compared to hearing individuals, early deaf individuals allocate relatively more attention to the periphery than central visual field. However, it is not clear whether these two groups also differ in their ability to selectively attend to specific peripheral locations. We examined deaf and hearing participants' selective attention using electroencephalography (EEG) and a frequency tagging paradigm, in which participants attended to one of two peripheral displays of moving dots that changed directions at different rates. Both participant groups showed similar amplifications and reductions in the EEG signal at the attended and unattended frequencies, indicating similar control over their peripheral attention for motion stimuli. However, for deaf participants these effects were larger in a right hemispheric region of interest (ROI), while for hearing participants these effects were larger in a left ROI. These results contribute to a growing body of evidence for a right hemispheric processing advantage in deaf populations when attending to motion.
Collapse
Affiliation(s)
- O Scott Gwinn
- University of Nevada, Reno
- College of Education, Psychology and Social Work, Flinders University, Adelaide, South Australia, Australia
| | | |
Collapse
|
44
|
Abstract
Human brain function research has evolved dramatically in the last decades. In this chapter the role of modern methods of recording brain activity in understanding human brain function is explained. Current knowledge of brain function relevant to brain-computer interface (BCI) research is detailed, with an emphasis on the motor system which provides an exceptional level of detail to decoding of intended or attempted movements in paralyzed beneficiaries of BCI technology and translation to computer-mediated actions. BCI technologies that stand to benefit the most of the detailed organization of the human cortex are, and for the foreseeable future are likely to be, reliant on intracranial electrodes. These evolving technologies are expected to enable severely paralyzed people to regain the faculty of movement and speech in the coming decades.
Collapse
Affiliation(s)
- Nick F Ramsey
- Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
45
|
Itthipuripat S, Deering S, Serences JT. When Conflict Cannot be Avoided: Relative Contributions of Early Selection and Frontal Executive Control in Mitigating Stroop Conflict. Cereb Cortex 2019; 29:5037-5048. [PMID: 30877786 PMCID: PMC6918928 DOI: 10.1093/cercor/bhz042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/10/2019] [Indexed: 01/29/2023] Open
Abstract
When viewing familiar stimuli (e.g., common words), processing is highly automatized such that it can interfere with the processing of incompatible sensory information. At least two mechanisms may help mitigate this interference. Early selection accounts posit that attentional processes filter out distracting sensory information to avoid conflict. Alternatively, late selection accounts hold that all sensory inputs receive full semantic analysis and that frontal executive mechanisms are recruited to resolve conflict. To test how these mechanisms operate to overcome conflict induced by highly automatized processing, we developed a novel version of the color-word Stroop task, where targets and distractors were simultaneously flickered at different frequencies. We measured the quality of early sensory processing by assessing the amplitude of steady-state visually evoked potentials (SSVEPs) elicited by targets and distractors. We also indexed frontal executive processes by assessing changes in frontal theta oscillations induced by color-word incongruency. We found that target- and distractor-related SSVEPs were not modulated by changes in the level of conflict whereas frontal theta activity increased on high compared to low conflict trials. These results suggest that frontal executive processes play a more dominant role in mitigating cognitive interference driven by the automatic tendency to process highly familiar stimuli.
Collapse
Affiliation(s)
- Sirawaj Itthipuripat
- Department of Psychology and Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN, USA
- Learning Institute and Futuristic Research in Enigmatic Aesthetics Knowledge Laboratory, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Sean Deering
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA
- Health Services Research and Development, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - John T Serences
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA
- Kavli Foundation for the Brain and Mind, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
46
|
Verleger R, Śmigasiewicz K, Michael L, Heikaus L, Niedeggen M. Get Set or Get Distracted? Disentangling Content-Priming and Attention-Catching Effects of Background Lure Stimuli on Identifying Targets in Two Simultaneously Presented Series. Brain Sci 2019; 9:brainsci9120365. [PMID: 31835694 PMCID: PMC6955916 DOI: 10.3390/brainsci9120365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 11/27/2022] Open
Abstract
In order to study the changing relevance of stimulus features in time and space, we used a task with rapid serial presentation of two stimulus streams where two targets (“T1” and “T2”) had to be distinguished from background stimuli and where the difficult T2 distinction was impeded by background stimuli presented before T1 that resemble T2 (“lures”). Such lures might actually have dual characteristics: Their capturing attention might interfere with target identification, whereas their similarity to T2 might result in positive priming. To test this idea here, T2 was a blue digit among black letters, and lures resembled T2 either by alphanumeric category (black digits) or by salience (blue letters). Same-category lures were expected to prime T2 identification whereas salient lures would impede T2 identification. Results confirmed these predictions, yet the precise pattern of results did not fit our conceptual framework. To account for this pattern, we speculate that lures serve to confuse participants about the order of events, and the major factor distinguishing color lures and digit lures is their confusability with T2. Mechanisms of effects were additionally explored by measuring event-related EEG potentials. Consistent with the assumption that they attract more attention, color lures evoked larger N2pc than digit lures and affected the ensuing T1-evoked N2pc. T2-evoked N2pc was indistinguishably reduced by all kinds of preceding lures, though. Lure-evoked mesio-frontal negativity increased from first to third lures both with digit and color lures and, thereby, might have reflected expectancy for T1.
Collapse
Affiliation(s)
- Rolf Verleger
- Department of Neurology, University of Lübeck, 23538 Lübeck, Germany; (K.Ś.); (L.H.)
- Institute of Psychology II, University of Lübeck, 23538 Lübeck, Germany
- Correspondence:
| | - Kamila Śmigasiewicz
- Department of Neurology, University of Lübeck, 23538 Lübeck, Germany; (K.Ś.); (L.H.)
- Laboratoire de Neurosciences Cognitives, Aix-Marseille Université, CNRS, 13331 Marseille, France
| | - Lars Michael
- Department of Psychology, Medical School Berlin, 12247 Berlin, Germany;
| | - Laura Heikaus
- Department of Neurology, University of Lübeck, 23538 Lübeck, Germany; (K.Ś.); (L.H.)
| | - Michael Niedeggen
- Department of Pedagogy and Psychology, Free University of Berlin, 14195 Berlin, Germany;
| |
Collapse
|
47
|
What Neuroscientific Studies Tell Us about Inhibition of Return. Vision (Basel) 2019; 3:vision3040058. [PMID: 31735859 PMCID: PMC6969912 DOI: 10.3390/vision3040058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/11/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022] Open
Abstract
An inhibitory aftermath of orienting, inhibition of return (IOR), has intrigued scholars since its discovery about 40 years ago. Since then, the phenomenon has been subjected to a wide range of neuroscientific methods and the results of these are reviewed in this paper. These include direct manipulations of brain structures (which occur naturally in brain damage and disease or experimentally as in TMS and lesion studies) and measurements of brain activity (in humans using EEG and fMRI and in animals using single unit recording). A variety of less direct methods (e.g., computational modeling, developmental studies, etc.) have also been used. The findings from this wide range of methods support the critical role of subcortical and cortical oculomotor pathways in the generation and nature of IOR.
Collapse
|
48
|
Attention differentially modulates the amplitude of resonance frequencies in the visual cortex. Neuroimage 2019; 203:116146. [PMID: 31493535 DOI: 10.1016/j.neuroimage.2019.116146] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 11/22/2022] Open
Abstract
Rhythmic visual stimuli (flicker) elicit rhythmic brain responses at the frequency of the stimulus, and attention generally enhances these oscillatory brain responses (steady state visual evoked potentials, SSVEPs). Although SSVEP responses have been tested for flicker frequencies up to 100 Hz [Herrmann, 2001], effects of attention on SSVEP amplitude have only been reported for lower frequencies (up to ~30 Hz), with no systematic comparison across a wide, finely sampled frequency range. Does attention modulate SSVEP amplitude at higher flicker frequencies (gamma band, 30-80 Hz), and is attentional modulation constant across frequencies? By isolating SSVEP responses from the broadband EEG signal using a multivariate spatiotemporal source separation method, we demonstrate that flicker in the alpha and gamma bands elicit strongest and maximally phase stable brain responses (resonance), on which the effect of attention is opposite: positive for gamma and negative for alpha. Finding subject-specific gamma resonance frequency and a positive attentional modulation of gamma-band SSVEPs points to the untapped potential of flicker as a non-invasive tool for studying the causal effects of interactions between visual gamma-band rhythmic stimuli and endogenous gamma oscillations on perception and attention.
Collapse
|
49
|
Suzuki Y, Minami T, Nakauchi S. Pupil Constriction in the Glare Illusion Modulates the Steady-State Visual Evoked Potentials. Neuroscience 2019; 416:221-228. [DOI: 10.1016/j.neuroscience.2019.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/26/2022]
|
50
|
Zhigalov A, Herring JD, Herpers J, Bergmann TO, Jensen O. Probing cortical excitability using rapid frequency tagging. Neuroimage 2019; 195:59-66. [PMID: 30930309 PMCID: PMC6547046 DOI: 10.1016/j.neuroimage.2019.03.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022] Open
Abstract
Frequency tagging has been widely used to study the role of visual selective attention. Presenting a visual stimulus flickering at a specific frequency generates so-called steady-state visually evoked responses. However, frequency tagging is mostly done at lower frequencies (<30 Hz). This produces a visible flicker, potentially interfering with both perception and neuronal oscillations in the theta, alpha and beta band. To overcome these problems, we used a newly developed projector with a 1440 Hz refresh rate allowing for frequency tagging at higher frequencies. We asked participants to perform a cued spatial attention task in which imperative pictorial stimuli were presented at 63 Hz or 78 Hz while measuring whole-head magnetoencephalography (MEG). We found posterior sensors to show a strong response at the tagged frequency. Importantly, this response was enhanced by spatial attention. Furthermore, we reproduced the typical modulations of alpha band oscillations, i.e., decrease in the alpha power contralateral to the attentional cue. The decrease in alpha power and increase in frequency tagged signal with attention correlated over subjects. We hereby provide proof-of-principle for the use of high-frequency tagging to study sensory processing and neuronal excitability associated with attention.
Collapse
Affiliation(s)
- A Zhigalov
- Centre for Human Brain Health, School of Psychology, University of Birmingham, UK.
| | - J D Herring
- Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - J Herpers
- Laboratory for Neurophysiology and Psychophysiology, KU Leuven, Leuven, Belgium
| | - T O Bergmann
- Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands; Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Deutsches Resilienz Zentrum (DRZ), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - O Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, UK
| |
Collapse
|