1
|
Giraldo-Osorno PM, Wirsig K, Asa'ad F, Omar O, Trobos M, Bernhardt A, Palmquist A. Macrophage-to-osteocyte communication: Impact in a 3D in vitro implant-associated infection model. Acta Biomater 2024; 186:141-155. [PMID: 39142531 DOI: 10.1016/j.actbio.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Macrophages and osteocytes are important regulators of inflammation, osteogenesis and osteoclastogenesis. However, their interactions under adverse conditions, such as biomaterial-associated infection (BAI) are not fully understood. We aimed to elucidate how factors released from macrophages modulate osteocyte responses in an in vitro indirect 3D co-culture model. Human monocyte-derived macrophages were cultured on etched titanium disks and activated with either IL-4 cytokine (anti-inflammatory M2 phenotype) or Staphylococcus aureus secreted virulence factors to simulate BAI (pro-inflammatory M1 phenotype). Primary osteocytes in collagen gels were then stimulated with conditioned media (CM) from these macrophages. The osteocyte response was analyzed by gene expression, protein secretion, and immunostaining. M1 phenotype macrophages were confirmed by IL-1β and TNF-α secretion, and M2 macrophages by ARG-1 and MRC-1.Osteocytes receiving M1 CM revealed bone inhibitory effects, denoted by reduced secretion of bone formation osteocalcin (BGLAP) and increased secretion of the bone inhibitory sclerostin (SOST). These osteocytes also downregulated the pro-mineralization gene PHEX and upregulated the anti-mineralization gene MEPE. Additionally, exhibited pro-osteoclastic potential by upregulating pro-osteoclastic gene RANKL expression. Nonetheless, M1-stimulated osteocytes expressed a higher level of the potent pro-osteogenic factor BMP-2 in parallel with the downregulation of the bone inhibitor genes DKK1 and SOST, suggesting a compensatory feedback mechanisms. Conversely, M2-stimulated osteocytes mainly upregulated anti-osteoclastic gene OPG expression, suggesting an anti-catabolic effect. Altogether, our findings demonstrate a strong communication between M1 macrophages and osteocytes under M1 (BAI)-simulated conditions, suggesting that the BAI adverse effects on osteoblastic and osteoclastic processes in vitro are partly mediated via this communication. STATEMENT OF SIGNIFICANCE: Biomaterial-associated infections are major challenges and the underlying mechanisms in the cellular interactions are missing, especially among the major cells from the inflammatory side (macrophages as the key cell in bacterial clearance) and the regenerative side (osteocyte as main regulator of bone). We evaluated the effect of macrophage polarization driven by the stimulation with bacterial virulence factors on the osteocyte function using an indirect co-culture model, hence mimicking the scenario of a biomaterial-associated infection. The results suggest that at least part of the adverse effects of biomaterial associated infection on osteoblastic and osteoclastic processes in vitro are mediated via macrophage-to-osteocyte communication.
Collapse
Affiliation(s)
- Paula Milena Giraldo-Osorno
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katharina Wirsig
- Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Germany
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Bernhardt
- Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Germany.
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
2
|
Yilmaz B, Ayyildiz S, Kalyoncuoglu UT, Tahmasebifar A, Baran ET. Surface characteristics of additively manufactured CoCr and Ti6Al4V dental alloys: The effects of carbon and gold thin film coatings, and alkali-heat treatment. Microsc Res Tech 2024; 87:1222-1240. [PMID: 38318995 DOI: 10.1002/jemt.24501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
This study investigates the impact of surface modifications on additively manufactured CoCr and Ti6Al4V dental alloys, focusing on surface properties. Thin film carbon (C) and gold (Au) coatings, as well as alkali-heat treatment, were applied to the high- and low-polished specimens. Scanning electron microscopy (SEM) showed that thin film coatings retained the underlying surface topography, while the alkali-heat treatment induced distinct morphological changes. Energy-dispersive x-ray spectroscopy (EDS) analysis revealed that C-coating enriched surfaces with C, and Au-coating introduced detectable amounts of Au. Nevertheless, signs of coating delamination were observed in the high-polished specimens. Alkali-heat treatment led to the formation of a sodium titanate layer on Ti6Al4V surfaces, confirmed by sodium presence and Fourier transform infrared spectroscopy (FTIR) results showing carbonate bands. Surface roughness measurements with atomic force microscopy (AFM) showed that C-coating increased surface roughness in both high- and low-polished alloys. Au-coating slightly increased roughness, except for low-polished Au-coated Ti6Al4V, where a decrease in roughness was observed compared to low-polished bare Ti6Al4V, likely due to surface defects present in the latter resulting from the additive manufacturing process. Alkali-heat treatment led to a pronounced increase in roughness for both alloys, particularly for Ti6Al4V. Both thin film coatings decreased the water contact angles in all specimens in varying magnitudes, indicating an increase in wettability. However, the alkali-heat treatment caused a substantial decrease in contact angles, resulting in a highly hydrophilic state for Ti6Al4V. These findings underscore the substantial impact of surface modifications on additively manufactured dental alloys, potentially influencing their clinical performance. RESEARCH HIGHLIGHTS: Thin film coatings and chemical/heat treatment modify the surface properties of additively manufactured dental alloys. The surfaces of the alloys get rougher and more hydrophilic after alkali-heat treatment. Thin gold coatings exhibit potential adhesion challenges.
Collapse
Affiliation(s)
- Bengi Yilmaz
- Department of Biomaterials, University of Health Sciences Turkey, Istanbul, Turkey
- Gulhane Medical Design and Manufacturing Center (METUM), University of Health Sciences Turkey, Ankara, Turkey
- Regenerative Medicine Application and Research Center, University of Health Sciences Turkey, Istanbul, Turkey
| | - Simel Ayyildiz
- Gulhane Medical Design and Manufacturing Center (METUM), University of Health Sciences Turkey, Ankara, Turkey
- Department of Prosthodontics, Gulhane Faculty of Dentistry, University of Health Sciences Turkey, Ankara, Turkey
| | - Ulku Tugba Kalyoncuoglu
- Department of Prosthodontics, Gulhane Faculty of Dentistry, University of Health Sciences Turkey, Ankara, Turkey
| | - Aydin Tahmasebifar
- Department of Biomaterials, University of Health Sciences Turkey, Istanbul, Turkey
- Regenerative Medicine Application and Research Center, University of Health Sciences Turkey, Istanbul, Turkey
| | - Erkan Türker Baran
- Regenerative Medicine Application and Research Center, University of Health Sciences Turkey, Istanbul, Turkey
- Department of Tissue Engineering, University of Health Sciences Turkey, Istanbul, Turkey
| |
Collapse
|
3
|
Morel J, McNeilly O, Grundy S, Brown T, Gunawan C, Amal R, Scott JA. Nanoscale Titanium Surface Engineering via Low-Temperature Hydrothermal Etching for Enhanced Antimicrobial Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46247-46260. [PMID: 37738302 DOI: 10.1021/acsami.3c09525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Bioinspired nanotopography artificially fabricated on titanium surfaces offers a solution for the rising issue of postoperative infections within orthopedics. On a small scale, hydrothermal etching has proven to deliver an effective antimicrobial nanospike surface. However, translation to an industrial setting is limited by the elevated synthesis temperature (150 °C) and associated equipment requirements. Here, for the first time, we fabricate surface nanostructures using comparatively milder synthesis temperatures (75 °C), which deliver physicochemical properties and antimicrobial capability comparable to the high-temperature surface. Using a KOH etchant, the simultaneous formation of titania and titanate crystals at both temperatures produces a one-dimensional nanostructure array. Analysis indicated that the formation mechanism comprises dissolution and reprecipitation processes, identifying the deposited titanates as hydrated layered tetra-titanates (K2Ti4O9·nH2O). A proposed nanospike formation mechanism was confirmed through the identification of a core and outer shell for individual nanostructures, primarily comprised of titanates and titania, respectively. Etching conditions dictated crystalline formation, favoring a thicker titanate core for nanorods under higher synthesis temperatures and etchant concentrations. A bactericidal investigation showed the efficacy against Gram-negative bacteria for a representative low-temperature nanosurface (34.4 ± 14.4%) was comparable to the higher temperature nanosurface (34.0 ± 17.0%), illustrating the potential of low-temperature hydrothermal synthesis. Our results provide valuable insight into the applicability of low-temperature etching protocols that are more favorable in large-scale manufacturing settings.
Collapse
Affiliation(s)
- James Morel
- School of Chemical Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - Oliver McNeilly
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Sarah Grundy
- School of Chemical Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - Toby Brown
- Corin Australia, Pymble, NSW 2073, Australia
| | - Cindy Gunawan
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Rose Amal
- School of Chemical Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jason A Scott
- School of Chemical Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
4
|
Mohanta M, Thirugnanam A. Development of Multifunctional Commercial Pure Titanium-Polyethylene Glycol Drug-Eluting Substrates with Enhanced Optical and Antithrombotic Properties. Cardiovasc Eng Technol 2023; 14:37-51. [PMID: 35701708 DOI: 10.1007/s13239-022-00637-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/02/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE Development of multifunctional advanced stent implants (metal/polymer composite)-drug-eluting stents with superior material and optical properties is still a challenge. In this research work, multifunctional metal-polymer composite drug-eluting substrates (DES) for stent application were developed by using commercially pure titanium (cpTi) and polyethylene glycol (PEG). METHODS Surface modifications on titanium substrates were carried out by sodium hydroxide under various concentrations; 5M (6 and 24 h) and 10M (6 and 24 h). It induces a nanoporous structure which facilitates the larger area for encapsulation of the drug, Aspirin (ASA) via intermolecular forces followed by polymer coating of PEG (MW-20,000) by physical adsorption process, which is structured as layer-by-layer gathering. RESULTS The developed cpTi-PEG DES were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), optical energy bandgap, static contact angle measurement, antithrombotic and drug release studies. The development of sodium titanate oxide prompted surface nano-features revealed by SEM and XRD. Moreover, FTIR confirms the presence of ASA and PEG functional groups over the cpTi surface. Drug release studies fitted with Ritger-Peppas kinetic model (≤ 60%), which indicates the super case II transport mechanisms (n > 1). Further UV-visible absorbance spectrum was quantified by the Tauc plot, which shows the broadening of the energy bandgap (Eg). In addition, the shrink in blood clots was more around the Tib2/ASA/PEG.Please confirm the inserted city name in affiliations [1,2] are correct and amend if necessary.Yes, city name "Rourkela" is correct. CONCLUSION Developed cpTi-PEG DES has improved optical properties and prevent thrombus formation which suggesting it a potential substrate to overcome prime clinical challenges.
Collapse
Affiliation(s)
- Monalisha Mohanta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - A Thirugnanam
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Room No. 206, Rourkela, Odisha, 769008, India.
| |
Collapse
|
5
|
Bahraminasab M, Doostmohammadi N, Talebi A, Arab S, Alizadeh A, Ghanbari A, Salati A. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration. Biomed Eng Online 2022; 21:86. [PMID: 36503442 PMCID: PMC9743557 DOI: 10.1186/s12938-022-01056-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Three-dimensional (3D) printing is a capable approach for the fabrication of bone tissue scaffolds. Nevertheless, a purely made scaffold such as polylactic acid (PLA) may suffer from shortcomings and be restricted due to its biological behavior. Gelatin, hydroxyapatite and platelet-rich plasma (PRP) have been revealed to be of potential to enhance the osteogenic effect. In this study, it was tried to improve the properties of 3D-printed PLA scaffolds by infilling them with gelatin-nano-hydroxyapatite (PLA/G-nHA) and subsequent coating with PRP. For comparison, bare PLA and PLA/G-nHA scaffolds were also fabricated. The printing accuracy, the scaffold structural characterizations, mechanical properties, degradability behavior, cell adhesion, mineralization, systemic effect of the scaffolds on the liver enzymes, osteocalcin level in blood serum and in vivo bone regeneration capability in rat critical-sized calvaria defect were evaluated. RESULTS High printing accuracy (printing error of < 11%) was obtained for all measured parameters including strut thickness, pore width, scaffold density and porosity%. The highest mean ultimate compression strength (UCS) was associated with PLA/G-nHA/PRP scaffolds, which was 10.95 MPa. A slow degradation rate was observed for all scaffolds. The PLA/G-nHA/PRP had slightly higher degradation rate, possibly due to PRP release, with burst release occurred at week 4. The MTT results showed that PLA/G-nHA/PRP provided the highest cell proliferation at all time points, and the serum biochemistry (ALT and AST level) results indicated no abnormal/toxic influence caused by scaffold biomaterials. Superior cell adhesion and mineralization were obtained for PLA/G-nHA/PRP. Furthermore, all the developed scaffolds showed bone repair capability. The PLA/G-nHA/PRP scaffolds could better support bone regeneration than bare PLA and PLA/G-nHA scaffolds. CONCLUSION The PLA/G-nHA/PRP scaffolds can be considered as potential for hard tissue repair.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- grid.486769.20000 0004 0384 8779Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran ,grid.486769.20000 0004 0384 8779Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nesa Doostmohammadi
- grid.486769.20000 0004 0384 8779Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran ,grid.412475.10000 0001 0506 807XFaculty of Metallurgical and Materials Engineering, Semnan University, Semnan, Iran
| | - Athar Talebi
- grid.486769.20000 0004 0384 8779Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Samaneh Arab
- grid.486769.20000 0004 0384 8779Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran ,grid.486769.20000 0004 0384 8779Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Akram Alizadeh
- grid.486769.20000 0004 0384 8779Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran ,grid.486769.20000 0004 0384 8779Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- grid.486769.20000 0004 0384 8779Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Amir Salati
- grid.486769.20000 0004 0384 8779Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran ,grid.486769.20000 0004 0384 8779Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
6
|
Kreller T, Sahm F, Bader R, Boccaccini AR, Jonitz-Heincke A, Detsch R. Biomimetic Calcium Phosphate Coatings for Bioactivation of Titanium Implant Surfaces: Methodological Approach and In Vitro Evaluation of Biocompatibility. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3516. [PMID: 34202595 PMCID: PMC8269522 DOI: 10.3390/ma14133516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Ti6Al4V as a common implant material features good mechanical properties and corrosion resistance. However, untreated, it lacks bioactivity. In contrast, coatings with calcium phosphates (CaP) were shown to improve cell-material interactions in bone tissue engineering. Therefore, this work aimed to investigate how to tailor biomimetic CaP coatings on Ti6Al4V substrates using modified biomimetic calcium phosphate (BCP) coating solutions. Furthermore, the impact of substrate immersion in a 1 M alkaline CaCl2 solution (pH = 10) on subsequent CaP coating formation was examined. CaP coatings were characterized via scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, and laser-scanning microscope. Biocompatibility of coatings was carried out with primary human osteoblasts analyzing cell morphology, proliferation, collagen type 1, and interleukin 6 and 8 release. Results indicate a successful formation of low crystalline hydroxyapatite (HA) on top of every sample after immersion in each BCP coating solution after 14 days. Furthermore, HA coating promoted cell proliferation and reduced the concentration of interleukins compared to the uncoated surface, assuming increased biocompatibility.
Collapse
Affiliation(s)
- Thomas Kreller
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; (T.K.); (A.R.B.)
| | - Franziska Sahm
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany; (F.S.); (R.B.); (A.J.-H.)
| | - Rainer Bader
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany; (F.S.); (R.B.); (A.J.-H.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; (T.K.); (A.R.B.)
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany; (F.S.); (R.B.); (A.J.-H.)
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; (T.K.); (A.R.B.)
| |
Collapse
|
7
|
Assessment of Titanate Nanolayers in Terms of Their Physicochemical and Biological Properties. MATERIALS 2021; 14:ma14040806. [PMID: 33567667 PMCID: PMC7915217 DOI: 10.3390/ma14040806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/02/2023]
Abstract
The surface modification of titanium substrates and its alloys in order to improve their osseointegration properties is one of widely studied issues related to the design and production of modern orthopedic and dental implants. In this paper, we discuss the results concerning Ti6Al4V substrate surface modification by (a) alkaline treatment with a 7 M NaOH solution, and (b) production of a porous coating (anodic oxidation with the use of potential U = 5 V) and then treating its surface in the abovementioned alkaline solution. We compared the apatite-forming ability of unmodified and surface-modified titanium alloy in simulated body fluid (SBF) for 1–4 weeks. Analysis of the X-ray diffraction patterns of synthesized coatings allowed their structure characterization before and after immersing in SBF. The obtained nanolayers were studied using Raman spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), and scanning electron microscopy (SEM) images. Elemental analysis was carried out using X-ray energy dispersion spectroscopy (SEM EDX). Wettability and biointegration activity (on the basis of the degree of integration of MG-63 osteoblast-like cells, L929 fibroblasts, and adipose-derived mesenchymal stem cells cultured in vitro on the sample surface) were also evaluated. The obtained results proved that the surfaces of Ti6Al4V and Ti6Al4V covered by TiO2 nanoporous coatings, which were modified by titanate layers, promote apatite formation in the environment of body fluids and possess optimal biointegration properties for fibroblasts and osteoblasts.
Collapse
|
8
|
Relationship between the Surface Roughness of Biodegradable Mg-Based Bulk Metallic Glass and the Osteogenetic Ability of MG63 Osteoblast-Like Cells. MATERIALS 2020; 13:ma13051188. [PMID: 32155846 PMCID: PMC7085092 DOI: 10.3390/ma13051188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 11/17/2022]
Abstract
Mg-based bulk metallic glass materials have been investigated for their large potential for application in orthopedic implants due to their biocompatibility, low degradation rate, and osteogenetic ability. As an orthopedic implant, initial cell adhesion has been a critical issue for subsequent osteogenesis and bone formation because the first contact between cells and the implant occurs upon the implants surface. Here, we aimed to create Mg-based bulk metallic glass samples with three different surface roughness attributes in order to understand the degradation behavior of Mg-based bulk metallic glass and the adhesion ability and osteogenetic ability of the contact cells. It was found that the degradation behavior of Mg66Zn29Ca5 bulk metallic glass was not affected by surface roughness. The surface of the Mg66Zn29Ca5 bulk metallic glass samples polished via #800 grade sandpaper was found to offer a well-attached surface and to provide a good cell viability environment for Human MG63 osteoblast-like cell line. In parallel, more calcium and mineral deposition was investigated on extracellular matrix with higher surface roughness that verify the relationship between surface roughness and cell performance.
Collapse
|
9
|
Reggente M, Kriegel S, He W, Masson P, Pourroy G, Mura F, Faerber J, Passeri D, Rossi M, Palkowski H, Carradò A. How alkali-activated Ti surfaces affect the growth of tethered PMMA chains: a close-up study on the PMMA thickness and surface morphology. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
The alkali-activation of titanium (Ti) surfaces performed in a heated sodium hydroxide (NaOH) aqueous solution, results in a porous layer rich in hydroxyl (OH) groups, the structure and porosity of which strongly depend on the reaction time and NaOH concentration used. In this study, a polymerization initiator is covalently grafted on the alkali-activated Ti substrates by using a phosphonic acid as coupling agent and the resulting surfaces are used as scaffolds to drive the growth of tethered poly(methyl methacrylate) (PMMA) chains via a surface initiated atom transfer radical polymerisation (SI-ATRP). A close-up investigation of how different treatment times (1 h, 3 h, 6 h, 12 h, and 24 h) and NaOH concentrations (0.1 M, 0.5 M, 1 M, 2 M, and 5 M) affect the final PMMA morphology and thickness are presented.
Collapse
Affiliation(s)
- Melania Reggente
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess BP 43 , 67034 Strasbourg , France
- Department of Basic and Applied Sciences for Engineering (BASE) , Sapienza University of Rome , Via Antonio Scarpa 16 , 00161 Rome , Italy
| | - Sebastien Kriegel
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess BP 43 , 67034 Strasbourg , France
| | - Wenjia He
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess BP 43 , 67034 Strasbourg , France
| | - Patrick Masson
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess BP 43 , 67034 Strasbourg , France
| | - Geneviève Pourroy
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess BP 43 , 67034 Strasbourg , France
| | - Francesco Mura
- Center for Nanotechnology for Engineering (CNIS) , Sapienza University of Rome , P. le A. Moro 5 , 00185 Rome , Italy
| | - Jacques Faerber
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess BP 43 , 67034 Strasbourg , France
| | - Daniele Passeri
- Department of Basic and Applied Sciences for Engineering (BASE) , Sapienza University of Rome , Via Antonio Scarpa 16 , 00161 Rome , Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering (BASE) , Sapienza University of Rome , Via Antonio Scarpa 16 , 00161 Rome , Italy
- Center for Nanotechnology for Engineering (CNIS) , Sapienza University of Rome , P. le A. Moro 5 , 00185 Rome , Italy
| | - Heinz Palkowski
- Clausthal University of Technology (TUC), IMET Institute of Metallurgy , Robert-Koch-Strasse 42 , 38678 Clausthal-Zellerfeld , Germany
| | - Adele Carradò
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess BP 43 , 67034 Strasbourg , France
| |
Collapse
|
10
|
Functionalized coatings by cold spray: An in vitro study of micro- and nanocrystalline hydroxyapatite compared to porous titanium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 87:41-49. [PMID: 29549948 DOI: 10.1016/j.msec.2018.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/08/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022]
Abstract
Three different surface treatments on a Ti6Al4V alloy have been in vitro tested for possible application in cementless joint prosthesis. All of them involve the novelty of using the Cold Spray technology for their deposition: (i) an as-sprayed highly rough titanium and, followed by the deposition of a thin hydroxyapatite layer with (ii) microcrystalline or (iii) nanocrystalline structure. Primary human osteoblasts were extracted from knee and seeded onto the three different surfaces. Cell viability was tested by MTS and LIVE/DEAD assays, cell differentiation by alkaline phosphatase (ALP) quantification and cell morphology by Phalloidin staining. All tests were carried out at 1, 7 and 14 days of cell culture. Different cell morphologies between titanium and hydroxyapatite surfaces were exhibited. At 1 day of cell culture, cells on the titanium coating were spread and flattened, expanding the filopodia actin filaments in all directions, while cells on the hydroxyapatite coatings showed round like-shape morphology due to slower attachment. Higher cell viability was detected at all times of cell culture on titanium coating due to a better attachment at 1 day. However, from 7 days of cell culture, cells on hydroxyapatite showed good attachment onto surfaces and highly increased their proliferation, mostly on nanocrystalline, achieving similar cell viability levels than titanium coatings. ALP levels were significantly higher in titanium, in part, because of greatest cell number. Overall, the best cell functional results were obtained on titanium coatings whereas microcrystalline hydroxyapatite presented the worst cellular parameters. However, results indicate that nanocrystalline hydroxyapatite coatings may achieve promising results for the faster cell proliferation once cells are attached on the surface.
Collapse
|
11
|
Vilardell AM, Cinca N, Garcia-Giralt N, Müller C, Dosta S, Sarret M, Cano IG, Nogués X, Guilemany JM. In-vitro study of hierarchical structures: Anodic oxidation and alkaline treatments onto highly rough titanium cold gas spray coatings for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:589-596. [PMID: 30033291 DOI: 10.1016/j.msec.2018.05.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 04/17/2018] [Accepted: 05/23/2018] [Indexed: 01/11/2023]
Abstract
Hierarchical structures were obtained applying two different nanotexturing surface treatments onto highly rough commercial pure titanium coatings by cold spray: (i) anodic oxidation and (ii) alkaline treatments. An extended surface characterization in terms of topography, composition, and wettability has been performed to understand how those parameters affect to cell response. Primary human osteoblasts extracted from knee were seeded onto the as-sprayed titanium surface before and after the nanotexturing treatments. Cell viability was tested by using MTS and LIVE/DEAD assays, as well as osteoblasts differentiation by alkaline phosphatase (ALP) quantification at 3 and 10 days of cell culture. The combination of micro-/nano-roughness results in a significantly increase of cell proliferation, as well as cell differentiation after 10 days of cell culture in comparison with the non-treated coatings.
Collapse
Affiliation(s)
- A M Vilardell
- Centre de Projecció Tèrmica (CPT), Dpt. Material Science and Physical Chemistry, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - N Cinca
- Centre de Projecció Tèrmica (CPT), Dpt. Material Science and Physical Chemistry, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - N Garcia-Giralt
- IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), CIBERFES, ISCIII, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - C Müller
- Centre de Projecció Tèrmica (CPT), Dpt. Material Science and Physical Chemistry, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Dosta
- Centre de Projecció Tèrmica (CPT), Dpt. Material Science and Physical Chemistry, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - M Sarret
- Centre de Projecció Tèrmica (CPT), Dpt. Material Science and Physical Chemistry, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - I G Cano
- Centre de Projecció Tèrmica (CPT), Dpt. Material Science and Physical Chemistry, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - X Nogués
- IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), CIBERFES, ISCIII, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - J M Guilemany
- Centre de Projecció Tèrmica (CPT), Dpt. Material Science and Physical Chemistry, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Li NB, Xiao GY, Tsai IH, Zhao JH, Chen X, Xu WH, Lu YP. Transformation of the surface compositions of titanium during alkali and heat treatment at different vacuum degrees. NEW J CHEM 2018. [DOI: 10.1039/c8nj00201k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The AH method at different vacuum degrees had a significant influence on the surface composition, structure, wettability, bioactivity and other properties of titanium.
Collapse
Affiliation(s)
- Ning-bo Li
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji’nan 250061
- China
| | - Gui-yong Xiao
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji’nan 250061
- China
| | - I-Hsien Tsai
- Department of Natural Sciences
- LaGuardia Community College
- City University of New York
- New York
- USA
| | - Jun-han Zhao
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji’nan 250061
- China
| | - Xin Chen
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji’nan 250061
- China
| | - Wen-hua Xu
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji’nan 250061
- China
| | - Yu-peng Lu
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji’nan 250061
- China
| |
Collapse
|
13
|
Sharan J, Koul V, Dinda AK, Kharbanda OP, Lale SV, Duggal R, Mishra M, Gupta G, Singh MP. Bio-functionalization of grade V titanium alloy with type I human collagen for enhancing and promoting human periodontal fibroblast cell adhesion - an in-vitro study. Colloids Surf B Biointerfaces 2017; 161:1-9. [PMID: 29035745 DOI: 10.1016/j.colsurfb.2017.10.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/26/2022]
Abstract
Surface modification of medical grade V titanium alloy (Ti-6Al-4V) with biomolecules is an important and vital step for tailoring it for various biomedical applications. Present study investigates theinfluence of type I human collagen (T1HC) bio-conjugation through a three stage process. Polished grade V titanium alloy discs were functionalizedwith free OH group by means of controlled heat and alkali treatment followed by coating of 3-aminopropyltriethoxy (APTES) silane couplingagent. T1HC were bio-conjugated through 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride N-hydroxysuccinimide (EDCNHS)coupling reaction. At each stage, grade V titanium alloy surfaces were characterized by atomic force microscopy (AFM), scanning electronmicroscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Xrayphotoelectron spectroscopy (XPS). FTIR and XPS studies confirms thecovalent attachment of APTES with titanium alloy surface while terminalamine groups of APTES remained free for further attachment of T1HCthrough covalent bond. Aqueous stability of bio-conjugated titanium discsat various pH and time intervals (i.e. at pH of 5.5, 6.8 and 8.0 at timeinterval of 27 and 48h) confirmed the stability of T1HC bioconjugated collagen on titanium surface. Further human periodontalfibroblast cell line (HPdlF) culture revealed enhanced adhesion on theT1HC bio-conjugated surface compared to the polystyrene and polishedgrade V titanium alloy surfaces.
Collapse
Affiliation(s)
- Jitendra Sharan
- Divison of Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Veena Koul
- Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India; Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Amit K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Om P Kharbanda
- Divison of Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Shantanu V Lale
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Ritu Duggal
- Divison of Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Monu Mishra
- Physics of Energy Harvesting, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Govind Gupta
- Physics of Energy Harvesting, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Manoj P Singh
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
14
|
Islam MT, Felfel RM, Abou Neel EA, Grant DM, Ahmed I, Hossain KMZ. Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review. J Tissue Eng 2017; 8:2041731417719170. [PMID: 28794848 PMCID: PMC5524250 DOI: 10.1177/2041731417719170] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/15/2017] [Indexed: 01/15/2023] Open
Abstract
An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.
Collapse
Affiliation(s)
- Md Towhidul Islam
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Reda M Felfel
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ensanya A Abou Neel
- Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
- Biomaterials and Tissue Engineering Division, Eastman Dental Institute, University College London, London, UK
| | - David M Grant
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Kazi M Zakir Hossain
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| |
Collapse
|
15
|
Surface treatment of bulk and porous materials based on superelastic titanium alloys for medical implants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.matpr.2017.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Esen Z, Bütev E, Karakaş MS. A comparative study on biodegradation and mechanical properties of pressureless infiltrated Ti/Ti6Al4V–Mg composites. J Mech Behav Biomed Mater 2016; 63:273-286. [DOI: 10.1016/j.jmbbm.2016.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 06/02/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
17
|
Salemi H, Behnamghader A, Afshar A. Topography and nanostructural evaluation of chemically and thermally modified titanium substrates. BIOMED ENG-BIOMED TE 2016; 61:491-498. [PMID: 26581061 DOI: 10.1515/bmt-2015-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 09/30/2015] [Indexed: 11/15/2022]
Abstract
In this research, the effects of chemical and thermal treatment on the morphological and compositional aspects of titanium substrates and so, potentially, on development of biomimetic bone like layers formation during simulated body fluid (SBF) soaking was investigated. The HF, HF/HNO3 and NaOH solutions were used for chemical treatment and some of alkali-treated samples followed a heat treatment at 600°C. The treated samples before and after soaking were subjected to material characterization tests using scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). White light interferometry (WLI) was used to determine the roughness parameters such as Ra, Rq, RKu and Rsk. The significance of the obtained data was assessed using ANOVA variance analysis between all samples. It was observed that the reaction at grain boundaries and sodium titanate intermediate layers play a great role in the nucleation of calcium phosphate layers. Based on the obtained results in this work, the calcium phosphate microstructure deposited on titanium substrates was more affected by chemical modification than surface topography.
Collapse
|
18
|
Türkan U, Güden M, Sudağıdan M. Staphylococcus epidermidis adhesion on surface-treated open-cell Ti6Al4V foams. ACTA ACUST UNITED AC 2016; 61:299-307. [PMID: 26057214 DOI: 10.1515/bmt-2015-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/07/2015] [Indexed: 11/15/2022]
Abstract
The effect of alkali and nitric acid surface treatments on the adhesion of Staphylococcus epidermidis to the surface of 60% porous open-cell Ti6Al4V foam was investigated. The resultant surface roughness of foam particles was determined from the ground flat surfaces of thin foam specimens. Alkali treatment formed a porous, rough Na2Ti5O11 surface layer on Ti6Al4V particles, while nitric acid treatment increased the number of undulations on foam flat and particle surfaces, leading to the development of finer surface topographical features. Both surface treatments increased the nanometric-scale surface roughness of particles and the number of bacteria adhering to the surface, while the adhesion was found to be significantly higher in alkali-treated foam sample. The significant increase in the number of bacterial attachment on the alkali-treated sample was attributed to the formation of a highly porous and nanorough Na2Ti5O11 surface layer.
Collapse
|
19
|
Nanostructured Ti6Al4V alloy fabricated using modified alkali-heat treatment: Characterization and cell adhesion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:617-623. [PMID: 26652415 DOI: 10.1016/j.msec.2015.10.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/02/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
In order to optimize the creation of a nanostructured surface on Ti6Al4V titanium alloy, an alkali treatment was performed using a 10-M NaOH solution at various temperatures (30, 40, 50, and 60°C) so as to determine the optimal temperature. This was combined with subsequent heat treatments (200, 400, 600, and 800°C) in air. The effects of different temperatures for the latter treatments on the nanostructure surface and the initial cell adhesion were evaluated, and the optimal temperature of the alkali solution was found to be 30°C. Further, the nanotopography, surface chemistry, and surface roughness of the nanoporous structure were retained after heat treatments performed at 200, 400, and 600°C, and only the phase structure was altered. The amorphous sodium titanate phase, the content of which increased with increased heat-treatment temperature, may have played a role in promoting cell adhesion on the nanoporous surface. However, heat treatment at 800°C did not enhance the cell-surface attachment. Rather, the nanostructure degraded significantly with the reappearance of Al and V.
Collapse
|
20
|
Le VQ, Pourroy G, Cochis A, Rimondini L, Abdel-Fattah WI, Mohammed HI, Carradò A. Alternative technique for calcium phosphate coating on titanium alloy implants. BIOMATTER 2014; 4:e28534. [PMID: 24646569 PMCID: PMC4010538 DOI: 10.4161/biom.28534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
As an alternative technique for calcium phosphate coating on titanium alloys, we propose to functionalize the metal surface with anionic bath containing chlorides of palladium or silver as activators. This new deposition route has several advantages such as controlled conditions, applicability to complex shapes, no adverse effect of heating, and cost effectiveness. A mixture of hydroxyapatite and calcium phosphate hydrate is deposited on the surface of Ti–6Al–4V. Calcium phosphate coating is built faster compared with the one by Simulated Body Fluid. Cell morphology and density are comparable to the control one; and the results prove no toxic compound is released into the medium during the previous seven days of immersion. Moreover, the cell viability is comparable with cells cultivated with the virgin medium. These experimental treatments allowed producing cytocompatible materials potentially applicable to manufacture implantable devices for orthopedic and oral surgeries.
Collapse
Affiliation(s)
- Van Quang Le
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS-UMR 7504; Strasbourg, France
| | - Geneviève Pourroy
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS-UMR 7504; Strasbourg, France
| | - Andrea Cochis
- Department of Health Sciences; Università del Piemonte Orientale "Amedeo Avogadro"; Novara, Italy
| | - Lia Rimondini
- Department of Health Sciences; Università del Piemonte Orientale "Amedeo Avogadro"; Novara, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali; Firenze, Italy
| | | | | | - Adele Carradò
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS-UMR 7504; Strasbourg, France
| |
Collapse
|
21
|
Hsu HC, Hsu SK, Tsou HK, Wu SC, Lai TH, Ho WF. Fabrication and characterization of porous Ti-7.5Mo alloy scaffolds for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:645-657. [PMID: 23314686 DOI: 10.1007/s10856-012-4843-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 12/20/2012] [Indexed: 06/01/2023]
Abstract
Porous titanium and titanium alloys are promising scaffolds for bone tissue engineering, since they have the potential to provide new bone tissue ingrowth abilities and low elastic modulus to match that of natural bone. In the present study, porous Ti-7.5Mo alloy scaffolds with various porosities from 30 to 75 % were successfully prepared through a space-holder sintering method. The yield strength and elastic modulus of a Ti-7.5Mo scaffold with a porosity of 50 % are 127 MPa and 4.2 GPa, respectively, being relatively comparable to the reported mechanical properties of natural bone. In addition, the porous Ti-7.5Mo alloy exhibited improved apatite-forming abilities after pretreatment (with NaOH or NaOH + water) and subsequent immersion in simulated body fluid (SBF) at 37 °C. After soaking in an SBF solution for 21 days, a dense apatite layer covered the inner and outer surfaces of the pretreated porous Ti-7.5Mo substrates, thereby providing favorable bioactive conditions for bone bonding and growth. The preliminary cell culturing result revealed that the porous Ti-7.5Mo alloy supported cell attachment.
Collapse
Affiliation(s)
- Hsueh-Chuan Hsu
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
22
|
Gu YX, Du J, Zhao JM, Si MS, Mo JJ, Lai HC. Characterization and preosteoblastic behavior of hydroxyapatite-deposited nanotube surface of titanium prepared by anodization coupled with alternative immersion method. J Biomed Mater Res B Appl Biomater 2012; 100:2122-30. [DOI: 10.1002/jbm.b.32777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/23/2012] [Accepted: 06/28/2012] [Indexed: 11/09/2022]
|
23
|
Zareidoost A, Yousefpour M, Ghaseme B, Amanzadeh A. The relationship of surface roughness and cell response of chemical surface modification of titanium. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1479-88. [PMID: 22460230 PMCID: PMC3368253 DOI: 10.1007/s10856-012-4611-9] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 01/02/2012] [Indexed: 04/14/2023]
Abstract
Implant surface topography influences osteoblastic proliferation, differentiation and extracellular matrix protein expressions. Previous researches proved that chemical surface modification of titanium implants could be used to improve Bone-to-implant contact. In this study, the surface topography, chemistry and biocompatibility of polished titanium surfaces treated with mixed solution of three acids containing HCl, HF and H(3)PO(4) with different etched conditions for example concentration, time and addition of calcium chloride were studied. Osteoblast cells (MG-63) were cultured on different groups of titanium surfaces. In order to investigate titanium surfaces, SEM, AFM and EDS analyses were carried out. The results showed that surfaces treated with HCl-HF-H(3)PO(4) had higher roughness, lower cytotoxicity level and better biocompatibility than controls. Moreover, addition of calcium chloride into mixed solution of three acids containing HCl, HF and H(3)PO(4) is an important, predominant and new technique for obtaining biofunction in metals for biomedical use including dentistry.
Collapse
Affiliation(s)
- Amir Zareidoost
- Department of Materials Science and Engineering, University of Semnan, Semnan, Iran
- Bio-Nano-Materials Research Center, University of Semnan, Semnan, Iran
| | - Mardali Yousefpour
- Department of Materials Science and Engineering, University of Semnan, Semnan, Iran
- Bio-Nano-Materials Research Center, University of Semnan, Semnan, Iran
- Nano Nafez Company, Science and Technology Park of University of Semnan, Semnan University, Semnan, Iran
| | - Behrooz Ghaseme
- Department of Materials Science and Engineering, University of Semnan, Semnan, Iran
| | - Amir Amanzadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
24
|
Ajami E, Aguey-Zinsou KF. Calcium phosphate growth at electropolished titanium surfaces. J Funct Biomater 2012; 3:327-48. [PMID: 24955535 PMCID: PMC4047935 DOI: 10.3390/jfb3020327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/21/2012] [Accepted: 04/11/2012] [Indexed: 11/16/2022] Open
Abstract
This work investigated the ability of electropolished Ti surface to induce Hydroxyapatite (HA) nucleation and growth in vitro via a biomimetic method in Simulated Body Fluid (SBF). The HA induction ability of Ti surface upon electropolishing was compared to that of Ti substrates modified with common chemical methods including alkali, acidic and hydrogen peroxide treatments. Our results revealed the excellent ability of electropolished Ti surfaces in inducing the formation of bone-like HA at the Ti/SBF interface. The chemical composition, crystallinity and thickness of the HA coating obtained on the electropolished Ti surface was found to be comparable to that achieved on the surface of alkali treated Ti substrate, one of the most effective and popular chemical treatments. The surface characteristics of electropolished Ti contributing to HA growth were discussed thoroughly.
Collapse
Affiliation(s)
- Elnaz Ajami
- School of Engineering and Materials Science, University of London, Queen Mary, London E1 4NS, UK.
| | | |
Collapse
|
25
|
Ravichandran R, Ng CC, Liao S, Pliszka D, Raghunath M, Ramakrishna S, Chan CK. Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning. Biomed Mater 2011; 7:015001. [PMID: 22156014 DOI: 10.1088/1748-6041/7/1/015001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The time required for osseointegration with a metal implant having a smooth surface ranges from three to six months. We hypothesized that biomimetic coating surfaces with poly(lactic-co-glycolic acid) (PLGA)/collagen fibers and nano-hydroxyapatite (n-HA) on the implant would enhance the adhesion of mesenchymal stem cells. Therefore, this surface modification of dental and bone implants might enhance the process of osseointegration. In this study, we coated PLGA or PLGA/collagen (50:50 w/w ratio) fiber on Ti disks by modified electrospinning for 5 s to 2 min; after that, we further deposited n-HA on the fibers. PLGA fibers of fiber diameter 0.957 ± 0.357 µm had a contact angle of 9.9 ± 0.3° and PLGA/collagen fibers of fiber diameter 0.378 ± 0.068 µm had a contact angle of 0°. Upon n-HA incorporation, all the fibers had a contact angle of 0° owing to the hydrophilic nature of n-HA biomolecule. The cell attachment efficiency was tested on all the scaffolds for different intervals of time (10, 20, 30 and 60 min). The alkaline phosphatase activity, cell proliferation and mineralization were analyzed on all the implant surfaces on days 7, 14 and 21. Results of the cell adhesion study indicated that the cell adhesion was maximum on the implant surface coated with PLGA/collagen fibers deposited with n-HA compared to the other scaffolds. Within a short span of 60 min, 75% of the cells adhered onto the mineralized PLGA/collagen fibers. Similarly by day 21, the rate of cell proliferation was significantly higher (p ⩽ 0.05) on the mineralized PLGA/collagen fibers owing to enhanced cell adhesion on these fibers. This enhanced initial cell adhesion favored higher cell proliferation, differentiation and mineralization on the implant surface coated with mineralized PLGA/collagen fibers.
Collapse
|
26
|
Escada ALA, Machado JPB, Schneider SG, Rezende MCRA, Claro APRA. Biomimetic calcium phosphate coating on Ti-7.5Mo alloy for dental application. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2457-2465. [PMID: 21909642 DOI: 10.1007/s10856-011-4434-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
Titanium and its alloys have been used as bone-replacement implants due to their excellent corrosion resistance and biocompatibility. However, a titanium coating is a bioinert material and cannot bond chemically to bone tissue. The objective of this work was to evaluate the influence of alkaline treatment and heat treatment on the formation of calcium phosphate layer on the surface of a Ti-7.5Mo alloy after soaking in simulated body fluid (SBF). Thirty six titanium alloy plates were assigned into two groups. For group I, samples were immersed in a 5.0-M NaOH aqueous solution at 80°C for 72 h, washed with distilled water and dried at 40°C for 24 h. For group II, after the alkaline treatment, samples were heat-treated at 600°C for 1 h in an electrical furnace in air. Then, all samples were immersed in SBF for 7 or 14 days to allow the formation of a calcium phosphate coating on the surface. The surfaces were characterized using SEM, EDS, AFM and contact angle measurements.
Collapse
Affiliation(s)
- A L A Escada
- Materials and Technology Department, Faculty of Engineering Guaratinguetá, São Paulo State University, UNESP, Av. Dr. Ariberto Pereira da Cunha, 333, Pedregulho, Guaratinguetá, SP 12516-410, Brazil.
| | | | | | | | | |
Collapse
|
27
|
Sepahvandi A, Moztarzadeh F, Mozafari M, Ghaffari M, Raee N. Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: State of the art. Colloids Surf B Biointerfaces 2011; 86:390-6. [PMID: 21592746 DOI: 10.1016/j.colsurfb.2011.04.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 04/17/2011] [Accepted: 04/20/2011] [Indexed: 11/16/2022]
|
28
|
Nanomechanical and nanotribological properties of bioactive titanium surfaces prepared by alkali treatment. J Mech Behav Biomed Mater 2011; 4:756-65. [DOI: 10.1016/j.jmbbm.2010.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/02/2010] [Accepted: 07/10/2010] [Indexed: 11/19/2022]
|
29
|
Hsu HC, Tsou HK, Hsu SK, Wu SC, Lai CH, Ho WF. Effect of water aging on the apatite formation of a low-modulus Ti–7.5Mo alloy treated with aqueous NaOH. JOURNAL OF MATERIALS SCIENCE 2011; 46:1369-1379. [DOI: 10.1007/s10853-010-4929-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
|
30
|
Kubota M, Ohno T. Properties of titanium-hydroxyapatite composite materials fabricated via mechanical alloying and spark plasma sintering process. ACTA ACUST UNITED AC 2011. [DOI: 10.2464/jilm.61.192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Masahiro Kubota
- Department of Mechanical Engineering, College of Industrial Technology, Nihon University
| | - Takuya Ohno
- Postgraduate student, Graduate School of Industrial Technology, Nihon University
| |
Collapse
|
31
|
Tsiourvas D, Tsetsekou A, Arkas M, Diplas S, Mastrogianni E. Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:85-96. [PMID: 21069559 PMCID: PMC3019359 DOI: 10.1007/s10856-010-4181-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 10/25/2010] [Indexed: 05/30/2023]
Abstract
This work is investigating the chemical grafting on Ti surface of a polymer/calcium phosphate coating of improved adhesion for enhanced bioactivity. For this purpose, a whole new methodology was developed based on covalently attaching a hyperbranched poly(ethylene imine) layer on Ti surface able to promote calcium phosphate formation in a next deposition stage. This was achieved through an intermediate surface silanization step. The research included optimization both of the reaction conditions for covalently grafting the intermediate organosilicon and the subsequent hyperbranched poly(ethylene imine) layers, as well as of the conditions for the mechanical and chemical pretreatment of Ti surface before coating. The reaction steps were monitored employing FTIR and XPS analyses, whereas the surface morphology and structure of the successive coating layers were studied by SEM combined with EDS. The analysis confirmed the successful grafting of the hybrid layer which demonstrated very good ability for hydroxyapatite growth in simulated body fluid.
Collapse
Affiliation(s)
- D. Tsiourvas
- Institute of Physical Chemistry, NCSR “Demokritos”, 15310 Aghia Paraskevi, Attiki, Greece
| | - A. Tsetsekou
- School of Mining Engineering and Metallurgy, National Technical University of Athens, Iroon Polytechniou, Zografou Campus, 15780 Athens, Greece
| | - M. Arkas
- Institute of Physical Chemistry, NCSR “Demokritos”, 15310 Aghia Paraskevi, Attiki, Greece
| | - S. Diplas
- SINTEF Materials and Chemistry, Forskningsvn 1, NO-0314 Oslo, Norway
- Department of Chemistry and Centre for Materials Science and Nanotechnology (SMN), University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - E. Mastrogianni
- School of Mining Engineering and Metallurgy, National Technical University of Athens, Iroon Polytechniou, Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
32
|
Karthega M, Nagarajan S, Rajendran N. In vitro studies of hydrogen peroxide treated titanium for biomedical applications. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2009.11.057] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Faure J, Balamurugan A, Benhayoune H, Torres P, Balossier G, Ferreira J. Morphological and chemical characterisation of biomimetic bone like apatite formation on alkali treated Ti6Al4V titanium alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.09.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Hong TF, Guo ZX, Yang R. Fabrication of porous titanium scaffold materials by a fugitive filler method. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:3489-3495. [PMID: 18622764 DOI: 10.1007/s10856-008-3527-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 06/25/2008] [Indexed: 05/26/2023]
Abstract
A clean powder metallurgy route was developed here to produce Ti foams, using a fugitive polymeric filler, polypropylene carbonate (PPC), to create porosities in a metal-polymer compact at the pre-processing stage. The as-produced foams were studied by scanning electron microscopy (SEM), LECO combustion analyses and X-ray diffraction (XRD). Compression tests were performed to assess their mechanical properties. The results show that titanium foams with open pores can be successfully produced by the method. The compressive strength and modulus of the foams decrease with an increasing level of porosity and can be tailored to those of the human bones. After alkali treatment and soaking in a simulated body fluid (SBF) for 3 days, a thin apatite layer was formed along the Ti foam surfaces, which provides favourable bioactive conditions for bone bonding and growth.
Collapse
Affiliation(s)
- T F Hong
- Department of Materials Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| | | | | |
Collapse
|
35
|
Toledo-Fernández JA, Mendoza-Serna R, Morales V, de la Rosa-Fox N, Piñero M, Santos A, Esquivias L. Bioactivity of wollastonite/aerogels composites obtained from a TEOS-MTES matrix. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:2207-2213. [PMID: 18049874 DOI: 10.1007/s10856-007-3312-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 10/08/2007] [Indexed: 05/25/2023]
Abstract
Organic-inorganic hybrid materials were synthesized by controlled hydrolysis of tetraethoxysilane (TEOS), methyltrimethoxysilane (MTES), synthetic wollastonite powders and polydimethylsiloxane (PDMS) in an ethanol solution. Aerogels were prepared from acid hydrolysis of TEOS and MTES with different volume ratio in ethanol, followed by addition of wollastonite powder and PDMS in order to obtain aerogels with 20 wt% of PDMS and 5 wt% of CaO of the total silica. Finally, when the wet gels were obtained, they were supercritically dried at 260 degrees C and 90 bar, in ethanol. In order to obtain its bioactivity, one method for surface activation is based on a wet chemical alkaline treatment. The particular interest of this study is that we introduce hybrid aerogels, in a 1 M solution of NaOH, for 30 s at room temperature. We evaluate the bioactivity of TEOS-MTES aerogel when immersed in a static volume of simulated body fluid (SBF). An apatite layer of spherical-shaped particles of uniform size smaller than 5 microns is observed to form on the surface of the aerogels after 25 days soaking in SBF.
Collapse
Affiliation(s)
- Jose Antonio Toledo-Fernández
- Departamento Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz, Avenida República Saharaui, s/n, 11510 Puerto Real, Cadiz, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Chen D, Jordan EH, Gell M, Wei M. Apatite formation on alkaline-treated dense TiO2 coatings deposited using the solution precursor plasma spray process. Acta Biomater 2008; 4:553-9. [PMID: 18207469 DOI: 10.1016/j.actbio.2007.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/29/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
A dense titania (TiO2) coating was deposited from an ethanol-based solution containing titanium isopropoxide using the solution precursor plasma spray (SPPS) process. XRD and Raman spectrum analyses confirmed that the coating is exclusively composed of rutile TiO2. SEM micrographs show the as-sprayed coating is dense with a uniform thickness and there are no coarse splat boundaries. The as-sprayed coating was chemically treated in 5M NaOH solution at 80 degrees C for 48 h. The bioactivity of as-sprayed and alkaline-treated coatings was investigated by immersing the coatings in simulated body fluid (SBF) for 14-28 days, respectively. After 28 days immersion, there is a complete layer of carbonate-containing apatite formed on the alkaline-treated TiO2 coating surface, but none formed on the as-sprayed coating.
Collapse
|
37
|
Qu H, Wei M. Improvement of bonding strength between biomimetic apatite coating and substrate. J Biomed Mater Res B Appl Biomater 2008; 84:436-43. [PMID: 17621662 DOI: 10.1002/jbm.b.30889] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bone-like apatite coatings were prepared using a biomimetic method in a modified simulated body fluid (m-SBF). The effect of the m-SBF volume on the apatite coating quality was studied. Three m-SBF volumes, 50, 100, and 200 mL, were employed to immerse titanium substrates in a sealed container so as to produce apatite coatings with different properties, namely types I, type II, and type III apatite coatings, respectively. The coatings were characterized using X-ray diffraction and environmental scanning electron microscope. The bonding between the coating and the Ti substrate was evaluated using an adhesive strength test. All three apatite coatings demonstrated a poorly crystallized structure, and the coatings formed exhibited a uniformed surface morphology. Further increasing the m-SBF volume, small globules of apatite started to form on the surface of the coating. The bonding strength for the three coating systems were 8.52 +/- 2.41, 10.36 +/- 2.78, and 17.23 +/- 2.55 MPa for types I, II, and III apatite coatings, respectively. The failure analyses suggested that type III coating failed mostly at the interface between the coating and the substrate, while type I and II coatings failed mostly within the apatite coating. Our study revealed that a dense, thick, well-adhered apatite coating could be achieved by carefully controlling the volume of m-SBF.
Collapse
Affiliation(s)
- Haibo Qu
- Materials Science and Engineering Program, Department of Chemical, Materials, and Biomolecular Engineering, University of Connecticut, 97 North Eagleville Road, U-3136, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
38
|
Onoki T, Hosoi K, Hashida T, Tanabe Y, Watanabe T, Yasuda E, Yoshimura M. Effects of titanium surface modifications on bonding behavior of hydroxyapatite ceramics and titanium by hydrothermal hot-pressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2008. [DOI: 10.1016/j.msec.2006.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Zheng C, Li S, Tao X, Hao Y, Yang R, Zhang L. Calcium phosphate coating of Ti–Nb–Zr–Sn titanium alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2007. [DOI: 10.1016/j.msec.2006.09.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
In Situ Characterization of Degradation Behavior of Plasma-Sprayed Coatings on Orthopedic and Dental Implants. ACTA ACUST UNITED AC 2006. [DOI: 10.4028/www.scientific.net/ast.49.203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasma-sprayed ‘HA’ coatings on commercial orthopedic and dental implants were developed to combine the strength of the metal (Ti or Ti alloy) and the bioactivity of the hydroxyapatite (HA). Several studies have shown that ‘HA’-coated implants provided greater amount of bone attachment, higher bone-implant interfacial strength and accelerated skeletal attachment. However, some reports on implant failures have been attributed to coating delamination and coating early resorption of the plasma sprayed ‘HA’ coating. This paper reviews studies on characterization and degradation of plasma-sprayed ‘HA’ coatings on orthopedic and dental implants and offers alternatives to plasma-spray method of providing calcium phosphate coating. X-ray diffraction analyses showed that plasma-sprayed HA coating consists principally of HA and amorphous calcium phosphate (ACP) with minor amounts of other resorbable calcium phosphates (α- or β-tricalcium phosphates, tetracalcium phosphate), sometimes calcium oxide. The HA/ACP ratios were found to range from 20HA/80ACP to 70HA/30ACP in coated implants from different manufacturers. In vitro initial dissolution rates in acidic buffer (pH 6, 37oC) increased with decreasing HA/ACP ratios in the coating because of the preferential dissolution of the ACP phase. These results suggest that coating with very low HA/ACP ratio may result in the premature resorption of the coating before the bone can attach to the implant thus causing loosening and eventual failure of the implant. Alternatives to plasma-sprayed ‘HA’ are implant surface modifications and low temperature calcium phosphate coatings using electrochemical deposition method or precipitation method.
Collapse
|
41
|
Lin CM, Yen SK. Biomimetic growth of apatite on electrolytic TiO2 coatings in simulated body fluid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2006. [DOI: 10.1016/j.msec.2005.06.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Gu YW, Tay BY, Lim CS, Yong MS. Biomimetic deposition of apatite coating on surface-modified NiTi alloy. Biomaterials 2005; 26:6916-23. [PMID: 15941583 DOI: 10.1016/j.biomaterials.2005.04.051] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
TiO(2) coatings were prepared on NiTi alloy by heat treatment in air at 300, 400, 600 and 800 degrees C. The heat-treated NiTi alloy was subsequently immersed in a simulated body fluid for the biomimetic deposition of the apatite layer onto the surface of TiO(2) coating. The apatite coatings as well as the surface oxide layer on NiTi alloy were characterized using scanning electron microscopy equipped with energy dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. Results showed the samples heat-treated at 600 degrees C produced a layer of anatase and rutile TiO(2) on the surface of NiTi. No TiO(2) was detected on the surface of NiTi after heat treatment at 300 and 400 degrees C by X-ray diffraction, while rutile was formed on the surface of the 800 degrees C heat-treated sample. It was found that the 600 degrees C heat-treated NiTi induced a layer consisted of microcrystalline carbonate containing hydroxyapatite on its surface most effectively, while 300 and 400 degrees C heat-treated NiTi did not form apatite. This was due to the presence of anatase and/or rutile in the 600 and 800 degrees C heat-treated NiTi which could provide atomic arrangements in their crystal structures suitable for the epitaxy of apatite crystals, and anatase had better apatite-forming ability than rutile. XPS and Raman results revealed that this apatite layer was a carbonated and non-stoichiometric apatite with Ca/P ratio of 1.53, which was similar to the human bone. The formation of apatite on 600 degrees C heat-treated NiTi following immersion in SBF for 3 days indicated that the surface modified NiTi possessed excellent bioactivity.
Collapse
Affiliation(s)
- Y W Gu
- Singapore Institute of Manufacturing Technology.
| | | | | | | |
Collapse
|
43
|
Lu X, Leng Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 2005; 26:1097-108. [PMID: 15451629 DOI: 10.1016/j.biomaterials.2004.05.034] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
Abstract
The driving force and nucleation rate of calcium phosphate (Ca-P) precipitation in simulated body fluid (SBF) were analyzed based on the classical crystallization theory. SBF supersaturation with respect to hydroxyapatite (HA), octacalcium phosphate (OCP) and dicalcium phosphate (DCPD) was carefully calculated, considering all the association/dissociation reactions of related ion groups in SBF. The nucleation rates of Ca-P were calculated based on a kinetics model of heterogeneous nucleation. The analysis indicates that the nucleation rate of OCP is substantially higher than that of HA, while HA is most thermodynamically stable in SBF. The difference in nucleation rates between HA and OCP reduces with increasing pH in SBF. The HA nucleation rate is comparable with that of OCP when the pH value approaches 10. DCPD precipitation is thermodynamically impossible in normal SBF, unless calcium and phosphate ion concentrations of SBF increase. In such case, DCPD precipitation is the most likely because of its highest nucleation rates among Ca-P phases. We examined the influences of different SBF recipes, interfacial energies, contact angle and molecular volumes, and found that the parameter variations do not have significant impacts on analysis results. The effects of carbonate incorporation and calcium deficiency in HA were also estimated with available data. Generally, such apatite precipitations are more kinetically favorable than HA.
Collapse
Affiliation(s)
- Xiong Lu
- Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | |
Collapse
|
44
|
Rohanizadeh R, LeGeros RZ, Harsono M, Bendavid A. Adherent apatite coating on titanium substrate using chemical deposition. J Biomed Mater Res A 2005; 72:428-38. [PMID: 15666365 DOI: 10.1002/jbm.a.30258] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Plasma-sprayed "HA" coatings on commercial orthopedic and dental implants consist of mixtures of calcium phosphate phases, predominantly a crystalline calcium phosphate phase, hydroxyapatite (HA) and an amorphous calcium phosphate (ACP) with varying HA/ACP ratios. Alternatives to the plasma-spray method are being explored because of some of its disadvantages. The purpose of this study was to deposit an adherent apatite coating on titanium substrate using a two-step method. First, titanium substrates were immersed in acidic solution of calcium phosphate resulting in the deposition of a monetite (CaHPO4) coating. Second, the monetite crystals were transformed to apatite by hydrolysis in NaOH solution. Composition and morphology of the initial and final coatings were identified using X-ray diffraction (XRD), Scanning Electron Microscopy, and Energy Dispersive Spectroscopy (EDS). The final coating was porous and the apatite crystals were agglomerated and followed the outline of the large monetite crystals. EDS revealed the presence of calcium and phosphorous elements on the titanium substrate after removing the coating using tensile or scratching tests. The average tensile bond of the coating was 5.2 MPa and cohesion failures were observed more frequently than adhesion failures. The coating adhesion measured using scratch test with a 200-microm-radius stylus was 13.1N. Images from the scratch tracks demonstrated that the coating materials were squashed without fracturing inside and/or at the border of the tracks until the failure point of the coating. In conclusion, this study showed the potential of a chemical deposition method for depositing a coating consisting of either monetite or apatite. This method has the advantage of producing a coating with homogenous composition on even implants of complex geometry or porosity. This method involves low temperatures and, therefore, can allow the incorporation of growth factors or biogenic molecules.
Collapse
Affiliation(s)
- R Rohanizadeh
- Bone and Skin Research Group, Department of Physiology, University of Sydney, Sydney NSW 2006, Australia.
| | | | | | | |
Collapse
|
45
|
Gómez Morales J, Rodríguez Clemente R, Armas B, Combescure C, Berjoan R, Cubo J, Martínez E, García Carmona J, Garelik S, Murtra J, Muraviev DN. Controlled nucleation and growth of thin hydroxyapatite layers on titanium implants by using induction heating technique. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:5174-8. [PMID: 15986646 DOI: 10.1021/la0363682] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This paper reports the results obtained by the development of a new wet method of hydroxyapatite (HA) thin layer deposition. The method is based on the localized precipitation of HA on metallic substrates activated by induction heating. The technique developed has been shown to allow for the complete coating of substrates with micrometric thin films of HA within a low processing time. The method has been successfully applied to coat Ti plaques and Ti-6A1-4V cylinders.
Collapse
|
46
|
Rohanizadeh R, Al-Sadeq M, Legeros RZ. Preparation of different forms of titanium oxide on titanium surface: Effects on apatite deposition. ACTA ACUST UNITED AC 2004; 71:343-52. [PMID: 15376266 DOI: 10.1002/jbm.a.30171] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Methods of preparing different types of titanium oxide (TiO(2)) and their effects on apatite deposition and adhesion on titanium surfaces were investigated. Forty-eight commercially pure titanium (Ti) discs were divided into four groups (12 per group) and each group was subjected to the following treatments: Group 1, heat treatment at 750 degrees C; Group 2, oxidation in H(2)O(2) solution followed by heat treatment; Group 3, dipping in rutile/gelatin slurry; and Group 4, dipping in anatase/gelatin slurry. Surface-treated Ti discs were immersed in a supersaturated calcium phosphate solution to allow apatite deposition. Results showed that the percentage of area covered by deposited apatite was highest in Group 4 compared to the other groups. Apatite deposited on Ti discs pretreated in H(2)O(2) solution (Group 2) demonstrated the highest adhesion to the titanium substrate. Results from this study indicated that surface treatment method affects the type of TiO(2) layer formed (anatase or rutile) and affects apatite deposition and adhesion on the Ti surface.
Collapse
Affiliation(s)
- R Rohanizadeh
- Calcium Phosphate Research Laboratory, Department of Biomaterials and Biomimetics, College of Dentistry, New York University, New York, NY 10010, USA.
| | | | | |
Collapse
|