1
|
Shen ZH, Wu J, Ye JX, Lin S, Chen B, Wan C, Fu YS. The comparative research of aspirin-ethanol induced acute gastric mucosal injury in sprague dawley rats and hypertensive rats. Biochem Biophys Res Commun 2024; 741:151051. [PMID: 39591908 DOI: 10.1016/j.bbrc.2024.151051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Hypertension is a prevalent chronic health condition that complicates the understanding of gastric injury mechanisms. The aim of this research was to investigate the impact of hypertension on acute gastric mucosal injury induced by aspirin-ethanol in spontaneously hypertensive rats (SHR) and normotensive Sprague Dawley (SD) rats. Both groups were gavaged with 120 mg/ml aspirin and 70 % ethanol, followed by evaluation of gastric injury using gross pathology and histological analysis. SHR rats exhibited significantly less severe gastric mucosal damage compared to SD rats, with lower ulcer index and injury grade scores. Histopathological examination revealed milder edema and hemorrhage in SHR rats. Additionally, gastric tissue from SHR rats showed localized lesions with less epithelial tissue damage compared to SD rats, which exhibited more widespread damage and severe hemorrhagic erosions. These findings suggest that hypertension may reduce the extent of aspirin-ethanol-induced gastric injury, potentially due to thicker vascular walls, enhanced coagulation, and altered vascular responses in hypertensive animals. The study highlights the complex interplay between hypertension and gastric injury, demonstrating that hypertensive conditions may offer some protection against aspirin-induced gastric damage. These insights call for further research to better understand the underlying mechanisms and explore potential therapeutic strategies for gastric injury in hypertensive individuals.
Collapse
Affiliation(s)
- Zi-Han Shen
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, Fujian, China.
| | - Jingyi Wu
- School of Basic Sciences, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China.
| | - Jia-Xin Ye
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, Fujian, China.
| | - Shuang Lin
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, Fujian, China.
| | - Baozhen Chen
- Department of Pharmacy, Xiamen Medical College, Xiamen, Fujian, China.
| | - Congchao Wan
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, Fujian, China.
| | - Yaw Syan Fu
- Anatomy Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China; Key Laboratory of Functional and Clinical Translational Medicine in Fujian Province, Xiamen Medical College, Xiamen, Fujian, China.
| |
Collapse
|
2
|
Meng X, Liu J, Kang J, Wang M, Guan Z, Tian D, Chen X. Lamivudine protects mice from gastric ulcer by activating PGK1 to suppress ferroptosis. Biochem Pharmacol 2024; 227:116440. [PMID: 39029631 DOI: 10.1016/j.bcp.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Gastric ulcer is a highly prevalent digestive tract disease across the world, which is recurrent and hard to cure, sometimes transforming into gastric cancer if left untreated, posing great threat to human health. To develop new medicines for gastric ulcer, we ran a series of screens with ethanol stress model in GES-1 cells, and we uncovered that lamivudine rescued cells from ethanol toxicity. Then, we confirmed this discovery using the well-established ethanol-induced gastric ulcer model in mice and our findings suggest that lamivudine can directly activate phosphoglycerate kinase 1 (PGK1, EC 2.7.2.3), which binds and stimulates superoxide dismutase 1 (SOD1, EC 1.15.1.1) to inhibit ferroptosis and ultimately improve gastric ulcer. Moreover, AAV-PGK1 exhibited comparable gastroprotective effects to lamivudine. The findings are expected to offer novel therapeutic strategies for gastric ulcer, encompassing both lamivudine and AAV-PGK1.
Collapse
Affiliation(s)
- Xinrui Meng
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Jingjing Liu
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Jia Kang
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Menghan Wang
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Zhanghui Guan
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Dong Tian
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Xinping Chen
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China.
| |
Collapse
|
3
|
de Sousa DP, de Assis Oliveira F, Arcanjo DDR, da Fonsêca DV, Duarte ABS, de Oliveira Barbosa C, Ong TP, Brocksom TJ. Essential Oils: Chemistry and Pharmacological Activities-Part II. Biomedicines 2024; 12:1185. [PMID: 38927394 PMCID: PMC11200837 DOI: 10.3390/biomedicines12061185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The importance of essential oils and their components in the industrial sector is attributed to their chemical characteristics and their application in the development of products in the areas of cosmetology, food, and pharmaceuticals. However, the pharmacological properties of this class of natural products have been extensively investigated and indicate their applicability for obtaining new drugs. Therefore, this review discusses the use of these oils as starting materials to synthesize more complex molecules and products with greater commercial value and clinic potential. Furthermore, the antiulcer, cardiovascular, and antidiabetic mechanisms of action are discussed. The main mechanistic aspects of the chemopreventive properties of oils against cancer are also presented. The data highlight essential oils and their derivatives as a strategic chemical group in the search for effective therapeutic agents against various diseases.
Collapse
Affiliation(s)
| | | | - Daniel Dias Rufino Arcanjo
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Diogo Vilar da Fonsêca
- Collegiate of Medicine, Federal University of São Francisco Valley, Bahia 48607-190, Brazil;
| | - Allana Brunna S. Duarte
- Laboratory of Pharmaceutical Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Celma de Oliveira Barbosa
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Thomas Prates Ong
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil;
- Food Research Center (FoRC), University of São Paulo, São Paulo 05508-000, Brazil
| | - Timothy John Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil;
| |
Collapse
|
4
|
Oszczędłowski P, Górecki K, Greluk A, Krawczyk M, Pacyna K, Kędzierawski JA, Ziółko AK, Chromiak K, Sławiński MA, Raczkiewicz P, Chylińska-Wrzos P, Jodłowska-Jędrych B, Pedrycz-Wieczorska A. All That Glitters Is Not Gold: Assessment of Bee Pollen Supplementation Effects on Gastric Mucosa. Nutrients 2023; 16:37. [PMID: 38201868 PMCID: PMC10780818 DOI: 10.3390/nu16010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
The aim of this study was to assess the influence of bee pollen supplementation on the levels of enzymes important for gastric mucosal homeostasis, namely cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and a biomarker-asymmetric dimethylarginine (ADMA)-in the gastric mucosa of Wistar rats. The experimental phase divided the rats into four groups: two control groups, sedentary and active, both not supplemented, and two experimental groups, sedentary and active, supplemented with bee pollen. The results indicated that bee pollen supplementation reduced the levels of COX-1 and elevated iNOS levels, while showing no significant impact on COX-2 levels. These findings do not conclusively support the gastroprotective and anti-inflammatory effects of bee pollen on gastric mucosa. However, the supplementation could have resulted in reduced ADMA levels in the physically active supplemented group. Our study does not unequivocally demonstrate the positive effects of bee pollen supplementation on the gastric mucosa, which may be attributed to the specific metabolism and bioavailability of substances within unprocessed, dried bee pollen. Further research should explore the topic of potential therapeutic applications of bee pollen in gastrointestinal health and its interactions with ADMA signaling pathways.
Collapse
Affiliation(s)
- Paweł Oszczędłowski
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Kamil Górecki
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Aleksandra Greluk
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Milena Krawczyk
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Katarzyna Pacyna
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Jan Andrzej Kędzierawski
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Artur Kacper Ziółko
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Karol Chromiak
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Mirosław A. Sławiński
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | | | - Patrycja Chylińska-Wrzos
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Barbara Jodłowska-Jędrych
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Agnieszka Pedrycz-Wieczorska
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| |
Collapse
|
5
|
Mazzoni M, Zampiga M, Clavenzani P, Lattanzio G, Tagliavia C, Sirri F. Effect of chronic heat stress on gastrointestinal histology and expression of feed intake-regulatory hormones in broiler chickens. Animal 2022; 16:100600. [PMID: 35907384 DOI: 10.1016/j.animal.2022.100600] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022] Open
Abstract
Heat stress (HS) dramatically impairs the growth performance of broiler chickens, mainly as a consequence of reduced feed intake due to the loss of appetite. This study was aimed at evaluating the alterations induced by chronic HS conditions on the morphological and morphometric features of the gastrointestinal (GI) tract and on the expression of some enteroendocrine cells (EECs) involved in the regulation of feed intake in chickens. Three hundred male chickens (Ross 308) were divided into two experimental groups and raised either in thermoneutral environment for the whole fattening period (0-41 days) (TNT group) or subjected to chronic HS conditions (30 °C for 24 h/day) from 35 to 41 days (HS group). Samples of proventriculus, duodenum, jejunum and cecum were collected from 24 broilers (12/group). Haematoxylin-eosin was used for the morphometric evaluations, while immunohistochemistry was applied for the evaluation of EECs expressing ghrelin (GHR), cholecystokinin (CCK), neuropeptide Y (NPY), glucagon-like peptide-1 (GLP-1), and serotonin (5-HT). In the proventriculus, HS reduced total wall thickness and mucous layer height (P ≤ 0.01) as well as mean diameter, circumference, and area of the compound tubular glands (P ≤ 0.001) with respect to TNT. The small intestine of HS birds was characterised by decreased villous height and total thickness (duodenum, P ≤ 0.01; jejunum, P ≤ 0.001), whereas crypt depth and width were reduced only in the jejunum (P ≤ 0.01). HS had negligible effects on the morphological aspects of the cecum. In the proventriculus, an increase in GHR and NPY EECs was observed in response to HS (P ≤ 0.001). Similarly, the small intestine villi of the HS group showed greater GLP-1 (P ≤ 0.05), 5-HT (P ≤ 0.001) and CCK (P ≤ 0.01) EECs. Moreover, the expression of 5-HT EECs was higher in the duodenal (P ≤ 0.01) and jejunal (P ≤ 0.01) crypts of HS birds, whereas GLP-1 and CCK EECs increased only in jejunal crypts (P ≤ 0.05). Finally, 5-HT EEC expression was increased in the cecum of HS group (P ≤ 0.01). In conclusion, these outcomes demonstrate that chronic HS induces morphometric alterations not only in the small intestine but also in a key organ such as the proventriculus. Furthermore, HS conditions affect the presence and distribution of EECs, suggesting that some GI peptides and biogenic amine may be implicated in the regulation of appetite and voluntary feed intake in heat-stressed broiler chickens.
Collapse
Affiliation(s)
- M Mazzoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy.
| | - M Zampiga
- Department of Agricultural and Food Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - P Clavenzani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - G Lattanzio
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - C Tagliavia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - F Sirri
- Department of Agricultural and Food Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
| |
Collapse
|
6
|
Duxbury S, Sorah E, Tolbert MK. Evaluation of proton pump inhibitor administration in hospitalized dogs in a tertiary referral hospital. J Vet Intern Med 2022; 36:1622-1627. [PMID: 35866265 PMCID: PMC9511098 DOI: 10.1111/jvim.16491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Although proton pump inhibitors (PPIs) are commonly administered to hospitalized dogs, prescribing patterns and appropriateness of use require continued investigation. HYPOTHESIS/OBJECTIVE Describe prescription patterns and appropriateness of use associated with PPIs in hospitalized dogs at a single tertiary care facility. We hypothesized that the majority of prescriptions would not comply with current guidelines for the rational use of acid suppressants. ANIMALS Two hundred randomly selected hospitalized dogs. METHODS Retrospective evaluation of the medical records associated with a randomly selected sample of hospitalized dogs that received PPIs between January 2013 and December 2018. RESULTS A total of 12 610 dogs were admitted for first-time hospitalization between January 2013 and December 2018. Forty percent of these dogs (5062/12610) were prescribed a PPI PO or IV. Of the 200 randomly selected records, an adequate indication for use was identified in 27% of dogs (54/200). Of the dogs surviving to discharge, 54% (95/175) were discharged with a PPI and 51.6% (49/95) of those were prescribed an inadequate dose. CONCLUSIONS AND IMPORTANCE Our findings support other studies in which the majority of PPI prescriptions for hospitalized dogs at a tertiary care hospital lacked an appropriate indication. Furthermore, analysis of the prescribing patterns of dispensed PPIs identified a frequent occurrence of dosages considered inadequate, raising concern for ineffective treatment even with appropriate indications of use. With growing concern of adverse effects associated with PPI and other acid suppressant administration in human and veterinary medicine, rational use of these medications following consensus guidelines should be emphasized and treatment should be reserved for dogs with historical, physical examination, clinicopathologic, and imaging findings supportive of an appropriate indication for use.
Collapse
Affiliation(s)
- Samantha Duxbury
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Emily Sorah
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - M Katherine Tolbert
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA.,Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Relationship between Hormonal Modulation and Gastroprotective Activity of Malvidin and Cyanidin Chloride: In Vivo and In Silico Approach. Pharmaceutics 2022; 14:pharmaceutics14030565. [PMID: 35335941 PMCID: PMC8953580 DOI: 10.3390/pharmaceutics14030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
Peptic ulcers are lesions that affect the gastrointestinal tract and that can be triggered by external factors such as alcohol use. This study investigated the gastroprotective role of two anthocyanidins, malvidin and cyanidin chloride, in an ethanol-induced gastric ulcer model in male and female mice (ovariectomized and supplemented with 17β-estradiol or not) and aimed to evaluate the effectiveness of anthocyanidins in preventing the formation of lesions and to identify the underlying mechanisms, while considering hormonal differences. Moreover, in silico comparative analysis was performed to predict the properties and biological behaviors of the molecules. We observed that the hormonal status did not interfere with the gastroprotective action of malvidin, although antioxidant mechanisms were modulated differently depending on sex. On the other hand, cyanidin showed gastroprotective activity at different doses, demonstrating that, for the same experimental model, there is a need to adjust the effective dose depending on sex. In silico analysis showed that, despite being structurally similar, the interaction with receptors and target proteins in this study (myeloperoxidase, superoxide dismutase, catalase, and reduced glutathione) differed between the two molecules, which explains the difference observed in in vivo treatments.
Collapse
|
8
|
Zhang J, Ning J, Hao X, Han X, Fu W, Gong Y, Meng Q, Ding S, Zhang J. Glucagon-like peptide-2 protects the gastric mucosa via regulating blood flow and metabolites. Front Endocrinol (Lausanne) 2022; 13:1036559. [PMID: 36589839 PMCID: PMC9801410 DOI: 10.3389/fendo.2022.1036559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Refractory peptic ulcers lead to perforation and hemorrhage, which are fatal. However, these remain a therapeutic challenge. Gastric mucosal blood flow is crucial in maintaining gastric mucosal health. It's reported that Glucagon-like peptide-2 (GLP-2), a gastrointestinal hormone, stimulated intestinal blood flow. However, the direct role of GLP-2 in gastric mucosal blood flow and metabolites remain unclear. Here, we speculated that GLP-2 might protect the gastric mucosa by increasing gastric mucosal blood flow and regulating metabolites. This study was conducted to evaluate the role of GLP-2 in gastric mucosal lesions and its underlying mechanism. METHODS We analyzed endogenous GLP-2 during gastric mucosal injury in the serum. Rats were randomly divided into two groups, with 36 rats in each group as follows: (1) normal control group (NC1); (2) ethanol model group (EC1); rats in EC1 and NC1 groups were intragastrically administered ethanol (1 ml/200 g body weight) and distilled water (1 ml/200 g body weight). The serum was collected 10 min before intragastric administration and 15, 30, 60, 90, and 120 min after intragastric administration. Furthermore, additional male Sprague-Dawley rats were randomly divided into three groups, with six rats in each group as follows: (1) normal control group (NC); (2) ethanol model group (EC); (3) 10 μg/200 g body weight GLP-2 group (GLP-2). Rats in the NC and EC groups were intraperitoneally injected with saline. Those in the GLP-2 group were intraperitoneally injected with GLP-2. Thirty minutes later, rats in the EC and GLP-2 groups were intragastrically administered ethanol (1 ml/200 g body weight), and rats in the NC group were intragastrically administered distilled water (1 ml/200 g body weight). After the intragastric administration of ethanol for 1 h, the animals were anesthetized and gastric mucosal blood flow was measured. Serum were collected for ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) metabolomics. RESULTS There were no significant change in endogenous GLP-2 during gastric mucosal injury (P<0.05). Pretreatment with GLP-2 significantly reduced ethanol-induced gastric mucosal lesions by improving the gastric mucosal blood flow, as examined using a laser Doppler flow meter, Guth Scale, hematoxylin-eosin staining, and two-photon microscopy. UPLC-MS/MS analyses showed that GLP-2 also maintained a steady state of linoleic acid metabolism. CONCLUSIONS Taken together, GLP-2 protects the gastric mucosa against ethanol-induced lesions by improving gastric mucosa blood flow and affecting linoleic acid metabolism.
Collapse
|
9
|
Kim J, Chun S, Ohk SO, Kim S, Kim J, Lee S, Kim H, Kim S. Amelioration of alcohol‑induced gastric mucosa damage by oral administration of food‑polydeoxyribonucleotides. Mol Med Rep 2021; 24:790. [PMID: 34505634 PMCID: PMC8441963 DOI: 10.3892/mmr.2021.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Gastritis refers to inflammation caused by injury to the gastric epithelium, which is usually due to excessive alcohol consumption and prolonged use of nonsteroidal anti-inflammatory drugs. Millions of individuals worldwide suffer from this disease. However, the lack of safe and promising treatments makes it urgent to explore and develop leads from natural resources. Therefore, food as medicine may be the best approach for the treatment of these disorders. The present study described the protective effects of food-polydeoxyribonucleotides (f-PDRNs) in a rat model of gastric mucosal injury induced by HCl-EtOH. Administration of f-PDRN was performed with low-PRF002 (26 mg/kg/day), medium-PRF002 (52 mg/kg/day) and high-PRF002 (78 mg/kg/day) on the day of autopsy. The site of damage to the mucous membrane was also analysed. In addition, an increase in gastric juice pH, total acidity of gastric juice and decrease in gastric juice secretion were confirmed, and gastric juice secretion-related factors corresponding to the administration of f-PDRN were analysed. Administration of f-PDRN reduced the mRNA expression of histamine H2 receptor, muscarinic acetylcholine receptor M3, cholecystokinin 2 receptor and H+/K+ ATPase related to gastric acid secretion and downregulation of histamine, myeloperoxidase and cyclic adenosine monophosphate. In addition, it was histologically confirmed that the loss of epithelial cells and the distortion of the mucosa were recovered in the group in which f-PDRN was administered compared to the model group with gastric mucosa damage. In summary, the present study suggested that f-PDRN has therapeutic potential and may have beneficial effects if taken regularly as a food supplement.
Collapse
Affiliation(s)
- Jonghwan Kim
- Technology Innovation Team, C&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Soyoung Chun
- DNA Team, R&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Seul-Ong Ohk
- DNA Team, R&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Sanghoon Kim
- DNA Team, R&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Juwan Kim
- Pharmaceutical Formulation Team, R&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Sungoh Lee
- Research Strategy Team, C&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Hangyu Kim
- DNA Team, R&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Sujong Kim
- Research Strategy Team, C&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| |
Collapse
|
10
|
Protective Effects of Anwulignan against HCl/Ethanol-Induced Acute Gastric Ulcer in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9998982. [PMID: 34335857 PMCID: PMC8298145 DOI: 10.1155/2021/9998982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023]
Abstract
Gastric ulcer is one of the most common gastrointestinal diseases. Anwulignan (AN) is a major active component of Schisandra sphenanthera Rehd. This study was designed to evaluate the protective effect of AN against the acute gastric ulcer induced by HCl/ethanol in mice. The mice were given HCl/ethanol by gavage to establish an acute gastric ulcer model. Then, the serum and gastric tissue samples were taken for biochemical analyses. The results showed that the pretreatment with AN could significantly reduce the gastric ulcer index (GUI) and increase the ulcer inhibition rate, indicating that AN can protect against gastric ulcers. AN showed its antioxidant roles by decreasing the content of reactive oxygen species (ROS), malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG) and increasing the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and anti-inflammatory roles by decreasing the content of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and myeloperoxidase (MPO) and increasing the content of interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-10 (IL-10), prostaglandin E2 (PGE2), and nitric oxide (NO) in both serum and gastric tissue. Furthermore, AN also activated the NRF2/ARE signaling pathway and inhibited the MAPK/NF-κB signaling pathway. AN improves the acute gastric ulcer induced by HCl/ethanol in mice, which may be mainly through its antioxidant capacity and anti-inflammatory effect.
Collapse
|
11
|
Dean AE, Reichardt F, Anakk S. Sex differences feed into nuclear receptor signaling along the digestive tract. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166211. [PMID: 34273530 DOI: 10.1016/j.bbadis.2021.166211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Sex differences in physiology are noted in clinical and animal studies. However, mechanisms underlying these observed differences between males and females remain elusive. Nuclear receptors control a wide range of physiological pathways and are expressed in the gastrointestinal tract, including the mouth, stomach, liver and intestine. We investigated the literature pertaining to ER, AR, FXR, and PPAR regulation and highlight the sex differences in nutrient metabolism along the digestive system. We chose these nuclear receptors based on their metabolic functions, and hormonal actions. Intriguingly, we noted an overlap in target genes of ER and FXR that modulate mucosal integrity and GLP-1 secretion, whereas overlap in target genes of PPARα with ER and AR modulate lipid metabolism. Sex differences were seen not only in the basal expression of nuclear receptors, but also in activation as their endogenous ligand concentrations fluctuate depending on nutrient availability. Finally, in this review, we speculate that interactions between the nuclear receptors may influence overall metabolic decisions in the gastrointestinal tract in a sex-specific manner.
Collapse
Affiliation(s)
- Angela E Dean
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, United States of America
| | - François Reichardt
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Sayeepriyadarshini Anakk
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, United States of America; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America; Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.
| |
Collapse
|
12
|
Raish M, Shahid M, Bin Jardan YA, Ansari MA, Alkharfy KM, Ahad A, Abdelrahman IA, Ahmad A, Al-Jenoobi FI. Gastroprotective Effect of Sinapic Acid on Ethanol-Induced Gastric Ulcers in Rats: Involvement of Nrf2/HO-1 and NF-κB Signaling and Antiapoptotic Role. Front Pharmacol 2021; 12:622815. [PMID: 33716749 PMCID: PMC7946842 DOI: 10.3389/fphar.2021.622815] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background: In the current study, we evaluated the therapeutic potential of sinapic acid (SA) in terms of the mechanism underlying its gastroprotective action against ethanol-induced gastric ulcers in rats. Methods: These effects were examined through gross macroscopic evaluation of the stomach cavity [gastric ulcer index (GUI)], alteration in pH, gastric juice volume, free acidity, total acidity, total gastric wall mucus, and changes in PGE2. In addition, we evaluated lipid peroxidation (malondialdehyde), antioxidant systems (catalase and glutathione), inflammatory markers [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and myeloperoxidase (MPO)], apoptotic markers (caspase-3, Bax, and Bcl-2), nuclear factor-κB [NF-κB (p65)], NO levels, and histopathological staining (H and E and PAS). Results: In rats with ethanol-induced ulcers, pre-treatment with SA (40 mg/kg p. o.) decreased the sternness of ethanol-induced gastric mucosal injuries by decreasing the GUI, gastric juice volume, free acidity, and total acidity. In addition, the pH and total gastric mucosa were increased, together with histopathological alteration, neutrophil incursion, and increases in PGE2 and NO2. These effects were similar to those observed for omeprazole, a standard anti-ulcer drug. SA was shown to suppress gastric inflammation through decreasing TNF-α, IL-6, and MPO, as well as curbing gastric oxidative stress through the inhibition of lipid peroxidation (MDA) and restoration of depleted glutathione and catalase activity. SA inhibited Bcl-2-associated X (Bax) and caspase-3 activity, and restored the antiapoptotic protein Bcl-2; these findings indicate the antiapoptotic potential of SA, leading to enhanced cell survival. SA also repressed NF-κB signaling and increased IκBα. Moreover, SA upregulated the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), thereby restoring depleted antioxidant defense enzymes and implicating the NRF2/HO-1 signaling pathways. Conclusion: These results suggest that the prophylactic administration of SA (40 mg/kg) can ameliorate ethanol-induced gastric ulcers in rats primarily via the modulation of Nrf2/HO-1 and NF-κB signaling and subsequent enhancement of cell viability.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Akbulut S, Caliskan AR, Saritas H, Demyati K, Bilgic Y, Unsal S, Koc C, Yilmaz S. Analysis of risk factors affecting the development of peptic ulcer perforation: case-control study. PRZEGLAD GASTROENTEROLOGICZNY 2021; 16:23-28. [PMID: 33986884 PMCID: PMC8112271 DOI: 10.5114/pg.2020.94744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
AIM The aim of the to determine the risk factors associated with increased risk of peptic ulcer perforation (PUP). MATERIAL AND METHODS The demographic, clinic, and biochemical parameters of 65 patients (PUP group) who underwent PUP surgery at our clinic between June 2009 and September 2016 were compared with the data of 134 patients (control group) who underwent endoscopy at a gastroenterology clinic for dyspeptic complaints. The control group were matched at random in a 1 : 2 ratio with the PUP group. Univariate analyses were used to compare different variables and variables with clinical significance, and p ≤ 0.05 was used in the backward stepwise logistic regression model. RESULTS This study included 65 patients with peptic ulcer perforation aged 17 to 92 years (PUP group) and 134 patients with dyspeptic complaints aged 18 to 87 years (control group). Univariate analysis showed that statistically significant differences were found between groups in terms of non-steroidal anti-inflammatory drugs usage (p = 0.042; OR = 1.868), smoking (p < 0.001; OR = 5.124), old age (p = 0.003), low body mass index (BMI) (p < 0.001), and low hemoglobin (Hb) (p = 0.002). However multivariate analysis showed that increasing age (p = 0.004; OR = 1.035), smoking (p = 0.007; OR = 3.591), decreasing Hb (p = 0.042; OR = 1.277), and decreasing BMI (p < 0.001; OR = 1.669) were independent clinically significant risk factors for development of PUP. CONCLUSIONS This study showed that decreased BMI, decreased Hb, increased age, and smoking were independent risk factors for development of PUP. Thus, this group of patients needs particular attention paid to suggestive symptoms with early diagnosis and optimal management of peptic ulcer disease.
Collapse
Affiliation(s)
- Sami Akbulut
- Department of Surgery and Liver Transplant Institute, Faculty of Medicine, Inonu University, Malatya, Turkey
- Address for correspondence: Assoc Prof. Sami Akbulut FACS, Department of Surgery and Liver Transplant Institute, Faculty of Medicine, Inonu University, Elazig Yolu 10. Km, Malatya 44280, Turkey, phone: +90 422-3410660, fax: +90 422-3410036, e-mail:
| | - Ali Riza Caliskan
- Department of Gastroenterology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Hasan Saritas
- Department of Surgical Nursing, Faculty of Health Sciences, Inonu University, Malatya, Turkey
| | - Khaled Demyati
- Department of Surgery and Liver Transplant Institute, Faculty of Medicine, Inonu University, Malatya, Turkey
- Department of Surgery, An-Najah National University Hospital, An-Najah National University, Nablus, Palestine
| | - Yilmaz Bilgic
- Department of Gastroenterology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Selver Unsal
- Department of Nursing Service, Inonu University, Malatya, Turkey
| | - Cemalettin Koc
- Department of Surgery and Liver Transplant Institute, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Sezai Yilmaz
- Department of Surgery and Liver Transplant Institute, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
14
|
Matah Marte VM, Ateufack G, Mbiantcha M, Atsamo AD, Adjouzem CF, Djuichou Nguemnang SF, Tsafack EG, Yousseu Nana W, Madjo Kouam YK, Ngoufack Azanze E. Methanolic Extract of Distemonanthus benthamianus (Caesalpiniaceae) Stem Bark Suppresses Ethanol/Indomethacin-Induced Chronic Gastric Injury in Rats. Gastroenterol Res Pract 2020; 2020:8180323. [PMID: 33354210 PMCID: PMC7737456 DOI: 10.1155/2020/8180323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/01/2020] [Accepted: 11/15/2020] [Indexed: 01/11/2023] Open
Abstract
Distemonanthus benthamianus (Caesalpiniaceae) is a plant from the Cameroon pharmacopoeia very widely used in the treatment of many pathologies among which are gastrointestinal disorders. The main purpose of this study was to assess the healing properties of gastric ulcer from the methanolic extract of Distemonanthus benthamianus and its mechanisms of action. The healing properties of gastric ulcers (chronic ulcer model induced by ethanol and indomethacin) were evaluated in vivo in adult male rats, while the mechanisms of action were evaluated in vitro by anti-inflammatory assay (protein denaturation, cyclooxygenase, and lipoxygenase assays) and immunomodulatory assay (ROS production (using technical chemiluminescence), cytokine (TNF-α, IL-1β, IL-6) production (using ELISA), proliferation of T cells (using liquid scintillation counter), and cytotoxicity (using MTT assay)). The methanolic extract of Distemonanthus benthamianus inhibited protein denaturation (75.63%) and the activities of cyclooxygenase (78.92%) and 5-lipoxygenase (81.54%). The extract also significantly (p < 0.001) inhibited intracellular and extracellular ROS production and T cell proliferation and reduced significantly (p < 0.01, p < 0.001) TNF-α, IL-1β, IL-6, and PGE2 production. At all doses (125, 250, and 500 mg/kg), the extract significantly reduces the ulceration index and the area of ulceration and significantly increases the mass of gastric mucus. In addition, the extract significantly decreases the level of MDA, significantly increases the activities of catalase and glutathione, and then improves the hematological parameters in sick animals. Histological micrographs show that in the presence of the extract, there is advanced reepithelialization with recovery of the ulcerated epithelium. Thus, the extract of Distemonanthus benthamianus has healing properties against gastric ulcers which are associated with its anti-inflammatory, immunomodulatory, and antioxidant effects.
Collapse
Affiliation(s)
- Vanessa Mba Matah Marte
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Cameroon
| | - Gilbert Ateufack
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Cameroon
| | - Marius Mbiantcha
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Cameroon
| | - Albert Donatien Atsamo
- Laboratory of Animal Physiology, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
| | - Carine Flore Adjouzem
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Cameroon
| | | | - Eric Gonzal Tsafack
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Cameroon
| | - William Yousseu Nana
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Cameroon
| | - Yacine Karelle Madjo Kouam
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Cameroon
| | - Elvira Ngoufack Azanze
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Cameroon
| |
Collapse
|
15
|
The pathophysiology of acute gastric ulcer development in normotensive and hypertensive rats: A comparative study. Eur J Pharmacol 2020; 887:173469. [DOI: 10.1016/j.ejphar.2020.173469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 01/24/2023]
|
16
|
de Mendonça MAA, Ribeiro ARS, de Lima AK, Bezerra GB, Pinheiro MS, de Albuquerque-Júnior RLC, Gomes MZ, Padilha FF, Thomazzi SM, Novellino E, Santini A, Severino P, B. Souto E, Cardoso JC. Red Propolis and Its Dyslipidemic Regulator Formononetin: Evaluation of Antioxidant Activity and Gastroprotective Effects in Rat Model of Gastric Ulcer. Nutrients 2020; 12:nu12102951. [PMID: 32993069 PMCID: PMC7600383 DOI: 10.3390/nu12102951] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Propolis has various pharmacological properties of clinical interest, and is also considered a functional food. In particular, hydroalcoholic extracts of red propolis (HERP), together with its isoflavonoid formononetin, have recognized antioxidant and anti-inflammatory properties, with known added value against dyslipidemia. In this study, we report the gastroprotective effects of HERP (50–500 mg/kg, p.o.) and formononetin (10 mg/kg, p.o.) in ethanol and non-steroidal anti-inflammatory drug-induced models of rat ulcer. The volume, pH, and total acidity were the evaluated gastric secretion parameters using the pylorus ligature model, together with the assessment of gastric mucus contents. The anti-Helicobacter pylori activities of HERP were evaluated using the agar-well diffusion method. In our experiments, HERP (250 and 500 mg/kg) and formononetin (10 mg/kg) reduced (p < 0.001) total lesion areas in the ethanol-induced rat ulcer model, and reduced (p < 0.05) ulcer indices in the indomethacin-induced rat ulcer model. Administration of HERP and formononetin to pylorus ligature models significantly decreased (p < 0.01) gastric secretion volumes and increased (p < 0.05) mucus production. We have also shown the antioxidant and anti-Helicobacter pylori activities of HERP. The obtained results indicate that HERP and formononetin are gastroprotective in acute ulcer models, suggesting a prominent role of formononetin in the effects of HERP.
Collapse
Affiliation(s)
- Marcio A. A. de Mendonça
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Ana R. S. Ribeiro
- Departament of Physiology, Federal University of Sergipe, Av. Marechal Rondon, Cidade Universitária, São Cristóvão CEP 49100-000, Sergipe, Brazil; (A.R.S.R.); (S.M.T.)
| | - Adriana K. de Lima
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Gislaine B. Bezerra
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Malone S. Pinheiro
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
| | - Ricardo L. C. de Albuquerque-Júnior
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
| | - Margarete Z. Gomes
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
| | - Francine F. Padilha
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
| | - Sara M. Thomazzi
- Departament of Physiology, Federal University of Sergipe, Av. Marechal Rondon, Cidade Universitária, São Cristóvão CEP 49100-000, Sergipe, Brazil; (A.R.S.R.); (S.M.T.)
| | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- Correspondence: (A.S.); (E.B.S.); (J.C.C.); Tel.: +39-81-253-9317 (A.S.); +351-239-488-400 (E.B.S.); +55-79-3218-2190 (J.C.C.)
| | - Patricia Severino
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (A.S.); (E.B.S.); (J.C.C.); Tel.: +39-81-253-9317 (A.S.); +351-239-488-400 (E.B.S.); +55-79-3218-2190 (J.C.C.)
| | - Juliana C. Cardoso
- University of Tiradentes, Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil; (M.A.A.d.M.); (A.K.d.L.); (G.B.B.); (M.S.P.); (R.L.C.d.A.-J.); (M.Z.G.); (F.F.P.); (P.S.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju CEP 49032-490, Sergipe, Brazil
- Correspondence: (A.S.); (E.B.S.); (J.C.C.); Tel.: +39-81-253-9317 (A.S.); +351-239-488-400 (E.B.S.); +55-79-3218-2190 (J.C.C.)
| |
Collapse
|
17
|
Yu L, Li R, Liu W, Zhou Y, Li Y, Qin Y, Chen Y, Xu Y. Protective Effects of Wheat Peptides against Ethanol-Induced Gastric Mucosal Lesions in Rats: Vasodilation and Anti-Inflammation. Nutrients 2020; 12:nu12082355. [PMID: 32784583 PMCID: PMC7469019 DOI: 10.3390/nu12082355] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Alcohol consumption increases the risk of gastritis and gastric ulcer. Nutritional alternatives are considered for relieving the progression of gastric mucosal lesions instead of conventional drugs that produce side effects. This study was designed to evaluate the gastroprotective effects and investigate the defensive mechanisms of wheat peptides against ethanol-induced acute gastric mucosal injury in rats. Sixty male Sprague-Dawley rats were divided into six groups and orally treated with wheat peptides (0.1, 0.2, 0.4 g/kgbw) and omeprazole (20 mg/kgbw) for 4 weeks, following absolute ethanol administration for 1 h. Pretreatment with wheat peptides obviously enhanced the vasodilation of gastric mucosal blood vessels via improving the gastric mucosal blood flow and elevating the defensive factors nitric oxide (NO) and prostaglandin E2 (PGE2), and lowering the level of vasoconstrictor factor endothelin (ET)-1. Wheat peptides exhibited anti-inflammatory reaction through decreasing inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and increasing trefoil factor 1 (TFF1) levels. Moreover, wheat peptides significantly down-regulated the expression of phosphorylated nuclear factor kappa-B (p-NF-κB) p65 proteins in the NF-κB signaling pathway. Altogether, wheat peptides protect gastric mucosa from ethanol-induced lesions in rats via improving the gastric microcirculation and inhibiting inflammation mediated by the NF-κB signaling transduction pathway.
Collapse
Affiliation(s)
- Lanlan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Ruijun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yuhan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-8280-2552
| |
Collapse
|
18
|
Gastroprotective Effect of Juanislamin on Ethanol-Induced Gastric Lesions in Rats: Role of Prostaglandins, Nitric Oxide and Sulfhydryl Groups in the Mechanism of Action. Molecules 2020; 25:molecules25092246. [PMID: 32397642 PMCID: PMC7248697 DOI: 10.3390/molecules25092246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Peptic ulcer disease, the most common gastrointestinal disorder, is currently treated with several types of drugs, but all have severe side effects. The aim of the present study was to evaluate the gastroprotective activity of juanislamin, isolated from Calea urticifolia, in a rat model of ethanol-induced gastric lesions. Thirty minutes after orally administering a given dose of juanislamin (from 1 to 30 mg/kg) or carbenoxolone (the reference drug, at 1–100 mg/kg) to rats, 1 mL of ethanol was applied, and the animals were sacrificed 2 h later. The stomachs were removed and opened to measure the total area of lesions in each. To examine the possible participation of prostaglandins, nitric oxide and/or sulfhydryl groups in the mechanism of action of juanislamin, the rats received indomethacin, NG-Nitro-l-arginine methyl ester hydrochloride (l-NAME) or N-ethylmaleimide pretreatment, respectively, before being given juanislamin and undergoing the rest of the methodology. Juanislamin inhibited gastric lesions produced by ethanol in a non-dose-dependent manner, showing the maximum gastroprotective effect (100%) at 10 mg/kg. The activity of juanislamin was not modified by pretreatment with indomethacin, l-NAME or N-ethylmaleimide. In conclusion, juanislamin protected the gastric mucosa from ethanol-induced damage, and its mechanism of action apparently does not involve prostaglandins, nitric oxide or sulfhydryl groups.
Collapse
|
19
|
Somensi LB, Costa P, Boeing T, Mariano LNB, Longo B, Magalhães CG, Duarte LP, Maciel E Silva AT, de Souza P, de Andrade SF, da Silva LM. Gastroprotective properties of Lupeol-derived ester: Pre-clinical evidences of Lupeol-stearate as a potent antiulcer agent. Chem Biol Interact 2020; 321:108964. [PMID: 32006539 DOI: 10.1016/j.cbi.2020.108964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 01/06/2023]
Abstract
Lupeol (1) was isolated from hexane branch extract of Maytenus salicifolia and the Lupeol stearate (2), Lupeol palmitate (3), Lupeol myristate (4), Lupeol laurate (5) and Lupeol caprylate (6) were obtained reacting 1 with an adequate carboxylic acid. Swiss mice were treated with vehicle, carbenoxolone or Lupeol esters before administration of ethanol/HCl or indomethacin. Additionally, the involvement of nitric oxide (NO), sulfhydryl compounds (NP-SH), α-2 adrenergic receptors (α2-AR) and prostaglandins (PGE) in antiulcer effects was investigated using appropriate inhibitors or antagonist. Oxidative and inflammatory parameters were measured after euthanasia and anti-secretory effects was evaluated in pylorus-ligated rats. Ethanol/HCl ulcerated the gastric mucosa by 64.45 ± 6.58 mm2, which the oral treatment with 1, 4 and 6 (10 mg/kg), and 3 and 5 (30 mg/kg) reduced the lesion area. Interestingly, 2 reduced the gastric ulcer by oral route in a potent and dose-dependent manner (ED50 = 0.40 mg/kg), which was accompanied by the increase in reduced glutathione levels and by the reduction of lipids peroxidation and myeloperoxidase and superoxide dismutase activities. Moreover, 2 (0.1 mg/kg) also prevented the ulcerogenesis by intraperitoneal route. The participation of NO, NP-SH, α2-AR and PGE in 2-mediated gastroprotection was confirmed. In indomethacin-induced ulcer, 2 (1 mg/kg, p.o) also reduced the ulcer area and increased the PGE2 levels. However, 2 did not alter the gastric acid secretion. Therefore, these findings indicate that the obtention of 2 potentiated the antiulcer activity of 1 and that this compound can elicit gastroprotective action due a diversified mode of action.
Collapse
Affiliation(s)
- Lincon Bordignon Somensi
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade Do Vale Do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202, Itajaí, SC, Brazil
| | - Philipe Costa
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade Do Vale Do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202, Itajaí, SC, Brazil
| | - Thaise Boeing
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade Do Vale Do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202, Itajaí, SC, Brazil
| | - Luísa Nathália Bolda Mariano
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade Do Vale Do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202, Itajaí, SC, Brazil
| | - Bruna Longo
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade Do Vale Do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202, Itajaí, SC, Brazil
| | - Cássia Gonçalves Magalhães
- Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Lucenir Pain Duarte
- Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Aline Teixeira Maciel E Silva
- Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Priscila de Souza
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade Do Vale Do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202, Itajaí, SC, Brazil
| | - Sérgio Faloni de Andrade
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade Do Vale Do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202, Itajaí, SC, Brazil
| | - Luisa Mota da Silva
- Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade Do Vale Do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202, Itajaí, SC, Brazil.
| |
Collapse
|
20
|
Intestinal gases: influence on gut disorders and the role of dietary manipulations. Nat Rev Gastroenterol Hepatol 2019; 16:733-747. [PMID: 31520080 DOI: 10.1038/s41575-019-0193-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
The inner workings of the intestines, in which the body and microbiome intersect to influence gut function and systemic health, remain elusive. Carbon dioxide, hydrogen, methane and hydrogen sulfide, as well as a variety of trace gases, are generated by the chemical interactions and microbiota within the gut. Profiling of these intestinal gases and their responses to dietary changes can reveal the products and functions of the gut microbiota and their influence on human health. Indeed, different tools for measuring these intestinal gases have been developed, including newly developed gas-sensing capsule technology. Gases can, according to their type, concentration and volume, induce or relieve abdominal symptoms, and might also have physiological, pathogenic and therapeutic effects. Thus, profiling and modulating intestinal gases could be powerful tools for disease prevention and/or therapy. As the interactions between the microbiota, chemical constituents and fermentative substrates of the gut are principally influenced by dietary intake, altering the diet, which, in turn, changes gas profiles, is the main therapeutic approach for gastrointestinal disorders. An improved understanding of the complex interactions within the intestines that generate gases will enhance our ability to prevent, diagnose, treat and monitor many gastrointestinal disorders.
Collapse
|
21
|
Antioxidant and Antiulcerogenic Activity of the Dry Extract of Pods of Libidibia ferrea Mart. ex Tul. (Fabaceae). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1983137. [PMID: 31827669 PMCID: PMC6886323 DOI: 10.1155/2019/1983137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/18/2019] [Indexed: 12/23/2022]
Abstract
Ethnomedicinal studies in the Amazon community and in the Northeast region of Brazil highlight the use of Libidibia ferrea fruits for the treatment of gastric problems. However, there are no data in the literature of this pharmacological activity. Thus, the aim of this paper is to provide a scientific basis for the use of the dry extract of L. ferrea pods (DELfp) for the treatment of peptic ulcers. Phytochemical characterization was performed by HPLC/MS. In vitro antioxidant activity was assessed using DPPH, ABTS, phosphomolybdenum, and superoxide radical scavenging activity. The gastroprotective activity, the ability to stimulate mucus production, the antisecretory activity, and the influence of -SH and NO compounds on the antiulcerogenic activity of DELfp were evaluated. The healing activity was determined by the acetic acid-induced chronic ulcer model. Anti-Helicobacter pylori activity was investigated. HPLC/MS results identified the presence of phenolic compounds, gallic acid and ellagic acid, in DELfp. The extract showed antioxidant activity in vitro. In ulcers induced by absolute ethanol and acidified ethanol, the ED50 values of DELfp were 113 and 185.7 mg/kg, respectively. DELfp (100, 200, and 400 mg/kg) inhibited indomethacin-induced lesions by 66.7, 69.6, and 65.8%, respectively. DELfp (200 mg/kg) reduced gastric secretion and H+ concentration in the gastric contents and showed to be independent of nitric oxide (NO) and dependent on sulfhydryl (-SH) compounds in the protection of the gastric mucosa. In the chronic ulcer model, DELfp reduced the area of the gastric lesion. DELfp also showed anti-H. pylori activity. In conclusion, DELfp showed antioxidant, gastroprotective, healing, and antiulcerogenic activities. The mechanism of these actions seems to be mediated by different pathways and involves the reduction of gastric secretion and H+ concentration, dependence on sulfhydryl compounds, and anti-H. pylori activity. All these actions support the medicinal use of this species in the management of peptic ulcers.
Collapse
|
22
|
Konarska K, Cieszkowski J, Warzecha Z, Ceranowicz P, Chmura A, Kuśnierz-Cabala B, Gałązka K, Kowalczyk P, Miskiewicz A, Konturek TJ, Pędziwiatr M, Dembiński A. Treatment with Obestatin-A Ghrelin Gene-Encoded Peptide-Reduces the Severity of Experimental Colitis Evoked by Trinitrobenzene Sulfonic Acid. Int J Mol Sci 2018; 19:ijms19061643. [PMID: 29865176 PMCID: PMC6032262 DOI: 10.3390/ijms19061643] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
Obestatin is a 23-amino acid peptide derived from proghrelin, a common prohormone for ghrelin and obestatin. Previous studies showed that obestatin exhibited some protective and therapeutic effects in the gut. The aim of our presented study was to examine the effect of treatment with obestatin on trinitrobenzene sulfonic acid (TNBS)-induced colitis. In rats anesthetized with ketamine, colitis was induced through intrarectal administration of 25 mg of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Obestatin was administered intraperitoneally at doses of 4, 8, or 16 nmol/kg, twice per day for four consecutive days. The first dose of obestatin was given one day before the induction of colitis, and the last one was given two days after administration of TNBS. Fourteen days after the induction of colitis, rats were anesthetized again with ketamine, and the severity of colitis was determined. The administration of obestatin had no effect on the parameters tested in rats without the induction of colitis. In rats with colitis, administration of obestatin at doses of 8 or 16 nmol/kg reduced the area of colonic damage, and improved mucosal blood flow in the colon. These effects were accompanied by a reduction in the colitis-evoked increase in the level of blood leukocytes, and mucosal concentration of pro-inflammatory interleukin-1β. Moreover, obestatin administered at doses of 8 or 16 nmol/kg reduced histological signs of colonic damage. The administration of obestatin at a dose of 4 nmol/kg failed to significantly affect the parameters tested. Overall, treatment with obestatin reduced the severity of TNBS-induced colitis in rats. This effect was associated with an improvement in mucosal blood flow in the colon, and a decrease in local and systemic inflammatory processes.
Collapse
Affiliation(s)
- Katarzyna Konarska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Jakub Cieszkowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Zygmunt Warzecha
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Piotr Ceranowicz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Anna Chmura
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Beata Kuśnierz-Cabala
- Department of Clinical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Cracow, Poland.
| | - Krystyna Gałązka
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland.
| | - Andrzej Miskiewicz
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 00-246 Warsaw, Poland.
| | - Thomas Jan Konturek
- Department of Medicine, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA.
| | - Michał Pędziwiatr
- Second Department of General Surgery, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Cracow, Poland.
| | - Artur Dembiński
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| |
Collapse
|
23
|
Sousa GA, Oliveira IS, Silva-Freitas FV, Viana AFSC, Neto BPS, Cunha FVM, Gonçalves RLG, Lima Filho ACM, Amaral MPM, Oliveira RDCM, Fernandes PD, Maciel JKS, da Silva TMS, Souza MDFV, Oliveira FA. Gastroprotective effect of ethanol extracts of cladodes and roots of Pilosocereus gounellei (A. Weber ex K. Schum.) Bly. Ex Rowl (Cactaceae) on experimental ulcer models. JOURNAL OF ETHNOPHARMACOLOGY 2018; 218:100-108. [PMID: 29471086 DOI: 10.1016/j.jep.2018.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/07/2017] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pilosocereus gounellei Cactaceae), popularly known as "xique xique", is a species native from Caatinga region of Northeast Brazil, which is used by traditional communities in folk medicine for a variety of health problems, especially inflammatory processes and gastritis. AIM OF THE STUDY The present study investigates the possible gastric antiulceractivity of ethanol extracts obtained from the cladodes and roots of Pilosocereus gounellei (EECPG and EERPG, respectively) and mechanisms of action underlying this effect. MATERIALS AND METHODS Mice were used for the evaluation of the acute toxicity, and mice and rats to study the gastroprotective activity. The gastroprotective action of EECPG and EERPG was analyzed in the absolute ethanol in mice, ischemia-reperfusion and cold restraint stress in rats. In the investigation of the gastroprotective mechanisms of EECPG and EERPG, the participation of the NO and prostaglandins, the levels of the non-protein sulfhydril groups (NP-SH) and the catalase activity using the ethanol-induced gastric mucosa lesion model and the quantification of the gastric mucus and the antisecretory activity through pylorus ligature model in rats were analyzed. RESULTS The animals did not present any signs of acute toxicity for the EECPG and EERPG, and it was not possible to calculate the DL50. EECPG and EERPG (200 and 400 mg/kg) exhibited a significant gastroprotective effect in absolute ethanol, ischemia-reperfusion-induced and cold restraint stress gastric lesion models. Gastroprotection of EECPG and EERPG (200 mg/kg) was significantly decreased in pre-treated mice with L-NAME. Our studies revealed that EECPG and EERPG (200 mg/kg) prevented the decrease of the non-protein sulfhydril groups (NPSH) and increased the catalase levels in ethanol-treated animals. However, the gastric secretion parameters (volume, [H+], pH) did not show any alteration. CONCLUSIONS Our results indicate that the ethanolic extract from the cladodes and roots of Pilosocereus gounellei exhibits a significant gastroprotection, because it inhibits the formation of gastric lesions using different models. The participation of the nitric oxide, prostaglandins, the non-protein sulfhydril groups (NP-SH), catalase seem to be involved in the gastroprotection activity of the EECPG and EERPG. Nevertheless, this activity does not seem to be related to antisecretory mechanisms.
Collapse
Affiliation(s)
- Glaubert A Sousa
- Medicinal Plants Research Center, Federal University of Piauí, (unnumbered), 64049-550 Teresina, Piauí, Brazil.
| | - Irisdalva S Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, (unnumbered), 64049-550 Teresina, Piauí, Brazil.
| | - Francilene V Silva-Freitas
- Medicinal Plants Research Center, Federal University of Piauí, (unnumbered), 64049-550 Teresina, Piauí, Brazil.
| | - Ana Flávia S C Viana
- Rua Capitao Francisco Pedro, 1016, Bairro: Rodolfo Teófilo, 60430372 Fortaleza, Ceará, Brazil.
| | - Benedito P S Neto
- Medicinal Plants Research Center, Federal University of Piauí, (unnumbered), 64049-550 Teresina, Piauí, Brazil.
| | - Francisco Valmor M Cunha
- Medicinal Plants Research Center, Federal University of Piauí, (unnumbered), 64049-550 Teresina, Piauí, Brazil.
| | - Rodrigo L G Gonçalves
- Medicinal Plants Research Center, Federal University of Piauí, (unnumbered), 64049-550 Teresina, Piauí, Brazil.
| | - Antônio Carlos M Lima Filho
- Medicinal Plants Research Center, Federal University of Piauí, (unnumbered), 64049-550 Teresina, Piauí, Brazil.
| | - Maurício P M Amaral
- Medicinal Plants Research Center, Federal University of Piauí, (unnumbered), 64049-550 Teresina, Piauí, Brazil.
| | - Rita de Cássia M Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, (unnumbered), 64049-550 Teresina, Piauí, Brazil.
| | - Pedro D Fernandes
- Department of Agroecology and Agriculture, Center of Agricultural and Environmental Sciences, University of Paraiba State, 351, Baraúnas Street, Campina Grande, PB 58429-500, Brazil.
| | - Jéssica K S Maciel
- Post-Graduation Program in Development and Technological Innovation in Medicines, Health Science Center, Federal University of Paraiba, Campus I, João Pessoa PB 58051-900, Brazil.
| | - Tânia Maria S da Silva
- Postgraduate Program in Development and Technological Innovation in Medicines, Departmente of Molecular Sciences, Rural Federal University of Pernambuco, Campus Dois Irmãos Recife, PE 52171-900, Brazil.
| | - Maria de Fátima V Souza
- Post-Graduation Program in Development and Technological Innovation in Medicines, Health Science Center, Federal University of Paraiba, Campus I, João Pessoa PB 58051-900, Brazil.
| | - Francisco A Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, (unnumbered), 64049-550 Teresina, Piauí, Brazil.
| |
Collapse
|
24
|
Momordica charantia polysaccharides ameliorate oxidative stress, inflammation, and apoptosis in ethanol-induced gastritis in mucosa through NF-kB signaling pathway inhibition. Int J Biol Macromol 2018; 111:193-199. [DOI: 10.1016/j.ijbiomac.2018.01.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022]
|
25
|
Gastroprotective Mechanism and Ulcer Resolution Effect of Cyrtocarpa procera Methanolic Extract on Ethanol-Induced Gastric Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2862706. [PMID: 29507589 PMCID: PMC5817374 DOI: 10.1155/2018/2862706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/29/2017] [Indexed: 12/30/2022]
Abstract
Gastric ulcers are a worldwide health problem and their poor healing is one of the most important causes for their recurrence. We have previously reported the remarkable gastroprotective and anti-Helicobacter pylori activities of the methanolic extract (CpMet) of Cyrtocarpa procera bark. This work investigates, in a murine model, the CpMet gastroprotective mechanism and establishes its preclinical efficacy in the resolution of ethanol-induced gastric ulcers. The results showed that the gastroprotective activity of CpMet is mainly associated with endogenous NO and prostaglandins, followed by sulfhydryl groups and KATP channels. Furthermore, CpMet (300 mg/kg, twice a day) orally administered during 20 consecutive days promoted an ulcer area reduction of 62.65% at the 20th day of the treatment. The effect was confirmed macroscopically by the alleviation of gastric mucosal erosions and microscopically by an increase in mucin content and a reduction in the inflammatory infiltration at the site of the ulcer. No clinical symptoms or signs of toxicity were observed in the treated animals. The results indicate the safety and efficacy of CpMet in promoting high quality of ulcer healing by different mechanisms, but mostly through cytoprotective and anti-inflammatory effects, making it a promising phytodrug for ulcer treatment.
Collapse
|
26
|
PECULIARITIES OF CHRONIC GASTRODUODENAL PATHOLOGY COURSE BY THE STATUS OF PERIPHERAL MICROCIRCULATION IN CHILDREN OF SCHOOL AGE. WORLD OF MEDICINE AND BIOLOGY 2018. [DOI: 10.26724/2079-8334-2018-3-65-95-99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Somensi LB, Boeing T, Cury BJ, Steimbach VMB, Niero R, de Souza LM, da Silva LM, de Andrade SF. Hydroalcoholic extract from bark of Persea major (Meisn.) L.E. Kopp (Lauraceae) exerts antiulcer effects in rodents by the strengthening of the gastric protective factors. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:294-304. [PMID: 28807848 DOI: 10.1016/j.jep.2017.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
ETHOPHARMACOLOGICAL RELEVANCE The Persea major (Meisn.) L.E. Kopp (Lauraceae) (botanical synonym: Persea pyrifolia (D. Don) Spreng, Persea pyrifolia Nees and Mart., Persea cordata var. major (Meisn.) Mez and Persea willdenovii Kosterm) is a medicinal plant native in the south of Brazil, where is popularly known as Pau de Andrade, Maçaranduba or Abacate-do-Mato. Its barks are commonly used to prepare an infusion which is administered orally or topically to treat ulcers and wounds, respectively. Thus, this study has been undertaken to contribute to the validation of the popular use of P. major to treat of ulcerative disorders from gastrointestinal system, using different experimental models in rodents. MATERIAL AND METHODS Firstly, ultra-performance liquid chromatography coupled to a mass spectrophotometer has been performed. Next, the potential gastroprotective of hydroalcoholic extract of P. major barks (HEPM) (30-300mg/kg) has been evaluated in ulcer models acute as: ethanol, ethanol/HCl and indomethacin-induced ulcer. The extract (300mg/kg) has been also tested in acetic acid-induced chronic ulcer model. Histological, toxicological, histochemical, oxidative stress and gastric secretion parameters were analyzed. RESULTS The main compounds found in HEPM were polyphenols as condensed tannins, flavonoids heterosides derivatives from quercetin and kaempferol. HEPM (300mg/kg, p.o) prevented gastric lesions induced by ethanol or indomethacin in rats by 58.98% and 97.48%, respectively, compared to vehicle group (148.00±14.83mm2 and 12.07±1.61mm2, respectively). In acetic acid-induced chronic ulcer model the HEPM (300mg/kg, p.o) reduced the ulcer are by 40.58%, compared to vehicle group (127.90±12.04mm2). The healing effect was confirmed histologically, by an increase in mucin content and by the reduction in oxidative and inflammatory parameters at the ulcer site. Neither significant effect on gastric acid secretion nor toxicological effects and cytotoxicity were provoked by administration of HEPM. CONCLUSIONS The results allows to conclude that HEPM exerts gastroprotective and gastric cicatrizing effects favoring on protective defenses, but not possess antisecretory effect in contrast to the current antiulcer therapy, besides the extract present good tolerability and absence of cytotoxicity. Moreover, the results presented here contribute to the validation to the popular use of the P. major in the treatment of gastric ulcer.
Collapse
Affiliation(s)
- Lincon Bordignon Somensi
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigacões Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202 Itajaí, SC, Brazil
| | - Thaise Boeing
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigacões Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202 Itajaí, SC, Brazil
| | - Benhur Judah Cury
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigacões Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202 Itajaí, SC, Brazil
| | - Viviane Miranda Bispo Steimbach
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigacões Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202 Itajaí, SC, Brazil
| | - Rivaldo Niero
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigacões Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202 Itajaí, SC, Brazil
| | - Lauro Mera de Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, 80250-200 Curitiba, Paraná, Brazil
| | - Luisa Mota da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigacões Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202 Itajaí, SC, Brazil
| | - Sérgio Faloni de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigacões Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-202 Itajaí, SC, Brazil.
| |
Collapse
|
28
|
Baiubon P, Kunanusorn P, Khonsung P, Chiranthanut N, Panthong A, Rujjanawate C. Gastroprotective activity of the rhizome ethanol extract of Zingiber simaoense Y. Y. Qian in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:571-576. [PMID: 27765607 DOI: 10.1016/j.jep.2016.10.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/14/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zingiber simaoense Y. Y. Qian belongs to the Zingiberaceae family. Its rhizome has been used in Thai folk medicine to relieve gastric disorders; however, scientific evidence of its pharmacological activities has not yet been revealed. AIM OF THE STUDY This study was designed to validate the gastroprotective activity and to identify possible mechanisms of gastroprotection of Z. simaoense rhizome ethanol extract (ZSE) in rats. MATERIALS AND METHODS The gastroprotective effect of ZSE was tested using models of gastric ulcers induced by acidified ethanol, indomethacin, and restraint water immersion stress. Models for determination of gastric wall mucus secretion and plasma malondialdehyde levels as well as pylorus ligation were used to explore the mechanisms of action. RESULTS After oral administration by intragastric gavage, ZSE 7.5, 15, and 30mg/kg or cimetidine 100mg/kg significantly inhibited the formation of gastric ulcer in all gastric ulcer models. The gastric wall mucus amount was significantly higher than that of the ulcer control group, plasma malondialdehyde levels were normalized, and gastric secretion was partly inhibited by pretreatment with ZSE. CONCLUSIONS This study demonstrates the gastroprotective activity of ZSE in rats. The mechanisms of action of ZSE may depend on its ability to maintain the integrity of gastric wall mucus through the protection of gastric mucus, and/or by increasing the gastric mucus synthesis and secretion through prostaglandin synthesis. Moreover, the antioxidant activity of ZSE may also contribute to its mechanism of gastroprotection.
Collapse
Affiliation(s)
- Pareeya Baiubon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Puongtip Kunanusorn
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Parirat Khonsung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Natthakarn Chiranthanut
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Ampai Panthong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | | |
Collapse
|
29
|
Lajili S, Deghrigue M, Bel Haj Amor H, Muller CD, Bouraoui A. In vitro immunomodulatory activity and in vivo anti-inflammatory and analgesic potential with gastroprotective effect of the Mediterranean red alga Laurencia obtusa. PHARMACEUTICAL BIOLOGY 2016; 54:2486-2495. [PMID: 27096253 DOI: 10.3109/13880209.2016.1160937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Red algae have been recognized as a rich natural source of compounds possessing interesting biological and pharmacological activities. OBJECTIVE This work investigates anti-inflammatory, analgesic and gastroprotective activities of MeOH/CH2Cl2 crude extract and its fractions F1 (50% MeOH) and F2 (80% MeOH) from the whole alga plant Laurencia obtusa Hudson (Rhodomelaceae). MATERIALS AND METHODS Anti-inflammatory activity was evaluated in vitro using cytometric bead array (CBA) technology to follow up the secretion of tumour necrosis factor alpha (TNF-α) in lipopolysaccharide activated THP-1 monocytic cells at doses of 10-250 μg/mL and in vivo using carrageenan-induced paw oedema in Wistar rats at doses of 25, 50, 100 and 200 mg/kg. Crude extract and fractions were tested at the doses of 25, 50, 100 and 200 mg/kg for peripheral and central analgesic activity by acetic acid-induced writhing test and hot-plate method, respectively, in Swiss albino mice. Gastroprotective activity was evaluated using HCl/ethanol-induced gastric ulcer test in rats at doses of 25, 50, 100 and 200 mg/kg. RESULTS Crude extract, F1 and F2 showed an interesting inhibition of TNF-α secretion with IC50 values of 25, 52 and 24 μg/mL, respectively, and a significant anti-inflammatory activity in vivo (p < 0.01), 3 h after carrageenan injection, the oedema inhibition was 55.37%, 52.18% and 62.86%, respectively, at the dose of 100 mg/kg. Furthermore, they showed a significant peripheral analgesic activity with 53.79%, 55.92% and 57.37% (p < 0.01) of writhing inhibition, respectively. However, no significant activity was found in the hot-plate test. An interesting gastroprotective effect was observed with crude extract and its fractions F1 and F2 with a gastric ulcer inhibition of 65.48%, 77.42% and 81.29%, respectively, at the dose of 50 mg/kg. DISCUSSION AND CONCLUSION These results suggest that L. obtusa might be used as a potential source of natural anti-inflammatory and analgesic agents with gastroprotective effect.
Collapse
Affiliation(s)
- Sirine Lajili
- a Laboratoire de Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09) , Unité de Pharmacologie Marine, Faculté de pharmacie de Monastir, Université de Monastir , Monastir , Tunisia
- b UMR 7200 CNRS, Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie , Université de Strasbourg , Illkirch , France
| | - Monia Deghrigue
- a Laboratoire de Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09) , Unité de Pharmacologie Marine, Faculté de pharmacie de Monastir, Université de Monastir , Monastir , Tunisia
| | - Haifa Bel Haj Amor
- a Laboratoire de Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09) , Unité de Pharmacologie Marine, Faculté de pharmacie de Monastir, Université de Monastir , Monastir , Tunisia
| | - Christian D Muller
- b UMR 7200 CNRS, Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie , Université de Strasbourg , Illkirch , France
| | - Abderrahman Bouraoui
- a Laboratoire de Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09) , Unité de Pharmacologie Marine, Faculté de pharmacie de Monastir, Université de Monastir , Monastir , Tunisia
| |
Collapse
|
30
|
Sousa WM, Silva RO, Bezerra FF, Bingana RD, Barros FCN, Costa LE, Sombra VG, Soares PM, Feitosa JP, de Paula RC, Souza MH, Barbosa ALR, Freitas ALP. Sulfated polysaccharide fraction from marine algae Solieria filiformis : Structural characterization, gastroprotective and antioxidant effects. Carbohydr Polym 2016; 152:140-148. [DOI: 10.1016/j.carbpol.2016.06.111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/24/2023]
|
31
|
Gastroprotective activity of synthetic coumarins: Role of endogenous prostaglandins, nitric oxide, non-protein sulfhydryls and vanilloid receptors. Bioorg Med Chem Lett 2016; 26:5732-5735. [PMID: 27810240 DOI: 10.1016/j.bmcl.2016.10.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023]
Abstract
Natural or synthetic coumarins showed gastroprotective and antiulcer activity in animal models. In this study, we have synthetized twenty coumarins using classic methods to evaluate their gastroprotective effects on the ethanol/HCl-induced gastric lesion model in mice at 20mg/kg. Among the coumarins synthetized, compounds 6 and 10 showed the greatest gastroprotective activity being as active as lansoprazole at 20mg/kg and reducing gastric lesions by 75 and 76%, respectively. Then, in a second experiment, compounds 6 and 10 were re-evaluated in order to understand the possible mode of gastroprotective activity. Regarding coumarin 6, the protective effect was reduced by pre-treatment of the mice with N-ethylmaleimide and l-NAME suggesting that sulfhydryl compounds and endogenous nitric oxide are involved in its gastroprotective activity. While for coumarin 10 the effect was reduced by pre-treatment with indomethacin suggesting that prostaglandins are positively involved in its gastroprotective activity.
Collapse
|
32
|
Ou JZ, Cottrell JJ, Ha N, Pillai N, Yao CK, Berean KJ, Ward SA, Grando D, Muir JG, Harrison CJ, Wijesiriwardana U, Dunshea FR, Gibson PR, Kalantar-zadeh K. Potential of in vivo real-time gastric gas profiling: a pilot evaluation of heat-stress and modulating dietary cinnamon effect in an animal model. Sci Rep 2016; 6:33387. [PMID: 27633400 PMCID: PMC5025890 DOI: 10.1038/srep33387] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/24/2016] [Indexed: 01/12/2023] Open
Abstract
Gastroenterologists are still unable to differentiate between some of the most ordinary disorders of the gut and consequently patients are misdiagnosed. We have developed a swallowable gas sensor capsule for addressing this. The gases of the gut are the by-product of the fermentation processes during digestion, affected by the gut state and can consequently provide the needed information regarding the health of the gut. Here we present the first study on gas sensor capsules for revealing the effect of a medical supplement in an animal (pig) model. We characterise the real-time alterations of gastric-gas in response to environmental heat-stress and dietary cinnamon and use the gas profiles for understanding the bio-physiological changes. Under no heat-stress, feeding increases gastric CO2 concentration, while dietary cinnamon reduces it due to decrease in gastric acid and pepsin secretion. Alternatively, heat-stress leads to hyperventilation in pigs, which reduces CO2 concentration and with the cinnamon treatment, CO2 diminishes even more, resulting in health improvement outcomes. Overall, a good repeatability in gas profiles is also observed. The model demonstrates the strong potential of real-time gas profiler in providing new physiological information that will impact understanding of therapeutics, presenting a highly reliable device for monitoring/diagnostics of gastrointestinal disorders.
Collapse
Affiliation(s)
- Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Australia
| | - Jeremy J. Cottrell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Australia
| | - Nam Ha
- School of Engineering, RMIT University, Melbourne, Australia
| | - Naresh Pillai
- School of Engineering, RMIT University, Melbourne, Australia
| | - Chu K. Yao
- Department of Gastroenterology, The Alfred Hospital, Monash University, Melbourne, Australia
| | - Kyle J. Berean
- School of Engineering, RMIT University, Melbourne, Australia
| | - Stephanie A. Ward
- Monash Ageing Research Centre, Monash University, Melbourne, Australia
| | | | - Jane G. Muir
- Department of Gastroenterology, The Alfred Hospital, Monash University, Melbourne, Australia
| | | | - Udani Wijesiriwardana
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Australia
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Australia
| | - Peter R. Gibson
- Department of Gastroenterology, The Alfred Hospital, Monash University, Melbourne, Australia
| | | |
Collapse
|
33
|
Viana AFSC, da Silva FV, Fernandes HDB, Oliveira IS, Braga MA, Nunes PIG, Viana DDA, de Sousa DP, Rao VS, Oliveira RDCM, Almeida Santos F. Gastroprotective effect of (-)-myrtenol against ethanol-induced acute gastric lesions: possible mechanisms. ACTA ACUST UNITED AC 2016; 68:1085-92. [PMID: 27291136 DOI: 10.1111/jphp.12583] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/14/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVES (-)-Myrtenol is a natural fragrance monoterpenoid structurally related to α-pinene found in diverse plant essential oils. This study was aimed to assess the anti-ulcerogenic potential of (-)-myrtenol against ethanol-induced gastric lesions and to elucidate the underlying mechanism(s). METHODS Gastroprotective activity of (-)-myrtenol was evaluated using the mouse model of ethanol-induced gastric damage. To elucidate the gastroprotective mechanism(s), the roles of GABA, prostaglandins, nitric oxide and KATP channels were assessed. Besides, the oxidative stress-related parameters and the mucus content in gastric tissues were analysed. KEY FINDINGS (-)-Myrtenol at oral doses of 25, 50 and 100 mg/kg significantly decreased the severity of ethanol-induced gastric lesions affording gastroprotection that was accompanied by a decrease in the activity of myeloperoxidase and malondialdehyde, an increase in GPx, SOD, and catalase activity in gastric tissues, and with well-maintained normal levels of nitrite/nitrate, gastric mucus and NP-SHs. Pretreatment with GABA-A receptor antagonist flumazenil, the COX inhibitor indomethacin, and NO synthesis inhibitor L-NAME but not with KATP channel blocker glibenclamide significantly blocked the (-)-myrtenol gastroprotection. CONCLUSION These results provide first-time evidence for the gastroprotective effect of (-)-myrtenol that could be related to GABAA -receptor activation and antioxidant activity.
Collapse
Affiliation(s)
- Ana Flávia Seraine Custódio Viana
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Medicinal Plants Research Center, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Francilene Vieira da Silva
- Medicinal Plants Research Center, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Hélio de Barros Fernandes
- Medicinal Plants Research Center, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Irisdalva Sousa Oliveira
- Medicinal Plants Research Center, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Milena Aguiar Braga
- Postgraduate Program in Biotechnology, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Odontology and Nursing, Federal University of the Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Iury Gomes Nunes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Daniel de Araújo Viana
- Laboratory of Pathology and Legal Medicine, Faculty of Veterinary Science, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Vietla Satyanarayana Rao
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Flávia Almeida Santos
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
34
|
Granger DN, Holm L, Kvietys P. The Gastrointestinal Circulation: Physiology and Pathophysiology. Compr Physiol 2016; 5:1541-83. [PMID: 26140727 DOI: 10.1002/cphy.c150007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) circulation receives a large fraction of cardiac output and this increases following ingestion of a meal. While blood flow regulation is not the intense phenomenon noted in other vascular beds, the combined responses of blood flow, and capillary oxygen exchange help ensure a level of tissue oxygenation that is commensurate with organ metabolism and function. This is evidenced in the vascular responses of the stomach to increased acid production and in intestine during periods of enhanced nutrient absorption. Complimenting the metabolic vasoregulation is a strong myogenic response that contributes to basal vascular tone and to the responses elicited by changes in intravascular pressure. The GI circulation also contributes to a mucosal defense mechanism that protects against excessive damage to the epithelial lining following ingestion of toxins and/or noxious agents. Profound reductions in GI blood flow are evidenced in certain physiological (strenuous exercise) and pathological (hemorrhage) conditions, while some disease states (e.g., chronic portal hypertension) are associated with a hyperdynamic circulation. The sacrificial nature of GI blood flow is essential for ensuring adequate perfusion of vital organs during periods of whole body stress. The restoration of blood flow (reperfusion) to GI organs following ischemia elicits an exaggerated tissue injury response that reflects the potential of this organ system to generate reactive oxygen species and to mount an inflammatory response. Human and animal studies of inflammatory bowel disease have also revealed a contribution of the vasculature to the initiation and perpetuation of the tissue inflammation and associated injury response.
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular and Cellular Physiology, LSU Health Science Center-Shreveport, Shreveport, Louisiana, USA
| | - Lena Holm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Ribeiro ARS, Diniz PBF, Pinheiro MS, Albuquerque-Júnior RLC, Thomazzi SM. Gastroprotective effects of thymol on acute and chronic ulcers in rats: The role of prostaglandins, ATP-sensitive K(+) channels, and gastric mucus secretion. Chem Biol Interact 2015; 244:121-8. [PMID: 26689173 DOI: 10.1016/j.cbi.2015.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/25/2015] [Accepted: 12/10/2015] [Indexed: 12/13/2022]
Abstract
Thymol, a monoterpene phenol derivative of cymene, is found in abundance in the essential oils of Thymus, Origanum, and Lippia species. The present study investigated the gastroprotective actions of thymol (10, 30, and 100 mg/kg, p.o.) in the acute (ethanol- and nonsteroidal anti-inflammatory drug-induced ulcers) and chronic (acetic acid-induced ulcers) ulcer models in rats. Some of the mechanisms underlying to the gastroprotective effect of thymol were investigated in the ethanol-induced ulcer model. Gastric secretion parameters (volume, pH, and total acidity) were also evaluated by the pylorus ligature model, and the mucus in the gastric content was determined. The anti-Helicobacter pylori activity of thymol was performed using the agar-well diffusion method. Thymol (10, 30, and 100 mg/kg) produced dose dependent reduction (P < 0.01) on the total lesion area in the ethanol-induced ulcer model. The gastroprotective response caused by thymol (30 mg/kg) was significantly attenuated (P < 0.001) by intraperitoneal treatment of rats with indomethacin (a non-selective inhibitor of cyclo-oxygenase, 10 mg/kg) and glibenclamide (ATP-sensitive K(+) channel blocker, 10 mg/kg), but not by DL-Propargylglycine (PAG, a cystathionine-γ-lyase inhibitor, 25 mg/kg) and Nw-nitro-L-arginine methyl ester hydrochloride (L-NAME, a non-selective inhibitor of nitric oxide synthase, 70 mg/kg). Thymol (30 and 100 mg/kg) also reduced the ulcer index (P < 0.05) and the total lesion area (P < 0.001) in the indomethacin- and acetic-acid-induced ulcer models, respectively. In the model pylorus ligature, the treatment with thymol failed to significantly change the gastric secretion parameters. However, after treatment with thymol (30 and 100 mg/kg), there was a significant increase (P < 0.01) in mucus production. Thymol no showed anti-H. pylori activity in vitro. Collectively, the present results provide convincing evidence that thymol displays gastroprotective actions on the acute and chronic ulcer models through mechanisms that involve increased in the amount of mucus, prostaglandins, and ATP-sensitive K(+) channels.
Collapse
Affiliation(s)
- Ana Roseli S Ribeiro
- Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, Cidade Universitária, CEP 49100-000 São Cristóvão, Sergipe, Brazil
| | - Polyana B F Diniz
- Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, Cidade Universitária, CEP 49100-000 São Cristóvão, Sergipe, Brazil
| | - Malone S Pinheiro
- Unit Lab - Laboratório Central de Biomedicina, Universidade Tiradentes, Rua Laranjeiras, 710, CEP 49010-000 Aracaju, Sergipe, Brazil
| | - Ricardo L C Albuquerque-Júnior
- Instituto de Tecnologia e Pesquisa-ITP, Universidade Tiradentes, Av. Murilo Dantas, 300, CEP 49032-490 Aracaju, Sergipe, Brazil
| | - Sara M Thomazzi
- Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, Cidade Universitária, CEP 49100-000 São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
36
|
Hamedi S, Arian AA, Farzaei MH. Gastroprotective effect of aqueous stem bark extract of Ziziphus jujuba L. against HCl/Ethanol-induced gastric mucosal injury in rats. J TRADIT CHIN MED 2015; 35:666-70. [DOI: 10.1016/s0254-6272(15)30157-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Velázquez-Moyado JA, Martínez-González A, Linares E, Bye R, Mata R, Navarrete A. Gastroprotective effect of diligustilide isolated from roots of Ligusticum porteri coulter & rose (Apiaceae) on ethanol-induced lesions in rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:403-409. [PMID: 26320689 DOI: 10.1016/j.jep.2015.08.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/03/2015] [Accepted: 08/22/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rhizome of Ligusticum porteri Coulter& Rose (LP) has been traditionally used by the ethnic group Raramuri in the North of México for treatment of diabetes, tuberculosis, stomachaches, diarrhea and ritual healing ceremonies. It is use as antiulcer remedy has been extended to all Mexico. AIM OF THE STUDY To evaluate the gastroprotective activity of LP organic extracts and the major natural product diligustilide (DLG),using as experimental model the inhibition of the ethanol-induced lesions in rats. MATERIALS AND METHODS Gastric ulcers were induced by intragastric instillation of absolute ethanol (1 mL). We tested the gastroprotective activity of the organic extracts of LP and the pure compound DLG. The ulcer index (UI) was determined to measure the activity. In order to elucidate the action mechanism of DLG the animals were treated with L-NAME, N-ethylmalemide, Forskolin, 2',5'-dideoxyadenosine, Indomethacin, Glibenclameide, Diazoxide, NaHS and DL-Propargylglycine. The pylorus-ligated rat model was used to measure gastric secretion. RESULTS The oral administration of organic extracts of Ligusticum porteri showed gastroprotective effect at 30 mg/Kg on ethanol induced gastric lesions; hexane and dichloromethane extracts were the most active. DLG was the major compound in the hexane extract. This compound at 10 mg/kg prevented significantly the gastric injuries induced by ethanol. The alkylation of endogenous non-protein-SH groups with N-ethylmaleimide abolished the gastroprotective effect of DLG and blocking the formation of endogenous prostaglandins by the pretreatment with indomethacin attenuated the gastroprotective effect of DLG. CONCLUSION The gastroprotective activity demonstrated in this study tends to support the ethnomedical use of Ligusticum porteri roots. DLG, isolated as major compound of this medicinal plant has a clear gastroprotective effect on the ethanol-induced gastric lesions. The results suggest that the antiulcer activity of DLG depends on the participation of the endogenous non-protein -SH groups and prostaglandins.
Collapse
Affiliation(s)
- Josué A Velázquez-Moyado
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, México D.F., México
| | - Alejandro Martínez-González
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, México D.F., México
| | - Edelmira Linares
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, México D.F., México
| | - Robert Bye
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, México D.F., México
| | - Rachel Mata
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, México D.F., México
| | - Andrés Navarrete
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, México D.F., México.
| |
Collapse
|
38
|
Parra T, Benites J, Ruiz LM, Sepulveda B, Simirgiotis M, Areche C. Gastroprotective activity of ent-beyerene derivatives in mice: Effects on gastric secretion, endogenous prostaglandins and non-protein sulfhydryls. Bioorg Med Chem Lett 2015; 25:2813-7. [DOI: 10.1016/j.bmcl.2015.04.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 01/08/2023]
|
39
|
Abstract
The structural and functional integrity of the gastric and duodenal mucosa represents equilibrium between aggressive factors and protective mechanisms. Mucus-buffers-phospholipid layer as pre-epithelial barrier, enhanced by prostaglandins and epidermal growth factor, remains a vanguard of mucosal protection. It maintains a neutral pH at the surface epithelial luminal interface, facing luminal pH dropping to 1.0, i.e., hydrogen ion concentration gradient equal 1,000,000. The surface epithelial cells, elaborating mucins, buffers, phospholipids, prostaglandins, trefoil peptides, peptide growth factor and their receptors, heat shock proteins, cathelicidins, and β-defensins form the second line of defense. Endothelium exerts mucosal protection through production of potent vasodilators like nitric oxide and prostacyclins and through release of angiogenic growth factors, securing adequate blood flow and representing the third and an ultimate line of mucosal protection. This microcirculation is instrumental for supply of oxygen, nitric oxide, hydrogen sulfide and removal of ad hoc generated toxic substances as well as for continuous mucosal cell renewal from progenitor cells, secured by growth factors accompanied by survivin preventing early apoptosis.
Collapse
Affiliation(s)
- Harathi Yandrapu
- Department of Internal Medicine, Molecular Medicine Research Laboratory, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 4800 Alberta Avenue, El Paso, TX, 79905, USA,
| | | |
Collapse
|
40
|
Areche C, Benites J, Cornejo A, Ruiz LM, García-Beltrán O, Simirgiotis MJ, Sepúlveda B. Seco-taondiol, an unusual meroterpenoid from the Chilean seaweed Stypopodium flabelliforme and its gastroprotective effect in mouse model. Mar Drugs 2015; 13:1726-38. [PMID: 25830679 PMCID: PMC4413184 DOI: 10.3390/md13041726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/01/2015] [Accepted: 03/20/2015] [Indexed: 11/16/2022] Open
Abstract
Ten known meroterpenoids and the new meroterpenoid 7 were isolated from the Chilean seaweed Stypopodium flabelliforme as their acetylated derivatives. Furthermore, the known metabolite taondiol has been isolated for the first time from this species. The molecular structure of the new metabolite was determined by spectroscopic methods based on 1D- and 2D-NMR. Isolation of 7 represents a key step toward a better understanding of the biogenesis of this class of meroterpenoids. Among the meroditerpenoids isolated, stypodiol, isoepitaondiol, epitaondiol and sargaol exhibited gastroprotective activity on the HCl/Ethanol-induced gastric lesions model in mice. Regarding the mode of gastroprotective action, the activity of epitaondiol was reversed significantly when animals were pretreated with indomethacin, N-ethylmaleimide and N-nitro-l-arginine methyl ester (L-NAME) suggesting that prostaglandins, sulfhydryl groups and nitric oxide are involved in their mode of gastroprotective action. In the case of sargaol the gastroprotective activity was attenuated with indomethacin and N-ethylmaleimide, which suggests that prostaglandins and sulfhydryl groups are also involved in the mode of action using this model.
Collapse
Affiliation(s)
- Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 8320000, Chile.
| | - Julio Benites
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile.
| | - Alberto Cornejo
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370186, Chile.
| | - Lina M Ruiz
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile.
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730001, Colombia.
| | - Mario J Simirgiotis
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile.
| | - Beatriz Sepúlveda
- Departmento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Quillota 980, Viña del Mar 2520000, Chile.
| |
Collapse
|
41
|
Pereira C, Barbosa RM, Laranjinha J. Dietary nitrite induces nitrosation of the gastric mucosa: the protective action of the mucus and the modulatory effect of red wine. J Nutr Biochem 2015; 26:476-83. [PMID: 25701398 DOI: 10.1016/j.jnutbio.2014.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022]
Abstract
The stomach chemical environment promotes the production of new molecules that can induce post-translational modifications of endogenous proteins with physiological impact. The nitrate-nitrite-nitric oxide pathway is relevant in this process via production of nitric oxide ((•)NO) and nitric oxide-derived nitrogen oxides (NOx) at high concentrations. Using a highly sensitive and selective chemiluminescence approach, we found that exposure the stomach of rats to nitrite yielded S- and N-nitroso derivatives in gastric mucus cysteine-rich glycoproteins (mucins). To lesser extent, the underlying epithelial cell layers also suffered nitrite-driven S- and N-nitroso modifications which increased upon mucus removal, indicating that, under normal nitrite load, (•)NO and NOx can reach inner layers of the stomach wall and locally modify proteins. S-nitrosation was by large the predominant modification. In vitro and ex vivo experiments indicated that the gastric nitrosation pattern is triggered by dietary nitrite in a concentration dependent manner, encompassing the intermediary formation of (•)NO and is susceptible to modulation by dietary reductants, notably red wine polyphenols. Collectively, these results suggest a protective action of the mucus and potential (•)NO-dependent biochemical effects at deeper cells layers of the mucosa.
Collapse
Affiliation(s)
- Cassilda Pereira
- Center for Neuroscience and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3000 Coimbra, Portugal
| | - Rui M Barbosa
- Center for Neuroscience and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3000 Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3000 Coimbra, Portugal.
| |
Collapse
|
42
|
Zheng YF, Xie JH, Xu YF, Liang YZ, Mo ZZ, Jiang WW, Chen XY, Liu YH, Yu XD, Huang P, Su ZR. Gastroprotective effect and mechanism of patchouli alcohol against ethanol, indomethacin and stress-induced ulcer in rats. Chem Biol Interact 2014; 222:27-36. [PMID: 25168850 DOI: 10.1016/j.cbi.2014.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022]
Abstract
Pogostemonis Herba is an important Chinese medicine widely used in the treatment of gastrointestinal dysfunction. Patchouli alcohol (PA), a tricyclic sesquiterpene, is the major active constituent of Pogostemonis Herba. This study aimed to investigate the possible anti-ulcerogenic potential of PA and the underlying mechanism against ethanol, indomethacin and water immersion restraint-induced gastric ulcers in rats. Gross and histological gastric lesions, biochemical and immunological parameters were taken into consideration. The gastric mucus content and the antisecretory activity were analyzed through pylorus ligature model in rats. Results indicated that oral administration with PA significantly reduced the ulcer areas induced by ethanol, indomethacin and water immersion restraint. PA pretreatment significantly promoted gastric prostaglandin E2 (PGE2) and non-protein sulfhydryl group (NP-SH) levels, upregulated the cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) mRNA expression, and considerably boosted the gastric blood flow (GBF) and gastric mucus production in comparison with vehicle. In addition, PA modulated the levels of interleukin-6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α). The levels of glutathione (GSH), catalase (CAT) and malonaldehyde (MDA) were also restored by PA. However, the gastric secretion parameters (pH, volume of gastric juice and pepsin) did not show any significant alteration. These findings suggest that PA exhibited significant gastroprotective effects against gastric ulceration. The underlying mechanisms might involve the stimulation of COX-mediated PGE2, improvement of antioxidant and anti-inflammatory status, preservation of GBF and NP-SH, as well as boost of gastric mucus production.
Collapse
Affiliation(s)
- Yi-Feng Zheng
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jian-Hui Xie
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yi-Fei Xu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yong-Zhuo Liang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zhi-Zhun Mo
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Wei-Wen Jiang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiao-Ying Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yu-Hong Liu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiao-Dan Yu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ping Huang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan 510006, PR China.
| | - Zi-Ren Su
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan 510006, PR China.
| |
Collapse
|
43
|
Capsaicin as new orally applicable gastroprotective and therapeutic drug alone or in combination with nonsteroidal anti-inflammatory drugs in healthy human subjects and in patients. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 68:209-58. [PMID: 24941671 DOI: 10.1007/978-3-0348-0828-6_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Capsaicin is a specific compound acting on capsaicin-sensitive afferent nerves. AIM Capsaicin was used to study the different events of human gastrointestinal physiology, pathology, and clinical pharmacology, and possible therapeutic approaches to enhance gastrointestinal mucosal defense in healthy human subjects and in patients with various different gastrointestinal disorders as well as its use with nonsteroidal anti-inflammatory drugs (NSAIDs) in healthy subjects and in patients. MATERIALS AND METHODS The observations were carried out in 198 healthy human subjects and in 178 patients with different gastrointestinal (GI) diseases (gastritis, erosions, ulcer, polyps, cancer, inflammatory bowel diseases, colorectal polyps, cancers), and in 69 patients with chronic (Helicobacter pylori positive and negative) gastritis (before and after eradication treatment). The gastric secretory responses and their chemical composition, gastric emptying, sugar loading test, gastric transmucosal potential difference (GTPD) with application of capsaicin alone, after ethanol alone and with capsaicin, indomethacin-induced gastric mucosal microbleeding without and with capsaicin were studied. The immunohistochemical examinations of the capsaicin receptor (TRVP1), calcitonin gene- related peptide (CGRP), and substance P (SP) were carried out in gastrointestinal tract, and especially in patients with chronic gastritis (with and without Helicobacter infection, before and after classical eradication treatment). Classical molecular pharmacological methods were applied to study the drugs inhibiting the gastric basal acid output. RESULTS Capsaicin decreased the gastric basal output, enhanced the "non-parietal" (buffering) component of gastric secretory responses, and gastric emptying, and the release of glucagon. Capsaicin prevented the indomethacin- and ethanol-induced gastric mucosal damage; meanwhile capsaicin itself enhanced (GTPD). Capsaicin prevented the indomethacin-induced gastric mucosal microbleeding. The expression of TRVP1 and CGRP increased in the gastric mucosa of patients with chronic gastritis (independently of the presence of Helicobacter pylori infection), and the successfully carried out eradication treatment. The human first phase examinations (the application of acetylsalicylic acid (ASA), diclqfenac, and naproxen together with capcaicinoids) (given in doses that stimulate capsaicin-sensitive afferent vagal nerves) showed no change in the pharmacokinetic parameters of ASA and diclofenac and the ASA and diclofenac-induced platelet aggregation. CONCLUSIONS Capsaicin represents a new orally applicable gastroprotective agent in healthy human subjects and in patients with different chemical and Helicobacter pylori-induced mucosal damage and in many other diseases requiring treatment with NSAIDs.
Collapse
|
44
|
Abdon APV, Vasconcelos RP, Castro CA, Guedes MM, Tomé ADR, Cardoso ALH, Santiago TDM, Rebêlo LM, Moreira RDA, Monteiro-Moreira ACDO, Campos AR. Ethanol-Induced Gastric Injury: Microscopic Analysis of the Protective Effect of Frutalin. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9398-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Rozza AL, Meira de Faria F, Souza Brito AR, Pellizzon CH. The gastroprotective effect of menthol: involvement of anti-apoptotic, antioxidant and anti-inflammatory activities. PLoS One 2014; 9:e86686. [PMID: 24466200 PMCID: PMC3897732 DOI: 10.1371/journal.pone.0086686] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/17/2013] [Indexed: 12/19/2022] Open
Abstract
The aim of this research was to investigate the anti-apoptotic, antioxidant and anti-inflammatory properties of menthol against ethanol-induced gastric ulcers in rats. Wistar rats were orally treated with vehicle, carbenoxolone (100 mg/kg) or menthol (50 mg/kg) and then treated with ethanol to induce gastric ulcers. After euthanasia, stomach samples were prepared for histological slides and biochemical analyses. Immunohistochemical analyses of the cytoprotective and anti-apoptotic heat-shock protein-70 (HSP-70) and the apoptotic Bax protein were performed. The neutrophils were manually counted. The activity of the myeloperoxidase (MPO) was measured. To determine the level of antioxidant functions, the levels of glutathione (GSH), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and superoxide dismutase (SOD) were measured using ELISA. The levels of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and the anti-inflammatory cytokine interleukin-10 (IL-10) were assessed using ELISA kits. The menthol treated group presented 92% gastroprotection compared to the vehicle-treated group. An increased immunolabeled area was observed for HSP-70, and a decreased immunolabeled area was observed for the Bax protein in the menthol treated group. Menthol treatment induced a decrease in the activity of MPO and SOD, and the protein levels of GSH, GSH-Px and GR were increased. There was also a decrease in the levels of TNF-α and IL-6 and an increase in the level of IL-10. In conclusion, oral treatment with menthol displayed a gastroprotective activity through anti-apoptotic, antixidant and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Ariane Leite Rozza
- Pharmacology Department, Biosciences Institute, Universidade Estadual Paulista - UNESP, Botucatu, Brazil
| | - Felipe Meira de Faria
- Pharmacology Department, Faculty of Medical Sciences, University of Campinas - UNICAMP, Campina, Brazil
| | - Alba Regina Souza Brito
- Department of Structural and Functional Biology, Biology Institute, University of Campinas - UNICAMP, Campinas, Brazil
| | - Cláudia Helena Pellizzon
- Morphology Department, Biosciences Institute, UNESP – Universidade Estadual Paulista - UNESP, Botucatu, Brazil
- * E-mail:
| |
Collapse
|
46
|
Liu L, Liu Y, Cui J, Liu H, Liu YB, Qiao WL, Sun H, Yan CD. Oxidative stress induces gastric submucosal arteriolar dysfunction in the elderly. World J Gastroenterol 2013; 19:9439-9446. [PMID: 24409074 PMCID: PMC3882420 DOI: 10.3748/wjg.v19.i48.9439] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/05/2013] [Accepted: 11/13/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate human gastric submucosal vascular dysfunction and its mechanism during the aging process.
METHODS: Twenty male patients undergoing subtotal gastrectomy were enrolled in this study. Young and elderly patient groups aged 25-40 years and 60-85 years, respectively, were included. Inclusion criteria were: no clinical evidence of cardiovascular, renal or diabetic diseases. Conventional clinical examinations were carried out. After surgery, gastric submucosal arteries were immediately dissected free of fat and connective tissue. Vascular responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were measured by isolated vascular perfusion. Morphological changes in the gastric mucosal vessels were observed by hematoxylin and eosin (HE) staining and Verhoeff van Gieson (EVG) staining. The expression of xanthine oxidase (XO) and manganese-superoxide dismutase (Mn-SOD) was assessed by Western blotting analysis. The malondialdehyde (MDA) and hydrogen peroxide (H2O2) content and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were determined according to commercial kits.
RESULTS: The overall structure of vessel walls was shown by HE and EVG staining, respectively. Disruption of the internal elastic lamina or neointimal layers was not observed in vessels from young or elderly patients; however, cell layer number in the vessel wall increased significantly in the elderly group. Compared with submucosal arteries in young patients, the amount of vascular collagen fibers, lumen diameter and media cross-sectional area were significantly increased in elderly patients. Ach- and SNP-induced vasodilatation in elderly arterioles was significantly decreased compared with that of gastric submucosal arterioles from young patients. Compared with the young group, the expression of XO and the contents of MDA and H2O2 in gastric submucosal arterioles were increased in the elderly group. In addition, the expression of Mn-SOD and the activities of SOD and GSH-Px in the elderly group decreased significantly compared with those in the young group.
CONCLUSION: Gastric vascular dysfunction and senescence may be associated with increased oxidative stress and decreased antioxidative defense in the aging process.
Collapse
|
47
|
Gastroprotective Effects of Lion's Mane Mushroom Hericium erinaceus (Bull.:Fr.) Pers. (Aphyllophoromycetideae) Extract against Ethanol-Induced Ulcer in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:492976. [PMID: 24302966 PMCID: PMC3835629 DOI: 10.1155/2013/492976] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/16/2013] [Indexed: 01/25/2023]
Abstract
Hericium erinaceus is a famous tonic in oriental medicine. The gastroprotective effects of aqueous extract of H. erinaceus against ethanol-induced ulcers in Sprague Dawley rats were investigated. The possible involvements of lipid peroxidation, superoxide dismutase, and catalase were also investigated. Acute toxicity study was performed. The effects of aqueous extract of H. erinaceus on the ulcer areas, ulcer inhibition, gastric wall mucus, gross and histological gastric lesions, antioxidant levels, and malondialdehyde (MDA) contents were evaluated in ethanol-induced ulcer in vivo. In acute toxicity study, a high dose of 5 g/kg did not manifest any toxicological signs in rats. The extract promoted ulcer protection as ascertained by a significant reduction of the ulcer area. Furthermore, it exhibited a significant protection activity against gastric mucosal injury by preventing the depletion of antioxidant enzymes. The level of MDA was also limited in rat stomach tissues when compared with the ulcer control group. Immunohistochemistry showed upregulation of HSP70 protein and downregulation of BAX protein in rats pretreated with the extract. The aqueous extract of H. erinaceus protected gastric mucosa in our in vivo model. It is speculated that the bioactive compounds present in the extract may play a major role in gastroprotective activity.
Collapse
|
48
|
Baananou S, Bagdonaite E, Marongiu B, Piras A, Porcedda S, Falconieri D, Boughattas N. Extraction of the volatile oil from Carum carvi of Tunisia and Lithuania by supercritical carbon dioxide: chemical composition and antiulcerogenic activity. Nat Prod Res 2013; 27:2132-6. [PMID: 23495832 DOI: 10.1080/14786419.2013.771350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study investigates whether the essential oil prepared from Carum carvi seeds exhibits antiulcerogenic activity. Its volatile oil was obtained by supercritical fluid extraction (SFE) and by hydrodistillation. The essential oils were analysed by GC-MS to monitor their composition. The chemical analysis revealed that the essential oils extracted under SFE conditions had high carvone and limonene contents. The antiulcerogenic activity was evaluated by the HCl/ethanol method, which causes injury to the gastric mucosa. Three treated groups received the essential oil (100-300 mg/kg). The reference group received omeprazole (30 mg/kg) and the control group received NaCl. After 30 min, all groups were treated with HCl/EtOH for gastric ulcer induction. The results show C. carvi essential oil enhanced a significant inhibition of 47%, 81% and 88%, respectively, for three doses of essential oil used, which was similar to that induced by omeprazole (95%) (p < 0.005).
Collapse
Affiliation(s)
- Sameh Baananou
- a Laboratory of Pharmacology, Faculty of Medicine, University of Monastir , 5019 , Monastir , Tunisia
| | | | | | | | | | | | | |
Collapse
|
49
|
Damasceno SR, Rodrigues JC, Silva RO, Nicolau LA, Chaves LS, Freitas AL, Souza MH, Barbosa AL, Medeiros JVR. Role of the NO/KATP pathway in the protective effect of a sulfated-polysaccharide fraction from the algae Hypnea musciformis against ethanol-induced gastric damage in mice. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2013. [DOI: 10.1590/s0102-695x2013005000003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Nartey ET, Ofosuhene M, Agbale CM. Anti-ulcerogenic activity of the root bark extract of the African laburnum "Cassia sieberiana" and its effect on the anti-oxidant defence system in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:247. [PMID: 23228052 PMCID: PMC3577646 DOI: 10.1186/1472-6882-12-247] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/07/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite the widespread use of roots of Cassia sieberiana in managing several health conditions including gastric ulcer disease, there is little scientific data to support the rational phytotherapeutics as an anti-ulcer agent. This paper reports an evaluation of the in vivo anti-oxidant properties of an aqueous root bark extract of C. sieberiana in experimental gastric ulcer rats in a bid to elucidate its mechanism of action. METHODS Fisher 344 (F(344)) rats received pretreatment of C. sieberiana root bark extract (500, 750, and 1000 mg/kg body wt.) for 7 days after which there was induction of gastric injury with absolute ethanol. The mean ulcer index (MUI) was calculated and serum total anti-oxidant level determined. Gastric mucosal tissues were prepared and the activity level of the enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and myeloperoxidase (MPO) were measured together with the level of lipid hydroperoxides (LPO). Statistical difference between treatment groups was analysed using one-way analysis of variance (ANOVA) followed by Dunnett's post hoc t test. Statistical significance was calculated at P< 0.05. RESULTS The administration of ethanol triggered severe acute gastric ulcer and pretreatment with C. sieberiana root bark extract significantly and dose dependently protected against this effect. The root bark extract also dose dependently and significantly inhibited the ethanol induced decrease in activity levels of the enzymes SOD, CAT and GPx. The extract also inhibited the ethanol-induced decrease in level of serum total anti-oxidant capacity. The increase in ethanol-induced LPO level and MPO activity were also significantly and dose-dependently inhibited by the root bark extract. CONCLUSIONS The gastro-cytoprotective effect, inhibition of decrease in activity of gastric anti-oxidant enzymes and MPO as well as the inhibition of gastric LPO level suggests that one of the anti-ulcer mechanisms of C. sieberiana is the anti-oxidant property.
Collapse
|