1
|
Maduna T, Lelievre V. Neuropeptides shaping the central nervous system development: Spatiotemporal actions of VIP and PACAP through complementary signaling pathways. J Neurosci Res 2016; 94:1472-1487. [PMID: 27717098 DOI: 10.1002/jnr.23915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 01/18/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are neuropeptides with wide, complementary, and overlapping distributions in the central and peripheral nervous systems, where they exert important regulatory roles in many physiological processes. VIP and PACAP display a large range of biological cellular targets and functions in the adult nervous system including regulation of neurotransmission and neuroendocrine secretion and neuroprotective and neuroimmune responses. As the main focus of the present review, VIP and PACAP also have been long implicated in nervous system development and maturation through their interaction with the seven transmembrane domain G protein-coupled receptors, PAC1, VPAC1, and VPAC2, initiating multiple signaling pathways. Compared with PAC1, which solely binds PACAP with very high affinity, VPACs exhibit high affinities for both VIP and PACAP but differ from each other because of their pharmacological profile for both natural accessory peptides and synthetic or chimeric molecules, with agonistic and antagonistic properties. Complementary to initial pharmacological studies, transgenic animals lacking these neuropeptides or their receptors have been used to further characterize the neuroanatomical, electrophysiological, and behavioral roles of PACAP and VIP in the developing central nervous system. In this review, we recapitulate the critical steps and processes guiding/driving neurodevelopment in vertebrates and superimposing the potential contribution of PACAP and VIP receptors on the given timeline. We also describe how alterations in VIP/PACAP signaling may contribute to both (neuro)developmental and adult pathologies and suggest that tuning of VIP/PACAP signaling in a spatiotemporal manner may represent a novel avenue for preventive therapies of neurological and psychiatric disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tando Maduna
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Vincent Lelievre
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
2
|
Bouslama M, Chauvière L, Fontaine RH, Matrot B, Gressens P, Gallego J. Treatment-induced prevention of learning deficits in newborn mice with brain lesions. Neuroscience 2006; 141:795-801. [PMID: 16713117 DOI: 10.1016/j.neuroscience.2006.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 04/02/2006] [Accepted: 04/05/2006] [Indexed: 12/01/2022]
Abstract
Perinatal brain injuries often result in irreversible learning disabilities, which manifest in early childhood. The molecular and cellular mechanisms of these injuries and potential pharmacological treatments are emerging, chiefly from studies in newborn rodents. In newborn mice, experimentally induced lesions can be dramatically reduced by appropriate neuroprotective treatments. However, the early effectiveness of these treatments in preserving cognition remained unknown. Here, we addressed this issue by using intracerebral ibotenate to induce excitotoxic brain lesions in 5-day-old mice (postnatal day 5). On postnatal days 6-7, we tested spontaneous preference for maternal odors, as an index of odor memory, and conditioned preference for an artificial odor previously paired with stroking, as an index of associative learning. Brain-lesioned newborn mice showed normal general status and preference for maternal odors. In contrast, odor conditioning was severely impaired. A previous study showed that fructose 1,6-biphosphate acted as a neuroprotective agent which significantly reduced neocortical lesion size. In the present study, treating the newborn mice with fructose 1,6-biphosphate 15 min before the ibotenate injection reduced neocortical lesion size and restored conditioning. This demonstrates, for the first time, that neuroprotective treatment can protect some features of early cognition.
Collapse
Affiliation(s)
- M Bouslama
- INSERM U676, Robert Debré Hospital, 48 bvd Sérurier, 75019 Paris, France; University Paris 7, Denis Diderot Medical School, IFR02, 10 av de Verdun, 75010 Paris, France
| | - L Chauvière
- INSERM U676, Robert Debré Hospital, 48 bvd Sérurier, 75019 Paris, France; University Paris 7, Denis Diderot Medical School, IFR02, 10 av de Verdun, 75010 Paris, France
| | - R H Fontaine
- INSERM U676, Robert Debré Hospital, 48 bvd Sérurier, 75019 Paris, France; University Paris 7, Denis Diderot Medical School, IFR02, 10 av de Verdun, 75010 Paris, France
| | - B Matrot
- INSERM U676, Robert Debré Hospital, 48 bvd Sérurier, 75019 Paris, France; University Paris 7, Denis Diderot Medical School, IFR02, 10 av de Verdun, 75010 Paris, France
| | - P Gressens
- INSERM U676, Robert Debré Hospital, 48 bvd Sérurier, 75019 Paris, France; University Paris 7, Denis Diderot Medical School, IFR02, 10 av de Verdun, 75010 Paris, France
| | - J Gallego
- INSERM U676, Robert Debré Hospital, 48 bvd Sérurier, 75019 Paris, France; University Paris 7, Denis Diderot Medical School, IFR02, 10 av de Verdun, 75010 Paris, France.
| |
Collapse
|
3
|
Laudenbach V, Calo G, Guerrini R, Lamboley G, Benoist JF, Evrard P, Gressens P. Nociceptin/orphanin FQ exacerbates excitotoxic white-matter lesions in the murine neonatal brain. J Clin Invest 2001; 107:457-66. [PMID: 11181645 PMCID: PMC199242 DOI: 10.1172/jci9716] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2000] [Accepted: 01/15/2001] [Indexed: 11/17/2022] Open
Abstract
Intracerebral administration of the excitotoxin ibotenate to newborn mice induces white-matter lesions, mimicking brain lesions that occur in human preterm infants. Nociceptin (NC), also called orphanin FQ, is the endogenous ligand of the opioid receptor-like 1 (ORL1) receptor and does not bind classical high-affinity opioid receptors. In the present study, administration of NC exacerbated ibotenate-induced white-matter lesions while coadministration of ibotenate with either of two NC antagonists reduced excitotoxic white-matter lesions by up to 64%. Neither ibotenate plus endomorphin I (a selective mu receptor agonist), nor ibotenate plus naloxone (a classical opioid receptor antagonist) modulated the excitotoxic lesion. Pretreatment with antisense oligonucleotides targeting the NC precursor peptide mRNA significantly reduced ibotenate-induced white-matter damage. Finally, high doses of fentanyl, which stimulates both classical mu-opioid receptors and ORL1, exacerbated excitotoxic white-matter lesion. This toxic effect was blocked by inhibiting ORL1 but not classical opioid receptors. Together, these findings show that endogenous or exogenous stimulation of the ORL1 receptor can be neurotoxic and that blocking NC signaling protects the white matter against excitotoxic challenge. These data point to potential new avenues for neuroprotection in human preterm infants at high risk of brain lesions.
Collapse
Affiliation(s)
- V Laudenbach
- Institut National de la Santé et de la Recherche Médicale (INSERM) E9935, Hôpital Robert-Debré, Paris, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Gressens P, Arquié C, Hill JM, Marret S, Sahir N, Robberecht P, Evrard P. VIP and PACAP 38 modulate ibotenate-induced neuronal heterotopias in the newborn hamster neocortex. J Neuropathol Exp Neurol 2000; 59:1051-62. [PMID: 11138925 DOI: 10.1093/jnen/59.12.1051] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intracerebral administration of ibotenate produces, through activation of N-methyl-D-aspartate (NMDA) receptors, neuronal heterotopias in the newborn hamster neocortex: high doses of ibotenate induce periventricular and subcortical neuronal heterotopias, while low doses of ibotenate produce intracortical heterotopias and molecular layer ectopias. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are closely related peptides with neurotrophic properties. They share common VPAC1 and VPAC2 receptors, which use cAMP as a second messenger. Previous studies have shown that VIP prevents excitotoxic neuronal death and exacerbates glutamate-induced c-fos neuronal expression. In order to gain new insight into the molecular control of neuronal migration, the present study examined the effects of VIP and PACAP on ibotenate-induced heterotopias in the newborn hamster. Co-treatment with VIP and a high dose of ibotenate produced a pattern of neuronal heterotopias similar to the one observed in animals treated with low doses of ibotenate alone. Pups co-injected with a low dose of ibotenate and a VIP antagonist displayed cortical dysgeneses similar to those observed in animals treated with high doses of ibotenate alone. The modulating effects of VIP on excitotoxin-induced heterotopias were mimicked by forskolin, PACAP, and by a specific VPAC2 receptor agonist but not by a VPAC1 agonist, and were blocked by a protein kinase A (PKA) inhibitor. Taken together, these data suggest that VIP and PACAP can attenuate ibotenate-induced heterotopias in newborn hamster and that this effect is mediated by the VPAC2 receptor utilizing the cAMP-PKA pathway.
Collapse
Affiliation(s)
- P Gressens
- INSERM E 9935, H pital Robert-Debré, Paris, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Zupan V, Nehlig A, Evrard P, Gressens P. Prenatal blockade of vasoactive intestinal peptide alters cell death and synaptic equipment in the murine neocortex. Pediatr Res 2000; 47:53-63. [PMID: 10625083 DOI: 10.1203/00006450-200001000-00012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vasoactive intestinal peptide (VIP) is a potent growth factor that stimulates murine neocortical astrocyte genesis during the period of ontogenesis corresponding to premature delivery in humans. In rodents, part of the VIP supplied to the fetal brain is maternal VIP that crosses the placenta. If these data also apply to human brain development, premature newborns may be partly VIP-deficient because of loss of the maternal supply, and this may adversely affect their brain development. The goal of the present study was to determine the effects of VIP blockade during mouse neocortical astrocyte genesis on neuritic survival and maturation. VIP blockade by a specific VIP antagonist on embryonic d 17 and 18 induced transient, postnatal depletion of astrocytes in the upper neocortical layers. Combined use of in situ DNA fragmentation analysis (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling method, a marker of cell death); immunohistochemical detection of synaptophysin, microtubule-associated proteins, and neurofilaments; and quantification of mRNA for synaptophysin and N-methyl-D-aspartate R1 receptor subunit revealed that early VIP blockade significantly altered programmed neuritic death and impaired neuritic differentiation. VIP inhibition induced 1) exaggerated postnatal terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling of cortical neurons, 2) long-term overexpression of synaptophysin and N-methyl-D-aspartate R1 receptor subunit, and 3) long-term overexpression of microtubule-associated protein-5 and neurofilament 160 kD. Although the functional consequences of this deviant pattern of murine neocortical development remain to be determined, these data open up new avenues for investigating some of the cognitive deficits observed in human premature infants.
Collapse
Affiliation(s)
- V Zupan
- INSERM E 9935, Hôpital Robert-Debré, Paris, France
| | | | | | | |
Collapse
|