1
|
Lo Presti E, D’Orsi L, De Gaetano A. A Mathematical Model of In Vitro Cellular Uptake of Zoledronic Acid and Isopentenyl Pyrophosphate Accumulation. Pharmaceutics 2022; 14:pharmaceutics14061262. [PMID: 35745834 PMCID: PMC9227399 DOI: 10.3390/pharmaceutics14061262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
The mevalonate pathway is an attractive target for many areas of research, such as autoimmune disorders, atherosclerosis, Alzheimer’s disease and cancer. Indeed, manipulating this pathway results in the alteration of malignant cell growth with promising therapeutic potential. There are several pharmacological options to block the mevalonate pathway in cancer cells, one of which is zoledronic acid (ZA) (an N-bisphosphonate (N-BP)), which inhibits the farnesyl pyrophosphate (FPP) synthase enzyme, inducing cell cycle arrest, apoptosis, inhibition of protein prenylation, and cholesterol reduction, as well as leading to the accumulation of isopentenyl pyrophosphate (IPP). We extrapolated the data based on two independently published papers that provide numerical data on the uptake of zoledronic acid (ZA) and the accumulation of IPP (Ag) and its isomer over time by using in vitro human cell line models. Two different mathematical models for IPP kinetics are proposed. The first model (Model 1) is a simpler ordinary differential equation (ODE) compartmental system composed of 3 equations with 10 parameters; the second model (Model 2) is a differential algebraic equation (DAE) system with 4 differential equations, 1 algebraic equation and 13 parameters incorporating the formation of the ZA+enzyme+Ag complex. Each of the two models aims to describe two different experimental situations (continuous and pulse experiments) with the same ZA kinetics. Both models fit the collected data very well. With Model 1, we obtained a prevision accumulation of IPP after 24 h of 169.6 pmol/mgprot/h with an IPP decreasing rate per (pmol/mgprot) of ZA (kXGZ) equal to 13.24/h. With Model 2, we have comprehensive kinetics of IPP upon ZA treatment. We calculate that the IPP concentration was equal to 141.6 pmol/mgprot/h with a decreasing rate/percentage of 0.051 (kXGU). The present study is the first to quantify the influence of ZA on the pharmacodynamics of IPP. While still incorporating a small number of parameters, Model 2 better represents the complexity of the biological behaviour for calculating the IPP produced in different situations, such as studies on γδ T cell-based immunotherapy. In the future, additional clinical studies are warranted to further evaluate and fine-tune dosing approaches.
Collapse
Affiliation(s)
- Elena Lo Presti
- CNR-IRIB (Institute for Biomedical Research and Innovation), National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
- Correspondence: (E.L.P.); (A.D.G.)
| | - Laura D’Orsi
- CNR-IASI BioMatLab (Institute of Analysis, Systems and Computer Science), National Research Council, Via dei Taurini 19, 00185 Rome, Italy;
| | - Andrea De Gaetano
- CNR-IRIB (Institute for Biomedical Research and Innovation), National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
- CNR-IASI BioMatLab (Institute of Analysis, Systems and Computer Science), National Research Council, Via dei Taurini 19, 00185 Rome, Italy;
- Correspondence: (E.L.P.); (A.D.G.)
| |
Collapse
|
2
|
Rudge ES, Chan AHY, Leeper FJ. Prodrugs of pyrophosphates and bisphosphonates: disguising phosphorus oxyanions. RSC Med Chem 2022; 13:375-391. [PMID: 35647550 PMCID: PMC9020613 DOI: 10.1039/d1md00297j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Pyrophosphates have important functions in living systems and thus pyrophosphate-containing molecules and their more stable bisphosphonate analogues have the potential to be used as drugs for treating many diseases including cancer and viral infections. Both pyrophosphates and bisphosphonates are polyanionic at physiological pH and, whilst this is essential for their biological activity, it also limits their use as therapeutic agents. In particular, the high negative charge density of these compounds prohibits cell entry other than by endocytosis, prevents transcellular oral absorption and causes sequestration to bone. Therefore, prodrug strategies have been developed to temporarily disguise the charges of these compounds. This review examines the various systems that have been used to mask the phosphorus-containing moieties of pyrophosphates and bisphosphonates and also illustrates the utility of such prodrugs.
Collapse
Affiliation(s)
- Emma S Rudge
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
3
|
Haque MR, Lee DY, Ahn CH, Jeong JH, Byun Y. Local co-delivery of pancreatic islets and liposomal clodronate using injectable hydrogel to prevent acute immune reactions in a type 1 diabetes. Pharm Res 2014; 31:2453-62. [PMID: 24633416 DOI: 10.1007/s11095-014-1340-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/13/2014] [Indexed: 12/20/2022]
Abstract
PURPOSE The purpose of this study was to investigate the effect of locally delivered pancreatic islet with liposomal clodronate (Clodrosome®) as an immunoprotection agent for the treatment of type 1 diabetes. METHOD The bio-distribution of liposomal clodronate in matrigel was checked by imaging analyzer. To verify the therapeutic efficacy of locally delivered islet with liposomal clodronate using injectable hydrogel, four groups of islet transplanted mice (n = 6 in each group) were prepared: 1) the islet group, 2) the islet-Clodrosome group, 3) the islet-Matrigel group, and 4) the islet-Matrigel-Clodrosome group. Immune cell migration and activation, and pro-inflammatory cytokine secretion was evaluated by immunohistochemistry staining and ELISA assay. RESULTS Cy5.5 labeled liposomes remained in the matrigel for over 7 days. The median survival time of transplanted islets (Islet-Matrigel-Clodrosome group) was significantly increased (>60 days), compared to other groups. Locally delivered liposomal clodronate in matrigel effectively inhibited the activation of macrophages, immune cell migration and activation, and pro-inflammatory cytokine secretion from macrophages. CONCLUSIONS Locally co-delivered pancreatic islets and liposomal clodronate using injectable hydrogel effectively cured type 1 diabetes. Especially, the inhibition of macrophage attack in the early stage after local delivery of islets was very important for the successful long-term survival of delivered islets.
Collapse
Affiliation(s)
- Muhammad R Haque
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
4
|
In vitro cytotoxicity of zoledronate (nitrogen-containing bisphosphonate: NBP) and/or etidronate (non-NBP) in tumour cells and periodontal cells. Arch Oral Biol 2013; 58:628-37. [DOI: 10.1016/j.archoralbio.2012.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/02/2012] [Accepted: 11/16/2012] [Indexed: 01/05/2023]
|
5
|
Scheller EL, Baldwin CM, Kuo S, D'Silva NJ, Feinberg SE, Krebsbach PH, Edwards PC. Bisphosphonates inhibit expression of p63 by oral keratinocytes. J Dent Res 2011; 90:894-9. [PMID: 21551338 DOI: 10.1177/0022034511407918] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Osteonecrosis of the jaw (ONJ), a side-effect of bisphosphonate therapy, is characterized by exposed bone that fails to heal within eight weeks. Healing time of oral epithelial wounds is decreased in the presence of amino-bisphosphonates; however, the mechanism remains unknown. We examined human tissue from individuals with ONJ and non-bisphosphonate-treated control individuals to identify changes in oral epithelium and connective tissue. Oral and intravenous bisphosphonate-treated ONJ sites had reduced numbers of basal epithelial progenitor cells, as demonstrated by a 13.8±1.1% and 31.9±5.8% reduction of p63 expression, respectively. No significant differences in proliferation rates, vessel density, or macrophage number were noted. In vitro treatment of clonal and primary oral keratinocytes with zoledronic acid (ZA) inhibited p63, and expression was rescued by the addition of mevalonate pathway intermediates. In addition, both ZA treatment and p63 shRNA knock-down impaired formation of 3D Ex Vivo Produced Oral Mucosa Equivalents (EVPOME) and closure of an in vitro scratch assay. Analysis of our data suggests that bisphosphonate treatment may delay oral epithelial healing by interfering with p63-positive progenitor cells in the basal layer of the oral epithelium in a mevalonate-pathway-dependent manner. This delay in healing may increase the likelihood of osteonecrosis developing in already-compromised bone.
Collapse
Affiliation(s)
- E L Scheller
- Department of Periodontics and Oral Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Räikkönen J, Taskinen M, Dunford JE, Mönkkönen H, Auriola S, Mönkkönen J. Correlation between time-dependent inhibition of human farnesyl pyrophosphate synthase and blockade of mevalonate pathway by nitrogen-containing bisphosphonates in cultured cells. Biochem Biophys Res Commun 2011; 407:663-7. [DOI: 10.1016/j.bbrc.2011.03.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/15/2011] [Indexed: 01/02/2023]
|
7
|
Räikkönen J, Mönkkönen H, Auriola S, Mönkkönen J. Mevalonate pathway intermediates downregulate zoledronic acid-induced isopentenyl pyrophosphate and ATP analog formation in human breast cancer cells. Biochem Pharmacol 2009; 79:777-83. [PMID: 19819230 DOI: 10.1016/j.bcp.2009.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 01/11/2023]
Abstract
Increasing evidence is accumulating that zoledronic acid (ZOL), a nitrogen-containing bisphosphonate (N-BP), is able to affect tumor cells by inhibiting the enzyme farnesyl pyrophosphate synthase (FPPS) in the mevalonate pathway (MVP). The consequent accumulation of unprenylated proteins is believed to largely account for the cytotoxic effects of ZOL. FPPS inhibition leads also to the accumulation of isopentenyl pyrophosphate (IPP) and the apoptotic ATP analog, ApppI, but the role of this mechanism in the cytotoxic action of bisphosphonates is less clear. Since treatment with MVP intermediates has been shown to overcome N-BP-induced apoptosis via rescuing protein prenylation, our aim here was to determine their mechanism of action on ZOL-induced IPP/ApppI accumulation. Interestingly, the results revealed that ZOL-induced IPP/ApppI accumulation in MCF-7 cells were decreased by farnesol, and almost completely blocked by geranylgeraniol and geranylpyrophosphate. The functionality of the regulatory enzymes of IPP and ApppI, IPP isomerase and aminoacyl-tRNA-synthase, respectively, or protein levels of FPPS were not affected by the treatments. However, the protein levels of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) and unprenylated Rap1A were observed to be strongly downregulated by geranylgeraniol and geranylpyrophosphate. This study represents a novel insight into the mechanism of action of MVP intermediates on the regulation of MVP after FPPS inhibition. The data implies that in addition to the previously reported effects on rescuing protein prenylation, MVP intermediates can preserve cell activity by inhibiting the accumulation of IPP/ApppI via HMGR downregulation. This supports the hypothesis that IPP/ApppI formation is a significant mechanism in the anticancer action of ZOL.
Collapse
Affiliation(s)
- Johanna Räikkönen
- Department of Pharmaceutics, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | |
Collapse
|
8
|
Räikkönen J, Crockett JC, Rogers MJ, Mönkkönen H, Auriola S, Mönkkönen J. Zoledronic acid induces formation of a pro-apoptotic ATP analogue and isopentenyl pyrophosphate in osteoclasts in vivo and in MCF-7 cells in vitro. Br J Pharmacol 2009; 157:427-35. [PMID: 19371349 DOI: 10.1111/j.1476-5381.2009.00160.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Bisphosphonates (BPs) are highly effective inhibitors of bone resorption. Nitrogen-containing bisphosphonates (N-BPs), such as zoledronic acid, induce the formation of a novel ATP analogue (1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester triphosphoric acid; ApppI), as a consequence of the inhibition of farnesyl pyrophosphate synthase and the accumulation of isopentenyl pyrophosphate (IPP). ApppI induces apoptosis, as do comparable metabolites of non-nitrogen-containing bisphosphonates (non-N-BPs). In order to further evaluate a pharmacological role for ApppI, we obtained more detailed data on IPP/ApppI formation in vivo and in vitro. Additionally, zoledronic acid-induced ApppI formation from IPP was compared with the metabolism of clodronate (a non-N-BP) to adenosine 5'(beta,gamma-dichloromethylene) triphosphate (AppCCl2p). EXPERIMENTAL APPROACH After giving zoledronic acid in vivo to rabbits, IPP/ApppI formation and accumulation was assessed in isolated osteoclasts. The formation of ApppI from IPP was compared with the metabolism of clodronate in MCF-7 cells in vitro. IPP/ApppI and AppCCl2p levels in cell extracts were analysed by mass spectrometry. KEY RESULTS Isopentenyl pyrophosphate/ApppI were formed in osteoclasts in vivo, after a single, clinically relevant dose of zoledronic acid. Furthermore, exposure of MCF-7 cells in vitro to zoledronic acid at varying times and concentrations induced time- and dose-dependent accumulation of IPP/ApppI. One hour pulse treatment was sufficient to cause IPP accumulation and subsequent ApppI formation, or the metabolism of clodronate into AppCCl2p. CONCLUSIONS AND IMPLICATIONS This study provided the first conclusive evidence that pro-apoptotic ApppI is a biologically significant molecule, and demonstrated that IPP/ApppI analysis is a sensitive tool for investigating pathways involved in BP action.
Collapse
Affiliation(s)
- Johanna Räikkönen
- Department of Pharmaceutics, University of Kuopio, Yliopistonranta 1 B, P.O. Box 1627, Kuopio FIN-70211, Finland.
| | | | | | | | | | | |
Collapse
|
9
|
Hardouin J, Guénin E, Malosse C, Caron M, Lecouvey M. Electrospray tandem mass spectrometry of alendronate analogues: fingerprints for characterization of new potential prodrugs. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:2287-2300. [PMID: 18613280 DOI: 10.1002/rcm.3610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
1-hydroxymethylene-1,1-bisphosphonic acids (HMBPs) are important drugs for the treatment of a variety of bone diseases. Since these compounds have no chromophore, their detection is challenging and mass spectrometry (MS) appears to be an appropriate sensitive tool. Our work deals with the analysis by electrospray ionization tandem mass spectrometry (ESI-MSn) of the well-known nitrogen-containing HMBP alendronate and of three analogues, considered as potential prodrugs. These four molecules share a common structure with different protecting groups on the phosphonic acid and on the amine functions. We describe the dissociation mechanisms of nitrogen-containing HMBPs in positive ion mode and we compare, in negative ion mode, our results with literature data. In both modes, the dissociations are essentially losses of ROH, and of phosphorus-containing species (HPO2, ROP(OH)2 and ROPO(OH)2), where R=H, C6H5, or CH3OC6H5. These fingerprints will be of great value for differentiating alendronate from its potential prodrugs in complex biological mixtures.
Collapse
Affiliation(s)
- Julie Hardouin
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris XIII, UMR CNRS 7033, 74 rue Marcel Cachin, 93017 Bobigny cedex, France.
| | | | | | | | | |
Collapse
|
10
|
Gao K, Sun J, Qiu F, Liu X, Sun Y, Cheng M, He Z. Uptake and transport of new antiasthmatic compounds by human intestinal Caco-2 cells: correlations with lipophilicity by biopartitioning chromatography. J Drug Deliv Sci Technol 2008. [DOI: 10.1016/s1773-2247(08)50046-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Meririnne E, Kajos M, Kankaanpää A, Seppälä T. Rewarding Properties of 1-Benzylpiperazine, a New Drug of Abuse, in Rats. Basic Clin Pharmacol Toxicol 2006; 98:346-50. [PMID: 16623856 DOI: 10.1111/j.1742-7843.2006.pto_243.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1-Benzylpiperazine (also known as 'Legal X', 'Legal E', or 'A2') is a psychoactive compound increasingly encountered on the clandestine market. Previous experimental data suggest that the compound possesses addictive properties. In the present study, we used the conditioned place preference method in the rat to test whether 1-benzylpiperazine possesses rewarding properties. Furthermore, the mechanisms of the 1-benzylpiperazine reward were investigated using selected dopamine and serotonin receptor antagonists. 1-Benzylpiperazine (1.25, 5, and 20 mg/kg) induced dose-dependently place preference. This place preference was attenuated by the antagonists SCH23390 (0.2 mg/kg; dopamine D1-like receptors) and MDL72222 (1.0 mg/kg; serotonin3 receptors), but not by raclopride (0.8 mg/kg; dopamine D2-like receptors) or ketanserin (2 mg/kg; preferentially serotonin2 receptors). Our results show that 1-benzylpiperazine possesses rewarding properties in the rat, which suggests the compound to be susceptible to human abuse. The brain dopaminergic and serotonergic systems appear to be involved in the 1-benzylpiperazine reward.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Benzazepines/pharmacology
- Conditioning, Psychological
- Dopamine Antagonists/pharmacology
- Dopamine D2 Receptor Antagonists
- Ketanserin/pharmacology
- Male
- Piperidines/pharmacology
- Psychotropic Drugs/pharmacology
- Raclopride/pharmacology
- Rats
- Rats, Wistar
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/physiology
- Receptors, Serotonin, 5-HT2/physiology
- Receptors, Serotonin, 5-HT3/physiology
- Reward
- Serotonin 5-HT2 Receptor Antagonists
- Serotonin 5-HT3 Receptor Antagonists
- Serotonin Antagonists/pharmacology
- Substance-Related Disorders
- Tropanes/pharmacology
Collapse
Affiliation(s)
- Esa Meririnne
- Drug Research Unit, Department of Mental Health and Alcohol Research, National Public Health Institute, Mannerheimintie 166, FIN-00300 Helsinki 30, Finland.
| | | | | | | |
Collapse
|
12
|
|