1
|
Story S, Arya DP. A Cell-Based Screening Assay for rRNA-Targeted Drug Discovery. ACS Infect Dis 2024; 10:4194-4207. [PMID: 39530678 DOI: 10.1021/acsinfecdis.4c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Worldwide, bacterial antibiotic resistance continues to outpace the level of drug development. One way to counteract this threat to society is to identify novel ways to rapidly screen and identify drug candidates in living cells. Developing fluorescent antibiotics that can enter microorganisms and be displaced by potential antimicrobial compounds is an important but challenging endeavor due to the difficulty in entering bacterial cells. We developed a cell-based assay using a fluorescent aminoglycoside molecule that allows for the rapid and direct characterization of aminoglycoside binding in a population of bacterial cells. The assay involves the accumulation and competitive displacement of a fluorescent aminoglycoside binding probe in Escherichia coli as a Gram-negative bacterial model. The assay was optimized for high signal-to-background ratios, ease of performance for reliable outcomes, and amenability to high-throughput screening. We demonstrate that the fluorescent binding probe shows a decrease in fluorescence with cellular uptake, consistent with RNA binding, and also shows a subsequent increase upon the addition of the positive control neomycin. Fluorescence intensity increase with aminoglycosides was indicative of their relative binding affinities for A-site rRNA, with neomycin having the highest affinity, followed by paromomycin, tobramycin, sisomicin, and netilmicin. Intermediate fluorescence was found with plazomicin, neamine, apramycin, ribostamicin, gentamicin, and amikacin. Weak fluorescence was observed with kanamycin, hygromycin, streptomycin, and spectinomycin. A high degree of sensitivity was observed with aminoglycosides known to be strong binders for the 16S rRNA A-site compared with antibiotics that target other biosynthetic pathways. The quality of the optimized assay was excellent for planktonic cells, with an average Z' factor value of 0.80. In contrast to planktonic cells, established biofilms yielded an average Z' factor of 0.61. The high sensitivity of this cell-based assay in a physiological context demonstrates significant potential for identifying potent new ribosomal binding antibiotics.
Collapse
Affiliation(s)
- Sandra Story
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | - Dev P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| |
Collapse
|
2
|
Guo Y, Zeng C, Ma C, Cai H, Jiang X, Zhai S, Xu X, Lin M. Comparative genomics analysis of the multidrug-resistant Aeromonas hydrophila MX16A providing insights into antibiotic resistance genes. Front Cell Infect Microbiol 2022; 12:1042350. [PMID: 36405966 PMCID: PMC9669441 DOI: 10.3389/fcimb.2022.1042350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2023] Open
Abstract
In this paper, the whole genome of the multidrug-resistant Aeromonas hydrophila MX16A was comprehensively analyzed and compared after sequencing by PacBio RS II. To shed light on the drug resistance mechanism of A. hydrophila MX16A, a Kirby-Bauer disk diffusion method was used to assess the phenotypic drug susceptibility. Importantly, resistance against β-lactam, sulfonamides, rifamycins, macrolides, tetracyclines and chloramphenicols was largely consistent with the prediction analysis results of drug resistance genes in the CARD database. The varied types of resistance genes identified from A. hydrophila MX16A revealed multiple resistance mechanisms, including enzyme inactivation, gene mutation and active effusion. The publicly available complete genomes of 35 Aeromonas hydrophila strains on NCBI, including MX16A, were downloaded for genomic comparison and analysis. The analysis of 33 genomes with ANI greater than 95% showed that the pan-genome consisted of 9556 genes, and the core genes converged to 3485 genes. In summary, the obtained results showed that A. hydrophila exhibited a great genomic diversity as well as diverse metabolic function and it is believed that frequent exchanges between strains lead to the horizontal transfer of drug resistance genes.
Collapse
Affiliation(s)
- Yuxin Guo
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Chenxi Zeng
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Chenjie Ma
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Hongjiao Cai
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Xinglong Jiang
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Shaowei Zhai
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Xiaojin Xu
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Mao Lin
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, Fujian, China
| |
Collapse
|
3
|
García-Descalzo L, García-López E, Cid C. Comparative Proteomic Analysis of Psychrophilic vs. Mesophilic Bacterial Species Reveals Different Strategies to Achieve Temperature Adaptation. Front Microbiol 2022; 13:841359. [PMID: 35591995 PMCID: PMC9111180 DOI: 10.3389/fmicb.2022.841359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
The old debate of nature (genes) vs. nurture (environmental variables) is once again topical concerning the effect of climate change on environmental microorganisms. Specifically, the Polar Regions are experiencing a drastic increase in temperature caused by the rise in greenhouse gas emissions. This study, in an attempt to mimic the molecular adaptation of polar microorganisms, combines proteomic approaches with a classical microbiological analysis in three bacterial species Shewanella oneidensis, Shewanella frigidimarina, and Psychrobacter frigidicola. Both shewanellas are members of the same genus but they live in different environments. On the other hand, Shewanella frigidimarina and Psychrobacter frigidicola share the same natural environment but belong to a different genus. The comparison of the strategies employed by each bacterial species estimates the contribution of genome vs. environmental variables in the adaptation to temperature. The results show a greater versatility of acclimatization for the genus Shewanella with respect to Psychrobacter. Besides, S. frigidimarina was the best-adapted species to thermal variations in the temperature range 4–30°C and displayed several adaptation mechanisms common with the other two species. Regarding the molecular machinery used by these bacteria to face the consequences of temperature changes, chaperones have a pivoting role. They form complexes with other proteins in the response to the environment, establishing cooperation with transmembrane proteins, elongation factors, and proteins for protection against oxidative damage.
Collapse
Affiliation(s)
- Laura García-Descalzo
- Centro de Astrobiología, Department of Planetology and Habitability, CSIC-INTA, Madrid, Spain
| | - Eva García-López
- Centro de Astrobiología, Department of Molecular Ecology, CSIC-INTA, Madrid, Spain
| | - Cristina Cid
- Centro de Astrobiología, Department of Molecular Ecology, CSIC-INTA, Madrid, Spain
| |
Collapse
|
4
|
Knapp O, Benz R. Membrane Activity and Channel Formation of the Adenylate Cyclase Toxin (CyaA) of Bordetella pertussis in Lipid Bilayer Membranes. Toxins (Basel) 2020; 12:toxins12030169. [PMID: 32164365 PMCID: PMC7150934 DOI: 10.3390/toxins12030169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/14/2022] Open
Abstract
The Gram-negative bacterium Bordetella pertussis is the cause of whooping cough. One of its pathogenicity factors is the adenylate cyclase toxin (CyaA) secreted by a Type I export system. The 1706 amino acid long CyaA (177 kDa) belongs to the continuously increasing family of repeat in toxin (RTX) toxins because it contains in its C-terminal half a high number of nine-residue tandem repeats. The protein exhibits cytotoxic and hemolytic activities that target primarily myeloid phagocytic cells expressing the αMβ2 integrin receptor (CD11b/CD18). CyaA represents an exception among RTX cytolysins because the first 400 amino acids from its N-terminal end possess a calmodulin-activated adenylate cyclase (AC) activity. The entry of the AC into target cells is not dependent on the receptor-mediated endocytosis pathway and penetrates directly across the cytoplasmic membrane of a variety of epithelial and immune effector cells. The hemolytic activity of CyaA is rather low, which may have to do with its rather low induced permeability change of target cells and its low conductance in lipid bilayer membranes. CyaA forms highly cation-selective channels in lipid bilayers that show a strong dependence on aqueous pH. The pore-forming activity of CyaA but not its single channel conductance is highly dependent on Ca2+ concentration with a half saturation constant of about 2 to 4 mM.
Collapse
Affiliation(s)
- Oliver Knapp
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
- Correspondence: (O.K.); (R.B.)
| | - Roland Benz
- Rudolf-Virchow-Center, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
- Correspondence: (O.K.); (R.B.)
| |
Collapse
|
5
|
Benz R, Piselli C, Potter AA. Channel Formation by LktA of Mannheimia (Pasteurella) haemolytica in Lipid Bilayer Membranes and Comparison of Channel Properties with Other RTX-Cytolysins. Toxins (Basel) 2019; 11:toxins11100604. [PMID: 31627319 PMCID: PMC6833087 DOI: 10.3390/toxins11100604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/22/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
Cytolysin LktA is one of the major pathogenicity factors of Mannheimia haemolytica (formerly Pasteurella haemolytica) that is the cause of pasteurellosis, also known as shipping fever pneumonia, causing substantial loss of sheep and cattle during transport. LktA belongs to the family of RTX-toxins (Repeats in ToXins) that are produced as pathogenicity factors by a variety of Gram-negative bacteria. Sublytic concentrations of LktA cause inflammatory responses of ovine leukocytes. Higher concentrations result in formation of transmembrane channels in target cells that may cause cell lysis and apoptosis. In this study we investigated channel formation by LktA in artificial lipid bilayer membranes made of different lipids. LktA purified from culture supernatants by polyethylene glycol 4000 precipitation and lyophilization had to be activated to frequently form channels by solution in 6 M urea. The LktA channels had a single-channel conductance of about 60 pS in 0.1 M KCl, which is about one tenth of the conductance of most RTX-toxins with the exception of adenylate cyclase toxin of Bordetella pertussis. The LktA channels are highly cation-selective caused by negative net charges. The theoretical treatment of the conductance of LktA as a function of the bulk aqueous concentration allowed a rough estimate of the channel diameter, which is around 1.5 nm. The size of the LktA channel is discussed with respect to channels formed by other RTX-toxins. We present here the first investigation of LktA in a reconstituted system.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs-University Bremen gGmbH Campusring, 1; 28759 Bremen, Germany.
| | - Claudio Piselli
- Department of Life Sciences and Chemistry, Jacobs-University Bremen gGmbH Campusring, 1; 28759 Bremen, Germany.
| | - Andrew A Potter
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N5E3, Canada.
| |
Collapse
|
6
|
Lee JJ, Wu YC, Kuo CJ, Hsuan SL, Chen TH. TolC is important for bacterial survival and oxidative stress response in Salmonella enterica serovar Choleraesuis in an acidic environment. Vet Microbiol 2016; 193:42-8. [PMID: 27599929 DOI: 10.1016/j.vetmic.2016.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 11/25/2022]
Abstract
The outer membrane protein TolC, which is one of the key components of several multidrug efflux pumps, is thought to be involved in various independent systems in Enterobacteriaceae. Since the acidic environment of the stomach is an important protection barrier against foodborne pathogen infections in hosts, we evaluated whether TolC played a role in the acid tolerance of Salmonella enterica serovar Choleraesuis. Comparison of the acid tolerance of the tolC mutant and the parental wild-type strain showed that the absence of TolC limits the ability of Salmonella to sustain life under extreme acidic conditions. Additionally, the mutant exhibited morphological changes during growth in an acidic medium, leading to the conflicting results of cell viability measured by spectrophotometry and colony-forming unit counting. Reverse-transcriptional-PCR analysis indicated that acid-related molecules, apparatus, or enzymes and oxidation-induced factors were significantly affected by the acidic environment in the null-tolC mutant. The elongated cellular morphology was restored by adding antioxidants to the culture medium. Furthermore, we found that increased cellular antioxidative activity provides an overlapping protection against acid killing, demonstrating the complexity of the bacterial acid stress response. Our findings reinforce the multifunctional characteristics of TolC in acid tolerance or oxidative stress resistance and support the correlative protection mechanism between oxygen- and acid-mediated stress responses in Salmonella enterica serovar Choleraesuis.
Collapse
Affiliation(s)
- Jen-Jie Lee
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan
| | - Ying-Chen Wu
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan
| | - Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taiwan
| | - Shih-Ling Hsuan
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan.
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan; Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taiwan.
| |
Collapse
|
7
|
Benz R, Maier E, Bauer S, Ludwig A. The deletion of several amino acid stretches of Escherichia coli alpha-hemolysin (HlyA) suggests that the channel-forming domain contains beta-strands. PLoS One 2014; 9:e112248. [PMID: 25463653 PMCID: PMC4251834 DOI: 10.1371/journal.pone.0112248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/08/2014] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71–110, 158–167, 180–203, and 264–286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71–110 and HlyAΔ264–286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158–167 and HlyAΔ180–203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71–110 and HlyAΔ264–286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71–110, and HlyAΔ264–286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures.
Collapse
Affiliation(s)
- Roland Benz
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- * E-mail:
| | - Elke Maier
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Universität Würzburg, Würzburg, Germany
| | - Susanne Bauer
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Universität Würzburg, Würzburg, Germany
| | - Albrecht Ludwig
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Universität Würzburg, Würzburg, Germany
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Agarwal R, Zakharov S, Hasan SS, Ryan CM, Whitelegge JP, Cramer WA. Structure-function of cyanobacterial outer-membrane protein, Slr1270: homolog of Escherichia coli drug export/colicin import protein, TolC. FEBS Lett 2014; 588:3793-801. [PMID: 25218435 PMCID: PMC4288923 DOI: 10.1016/j.febslet.2014.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 01/07/2023]
Abstract
Compared to thylakoid and inner membrane proteins in cyanobacteria, no structure-function information is available presently for integral outer-membrane proteins (OMPs). The Slr1270 protein from the cyanobacterium Synechocystis 6803, over-expressed in Escherichia coli, was refolded, and characterized for molecular size, secondary structure, and ion-channel function. Refolded Slr1270 displays a single band in native-electrophoresis, has an α-helical content of 50-60%, as in E. coli TolC with which it has significant secondary-structure similarity, and an ion-channel function with a single-channel conductance of 80-200pS, and a monovalent ion (K(+):Cl(-)) selectivity of 4.7:1. The pH-dependence of channel conductance implies a role for carboxylate residues in channel gating, analogous to that in TolC.
Collapse
Affiliation(s)
- Rachna Agarwal
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States; Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Stanislav Zakharov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States; Institute of Basic Problems of Biology, Russian Academy of Sciences, Puschino, Moscow Region, Russian Federation
| | - S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Christopher M Ryan
- Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, United States
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, United States
| | - William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
9
|
Dalla Vecchia E, Shao PP, Suvorova E, Chiappe D, Hamelin R, Bernier-Latmani R. Characterization of the surfaceome of the metal-reducing bacterium Desulfotomaculum reducens. Front Microbiol 2014; 5:432. [PMID: 25191310 PMCID: PMC4137172 DOI: 10.3389/fmicb.2014.00432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/31/2014] [Indexed: 11/13/2022] Open
Abstract
Desulfotomaculum reducens strain MI-1 is a Gram-positive, sulfate-reducing bacterium also capable of reducing Fe(III). Metal reduction in Gram-positive bacteria is poorly understood. Here, we investigated Fe(III) reduction with lactate, a non-fermentable substrate, as the electron donor. Lactate consumption is concomitant to Fe(III) reduction, but does not support significant growth, suggesting that little energy can be conserved from this process and that it may occur fortuitously. D. reducens can reduce both soluble [Fe(III)-citrate] and insoluble (hydrous ferric oxide, HFO) Fe(III). Because physically inaccessible HFO was not reduced, we concluded that reduction requires direct contact under these experimental conditions. This implies the presence of a surface exposed reductase capable of transferring electrons from the cell to the extracellular electron acceptor. With the goal of characterizing the role of surface proteins in D. reducens and of identifying candidate Fe(III) reductases, we carried out an investigation of the surface proteome (surfaceome) of D. reducens. Cell surface exposed proteins were extracted by trypsin cell shaving or by lysozyme treatment, and analyzed by liquid chromatography-tandem mass spectrometry. This investigation revealed that the surfaceome fulfills many functions, including solute transport, protein export, maturation and hydrolysis, peptidoglycan synthesis and modification, and chemotaxis. Furthermore, a few redox-active proteins were identified. Among these, three are putatively involved in Fe(III) reduction, i.e., a membrane-bound hydrogenase 4Fe-4S cluster subunit (Dred_0462), a heterodisulfide reductase subunit A (Dred_0143) and a protein annotated as alkyl hydroperoxide reductase but likely functioning as a thiol-disulfide oxidoreductase (Dred_1533).
Collapse
Affiliation(s)
- Elena Dalla Vecchia
- Environmental Microbiology Laboratory, Environmental Engineering Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Paul P Shao
- Environmental Microbiology Laboratory, Environmental Engineering Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Elena Suvorova
- Environmental Microbiology Laboratory, Environmental Engineering Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Diego Chiappe
- Proteomics Core Facility, Core Facility PTECH, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Romain Hamelin
- Proteomics Core Facility, Core Facility PTECH, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Environmental Engineering Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
10
|
Wang B, Weng J, Wang W. Free energy profiles of ion permeation and doxorubicin translocation in TolC. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2014. [DOI: 10.1142/s021963361450031x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The outer membrane protein TolC of Escherichia coli forms a channel-tunnel pore spanning the periplasmic space and outer membrane, serving as the main exit duct for bacteria multidrug resistance and protein export. Many aspects of the transport mechanism of TolC are still unclear. Here, we have investigated the substrate permeability and gating mechanism of TolC by calculating the potential of mean forces (PMFs) for transporting sodium ion and doxorubicin through TolC using the adaptive biasing force (ABF) method. The transport mechanism is turned out to be substrate dependent. It is found that the periplasmic gate is required to open for the passage of both Na + and doxorubicin, but the conformational gating does not lead to permeation barrier for Na + at this region. The extracellular loops and K283 residues cause permeation barriers for Na + at the extracellular entrance, but not for doxorubicin due to the extensive interactions between the drug molecule and the protein. TolC exhibits high conformational flexibility during the transport of Na +, while doxorubicin seems to be able to stabilize TolC in the resting state with the periplasmic gate closed. The association of the TolC docking domain of AcrB does not lower the permeation barrier for doxorubicin at the periplasmic gate, while the gate opening induces the dissociation of the TolC–AcrB complex.
Collapse
Affiliation(s)
- Beibei Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, P. R. China
| | - Jingwei Weng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, P. R. China
| | - Wenning Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| |
Collapse
|
11
|
Dimov S, Ivanova P, Harizanova N, Ivanova I. Bioactive Peptides used by Bacteria in the Concur-Rence for the Ecological Niche: General Classification and Mode of Action (Overview). BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2005.10817185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
12
|
Abstract
Bacteria secrete and harbor in their membranes a number of pore-forming proteins. Some of these are bona fide ion channels that may respond to changes in membrane tension, voltage, or pH. Others may be large translocons used for the secretion of folded or unfolded polypeptide substrates. Additionally, many secreted toxins insert into target cell membranes and form pores that either collapse membrane electrochemical gradients or provide conduits for the delivery of virulence factors. In all cases, electrophysiological approaches have yielded much progress in past decades in understanding the functional mechanisms of these pores. By monitoring the changes in current due to ion flow through the pores, these techniques are used as high-resolution tools to gather detailed information on the kinetic and permeation properties of these proteins, including those whose physiological role is not ion flux. This review highlights some of the electrophysiological studies that have advanced the field of transport by pore-forming proteins of bacterial origin.
Collapse
Affiliation(s)
- Anne H Delcour
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001;
| |
Collapse
|
13
|
Krishnamoorthy G, Tikhonova EB, Dhamdhere G, Zgurskaya HI. On the role of TolC in multidrug efflux: the function and assembly of AcrAB-TolC tolerate significant depletion of intracellular TolC protein. Mol Microbiol 2013; 87:982-97. [PMID: 23331412 DOI: 10.1111/mmi.12143] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2012] [Indexed: 12/11/2022]
Abstract
TolC channel provides a route for the expelled drugs and toxins to cross the outer membrane of Escherichia coli. The puzzling feature of TolC structure is that the periplasmic entrance of the channel is closed by dense packing of 12 α-helices. Efflux pumps exemplified by AcrAB are proposed to drive the opening of TolC channel. How interactions with AcrAB promote the close-to-open transition in TolC remains unclear. In this study, we investigated in vivo the functional and physical interactions of AcrAB with the closed TolC and its conformer opened by mutations in the periplasmic entrance. We found that the two conformers of TolC are readily distinguishable in vivo by characteristic drug susceptibility, thiol modification and proteolytic profiles. However, these profiles of TolC variants respond neither to the in vivo stoichiometry of AcrAB:TolC nor to the presence of vancomycin, which is used often to assess the permeability of TolC channel. We further found that the activity and assembly of AcrAB-TolC tolerates significant changes in amounts of TolC and that only a small fraction of intracellular TolC is likely used to support efflux needs of E. coli. Our findings explain why TolC is not a good target for inhibition of multidrug efflux.
Collapse
Affiliation(s)
- Ganesh Krishnamoorthy
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Science Research Center, Norman, OK 73019, UK
| | | | | | | |
Collapse
|
14
|
Pathways of colicin import: utilization of BtuB, OmpF porin and the TolC drug-export protein. Biochem Soc Trans 2012; 40:1463-8. [PMID: 23176499 DOI: 10.1042/bst20120211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pathway I. Group A nuclease colicins parasitize and bind tightly (Kd ≤ 10−9 M) to the vitamin B12 receptor on which they diffuse laterally in the OM (outer membrane) and use their long (≥100 Å; 1 Å=0.1 nm) receptor-binding domain as a ‘fishing pole’ to locate the OmpF porin channel for translocation. Crystal structures of OmpF imply that a disordered N-terminal segment of the colicin T-domain initiates insertion. Pathway II. Colicin N does not possess a ‘fishing pole’ receptor-binding domain. Instead, it uses OmpF as the Omp (outer membrane protein) for reception and translocation, processes in which LPS (lipopolysaccharide) may also serve. Keio collection experiments defined the LPS core that is used. Pathway III. Colicin E1 utilizes the drug-export protein TolC for import. CD spectra and thermal-melting analysis predict: (i) N-terminal translocation (T) and central receptor (BtuB) -binding (R) domains are predominantly α-helical; and (ii) helical coiled-coil conformation of the R-domain is similar to that of colicins E3 and Ia. Recombinant colicin peptides spanning the N-terminal translocation domain defined TolC-binding site(s). The N-terminal 40-residue segment lacks the ordered secondary structure. Peptide 41–190 is helical (78%), co-elutes with TolC and occluded TolC channels. Driven by a trans-negative potential, peptides 82–140 and 141–190 occluded TolC channels. The use of TolC for colicin E1 import implies that the interaction of this colicin with the other Tol proteins does not occur in the periplasmic space, but rather through Tol domains in the cytoplasmic membrane, thus explaining colicin E1 cytotoxicity towards a strain in which a 234 residue periplasmic TolA segment is deleted.
Collapse
|
15
|
Raunest M, Kandt C. Locked on one side only: ground state dynamics of the outer membrane efflux duct TolC. Biochemistry 2012; 51:1719-29. [PMID: 22313049 DOI: 10.1021/bi201814s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Playing a major role in the expulsion of antibiotics and the secretion of cell toxins in conjunction with inner membrane transporters of three protein superfamilies, the outer membrane channel TolC occurs in at least two states blocking or permitting the passage of substrates. The details of the underlying gating mechanism are not fully understood. Addressing the questions of extracellular access control and periplasmic gating mechanism, we conducted a series of independent, unbiased 150-300 ns molecular dynamics simulations of wild-type TolC in a phospholipid membrane/150 mM NaCl water environment. We find that TolC opens and closes freely on the extracellular side, suggesting the absence of a gating mechanism on this side in the isolated protein. On the periplasmic side, we observe the outer periplasmic bottleneck region adopting in all simulations a conformation more open than the TolC wild-type crystal structures until in one run the successive binding of two sodium ions induces the transition to a conformation more closed than any of the available TolC X-ray structures. Concurrent with a heightened sodium residence probability near Asp374, the inner periplasmic bottleneck region at Asp374 remains closed throughout the simulations unless all NaCl is removed from the system, inducing a reopening of the outer and inner bottleneck. Our findings suggest that TolC is locked only on the periplasmic side in a sodium-dependent manner.
Collapse
Affiliation(s)
- Martin Raunest
- Computational Structural Biology, Department of Life Science Informatics B-IT, Life and Medical Sciences Center, University of Bonn, Dahlmannstrasse 2, 53113 Bonn, Germany
| | | |
Collapse
|
16
|
Zgurskaya HI, Krishnamoorthy G, Ntreh A, Lu S. Mechanism and Function of the Outer Membrane Channel TolC in Multidrug Resistance and Physiology of Enterobacteria. Front Microbiol 2011; 2:189. [PMID: 21954395 PMCID: PMC3174397 DOI: 10.3389/fmicb.2011.00189] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/25/2011] [Indexed: 01/18/2023] Open
Abstract
TolC is an archetypal member of the outer membrane efflux protein (OEP) family. These proteins are involved in export of small molecules and toxins across the outer membrane of Gram-negative bacteria. Genomes of some bacteria such as Pseudomonas species contain multiple copies of OEPs. In contrast, enterobacteria contain a single tolC gene, the product of which functions with multiple transporters. Inactivation of tolC has a major impact on enterobacterial physiology and virulence. Recent studies suggest that the role of TolC in physiology of enterobacteria is very broad and affects almost all aspects of cell adaptation to adverse environments. We review the current state of understanding TolC structure and present an integrated view of TolC function in enterobacteria. We propose that seemingly unrelated phenotypes of tolC mutants are linked together by a single most common condition – an oxidative damage to membranes.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | | | | | | |
Collapse
|
17
|
Vinson HM, Gautam A, Olet S, Gibbs PS, Barigye R. Molecular analysis of porin gene transcription in heterogenotypic multidrug-resistant Escherichia coli isolates from scouring calves. J Antimicrob Chemother 2010; 65:1926-35. [PMID: 20639525 DOI: 10.1093/jac/dkq246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Despite evidence that altered membrane porins may impair microbial drug uptake thereby potentially compounding efflux pump-mediated multidrug resistance, few studies have evaluated gene transcription to identify multidrug-resistance-associated porins and other potential drug targets. METHODS Genes that encode six membrane porins (fadL, lamB, ompC, ompF, ompW and yiaT) and two membrane proteins (tolC and ompT) were assessed by PCR and by quantitative real-time PCR (qRT-PCR) analysis of 10 multidrug-resistant (MDR) and 10 antibiotic-susceptible (AS) Escherichia coli isolates. The mean DeltaDeltaCt values for the study E. coli genes were analysed by the Wilcoxon test (P = 0.05). RESULTS All 20 E. coli isolates tested positive for tolC, lamB, ompC, ompF genes, while 10 MDR and 9/10 (90%) AS isolates were positive for the fadL gene. Seven out of 10 (70%) MDR and 7/10 (70%) AS isolates were positive for the yiaT gene, while 7/10 (70%) MDR and only 4/10 (40%) AS isolates were positive for the ompT gene. The mean DeltaDeltaCt values for the tolC and yiaT genes were significantly higher in MDR than in AS isolates (Wilcoxon test; P < 0.05). No significant difference was seen with respect to fadL, lamB, ompC, ompF, ompT and ompW gene transcription (Wilcoxon test; P > 0.05). CONCLUSIONS Findings suggest up-regulated transcription of tolC and yiaT genes in the MDR E. coli isolates. These results indirectly suggest that TolC and YiaT proteins may play some role(s) in multidrug resistance, but proteomic studies are needed before the two proteins are considered potential drug targets.
Collapse
Affiliation(s)
- Heather M Vinson
- Department of Veterinary and Microbiological Sciences, North Dakota State University, 1523 Centennial Blvd, Fargo, ND 58108, USA
| | | | | | | | | |
Collapse
|
18
|
An RND-type efflux system in Borrelia burgdorferi is involved in virulence and resistance to antimicrobial compounds. PLoS Pathog 2008; 4:e1000009. [PMID: 18389081 PMCID: PMC2279261 DOI: 10.1371/journal.ppat.1000009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 01/16/2008] [Indexed: 01/03/2023] Open
Abstract
Borrelia burgdorferi is remarkable for its ability to thrive in widely different environments due to its ability to infect various organisms. In comparison to enteric Gram-negative bacteria, these spirochetes have only a few transmembrane proteins some of which are thought to play a role in solute and nutrient uptake and excretion of toxic substances. Here, we have identified an outer membrane protein, BesC, which is part of a putative export system comprising the components BesA, BesB and BesC. We show that BesC, a TolC homolog, forms channels in planar lipid bilayers and is involved in antibiotic resistance. A besC knockout was unable to establish infection in mice, signifying the importance of this outer membrane channel in the mammalian host. The biophysical properties of BesC could be explained by a model based on the channel-tunnel structure. We have also generated a structural model of the efflux apparatus showing the putative spatial orientation of BesC with respect to the AcrAB homologs BesAB. We believe that our findings will be helpful in unraveling the pathogenic mechanisms of borreliae as well as in developing novel therapeutic agents aiming to block the function of this secretion apparatus. Lyme disease is caused by infection with the spirochete Borrelia burgdorferi. These spirochetes cycle between Ixodes ticks and vertebrate reservoirs, mainly rodents, but also birds. Previous studies have revealed major differences in the B. burgdorferi cell envelope structure and membrane composition compared to those of other bacteria. Proteins embedded in the bacterial membranes fulfill a number of tasks that are crucial for bacterial cells, such as solute and protein transport, as well as signal transduction, and interaction with other cells. Microorganisms have evolved mechanisms to protect themselves against harmful substances and secrete these through efflux pumps. So far, little is known about mechanisms of drug efflux systems in borreliae. Herein we identified an outer membrane channel forming protein important for B. burgdorferi to cause infection in mice and that also is involved in antibiotic resistance. We believe that this work will be helpful to understand the mechanisms underlying borreliae infection biology as well as in developing new therapeutic agents aiming to block this multi drug efflux system.
Collapse
|
19
|
Sariaslani FS. Development of a Combined Biological and Chemical Process for Production of Industrial Aromatics from Renewable Resources. Annu Rev Microbiol 2007; 61:51-69. [PMID: 17456010 DOI: 10.1146/annurev.micro.61.080706.093248] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Production of industrial aromatic chemicals from renewable resources could provide a competitive alternative to traditional chemical synthesis routes. This review describes the engineering of microorganisms for the production of p-hydroxycinnamic acid (pHCA) and p-hydroxystyrene (pHS) from glucose. The initial process concept was demonstrated using a tyrosine-producing Escherichia coli strain that overexpressed both fungal phenylalanine/tyrosine ammonia lyase (PAL) and bacterial pHCA decarboxylase (pdc) genes. Further development of this bioprocess resulted in uncoupling the pHCA and pHS production steps to mitigate their toxicity to the production host. The final process consists of a fermentation step to convert glucose to tyrosine using a tyrosine-overproducing E. coli strain. This step is followed by a single biotransformation reaction to deaminate tyrosine to pHCA through immobilized E. coli cells that overexpress the Rhodotorula glutinis PAL gene. Finally, chemical decarboxylation of pHCA produces pHS. This multifaceted approach, which integrates biology, chemistry, and engineering, has allowed development of an economical process at scales suitable for industrial applications.
Collapse
Affiliation(s)
- F Sima Sariaslani
- DuPont Central Research and Development, Experimental Station, Wilmington, Delaware 19880-0301, USA.
| |
Collapse
|
20
|
Masi M, Saint N, Molle G, Pagès JM. The Enterobacter aerogenes outer membrane efflux proteins TolC and EefC have different channel properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2559-67. [PMID: 17658457 DOI: 10.1016/j.bbamem.2007.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 05/24/2007] [Accepted: 06/12/2007] [Indexed: 12/29/2022]
Abstract
The outer membrane proteins TolC and EefC from Enterobacter aerogenes are involved in multidrug resistance as part of two resistance-nodulation-division efflux systems. To gain more understanding in the molecular mechanism underlying drug efflux, we have undertaken an electrophysiological characterization of the channel properties of these two proteins. TolC and EefC were purified in their native trimeric form and then reconstituted in proteoliposomes for patch-clamp experiments and in planar lipid bilayers. Both proteins generated a small single channel conductance of about 80 pS in 0.5 M KCl, indicating a common gated structure. The resultant pores were stable, and no voltage-dependent openings or closures were observed. EefC has a low ionic selectivity (P(K)/P(Cl)= approximately 3), whereas TolC is more selective to cations (P(K)/P(Cl)= approximately 30). This may provide a possible explanation for the difference in drug selectivity between the AcrAB-TolC and EefABC efflux systems observed in vivo. The pore-forming activity of both TolC and EefC was severely inhibited by divalent cations entering from the extracellular side. Another characteristic of the TolC and EefC channels was the systematic closure induced by acidic pH. These results are discussed in respect to the physiological functions and structural models of TolC and EefC.
Collapse
Affiliation(s)
- Muriel Masi
- UMR-MD-1, IFR48, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | | | | | | |
Collapse
|
21
|
Pinne M, Denker K, Nilsson E, Benz R, Bergström S. The BBA01 protein, a member of paralog family 48 from Borrelia burgdorferi, is potentially interchangeable with the channel-forming protein P13. J Bacteriol 2006; 188:4207-17. [PMID: 16740927 PMCID: PMC1482972 DOI: 10.1128/jb.00302-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Borrelia burgdorferi genome exhibits redundancy, with many plasmid-carried genes belonging to paralogous gene families. It has been suggested that certain paralogs may be necessary in various environments and that they are differentially expressed in response to different conditions. The chromosomally located p13 gene which codes for a channel-forming protein belongs to paralog family 48, which consists of eight additional genes. Of the paralogous genes from family 48, the BBA01 gene has the highest homology to p13. Herein, we have inactivated the BBA01 gene in B. burgdorferi strain B31-A. This mutant shows no apparent phenotypic difference compared to the wild type. However, analysis of BBA01 in a C-terminal protease A (CtpA)-deficient background revealed that like P13, BBA01 is posttranslationally processed at its C terminus. Elevated BBA01 expression was obtained in strains with the BBA01 gene introduced on the shuttle vector compared to the wild-type strain. We could further demonstrate that BBA01 is a channel-forming protein with properties surprisingly similar to those of P13. The single-channel conductance, of about 3.5 nS, formed by BBA01 is comparable to that of P13, which together with the high degree of sequence similarity suggests that the two proteins may have similar and interchangeable functions. This is further strengthened by the up-regulation of the BBA01 protein and its possible localization in the outer membrane in a p13 knockout strain, thus suggesting that P13 can be replaced by BBA01.
Collapse
Affiliation(s)
- Marija Pinne
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
22
|
Koronakis V, Eswaran J, Hughes C. Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu Rev Biochem 2004; 73:467-89. [PMID: 15189150 DOI: 10.1146/annurev.biochem.73.011303.074104] [Citation(s) in RCA: 261] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The bacterial TolC protein plays a common role in the expulsion of diverse molecules, which include protein toxins and antibacterial drugs, from the cell. TolC is a trimeric 12-stranded alpha/beta barrel, comprising an alpha-helical trans-periplasmic tunnel embedded in the outer membrane by a contiguous beta-barrel channel. This structure establishes a 140 A long single pore fundamentally different to other membrane proteins and presents an exit duct to substrates, large and small, engaged at specific inner membrane translocases. TolC is open to the outside medium but is closed at its periplasmic entrance. When TolC is recruited by a substrate-laden translocase, the entrance is opened to allow substrate passage through a contiguous machinery spanning the entire cell envelope, from the cytosol to the external environment. Transition to the transient open state is achieved by an iris-like mechanism in which entrance alpha-helices undergo an untwisting realignment, thought to be stabilized by interaction with periplasmic helices of the translocase. TolC family proteins are ubiquitous among gram-negative bacteria, and the conserved entrance aperture presents a possible cheomotherapeutic target in multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Vassilis Koronakis
- Department of Pathology, Cambridge University, Cambridge CB2 1QP, United Kingdom.
| | | | | |
Collapse
|
23
|
Higgins MK, Eswaran J, Edwards P, Schertler GFX, Hughes C, Koronakis V. Structure of the Ligand-blocked Periplasmic Entrance of the Bacterial Multidrug Efflux Protein TolC. J Mol Biol 2004; 342:697-702. [PMID: 15342230 DOI: 10.1016/j.jmb.2004.07.088] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 07/13/2004] [Accepted: 07/26/2004] [Indexed: 11/21/2022]
Abstract
The trimeric TolC protein of Escherichia coli comprises an outer membrane beta-barrel and a contiguous alpha-helical barrel projecting across the periplasm. This provides a single 140 A long pore for multidrug efflux and protein export. We have previously reported that trivalent cations such as hexammine cobalt can severely inhibit the conductivity of the TolC pore reconstituted in planar lipid bilayers. Here, isothermal calorimetry shows that Co(NH(3))(6)(3+) binds to TolC with an affinity of 20 nM. The crystal structure of the TolC-Co(NH(3))(6)(3+) complex was determined to 2.75 A resolution, and showed no significant difference in the protein when compared with unliganded TolC. An electron density difference map revealed that a single ligand molecule binds at the centre of the periplasmic entrance, the sole constriction of TolC. The octahedral symmetry of the ligand and the three-fold rotational symmetry of the TolC entrance determine a binding site in which the ligand forms hydrogen bonds with the Asp(374) residue of each monomer. When Asp(374) was substituted by alanine, high affinity ligand binding was abolished and inhibition of TolC pore conductivity in lipid bilayers was alleviated. Comparable effects followed independent substitution of the neighbouring Asp(371), indicating that this aspartate ring also contributes to the high affinity ligand binding site. As the electronegative entrance is widely conserved in the TolC family, it may be a useful target for the development of inhibitors against multidrug resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Matthew K Higgins
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Drug resistance in bacteria, and especially resistance to multiple antibacterials, has attracted much attention in recent years. In addition to the well known mechanisms, such as inactivation of drugs and alteration of targets, active efflux is now known to play a major role in the resistance of many species to antibacterials. Drug-specific efflux (e.g. that of tetracycline) has been recognised as the major mechanism of resistance to this drug in Gram-negative bacteria. In addition, we now recognise that multidrug efflux pumps are becoming increasingly important. Such pumps play major roles in the antiseptic resistance of Staphylococcus aureus, and fluoroquinolone resistance of S. aureus and Streptococcus pneumoniae. Multidrug pumps, often with very wide substrate specificity, are not only essential for the intrinsic resistance of many Gram-negative bacteria but also produce elevated levels of resistance when overexpressed. Paradoxically, 'advanced' agents for which resistance is unlikely to be caused by traditional mechanisms, such as fluoroquinolones and beta-lactams of the latest generations, are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents. Such overproduction mutants are also selected for by the use of antiseptics and biocides, increasingly incorporated into consumer products, and this is also of major concern. We can consider efflux pumps as potentially effective antibacterial targets. Inhibition of efflux pumps by an efflux pump inhibitor would restore the activity of an agent subject to efflux. An alternative approach is to develop antibacterials that would bypass the action of efflux pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
25
|
Andersen C. Channel-tunnels: outer membrane components of type I secretion systems and multidrug efflux pumps of Gram-negative bacteria. Rev Physiol Biochem Pharmacol 2003; 147:122-65. [PMID: 12783268 DOI: 10.1007/s10254-003-0008-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For translocation across the cell envelope of Gram-negative bacteria, substances have to overcome two permeability barriers, the inner and outer membrane. Channel-tunnels are outer membrane proteins, which are central to two distinct export systems: the type I secretion system exporting proteins such as toxins or proteases, and efflux pumps discharging antibiotics, dyes, or heavy metals and thus mediating drug resistance. Protein secretion is driven by an inner membrane ATP-binding cassette (ABC) transporter while drug efflux occurs via an inner membrane proton antiporter. Both inner membrane transporters are associated with a periplasmic accessory protein that recruits an outer membrane channel-tunnel to form a functional export complex. Prototypes of these export systems are the hemolysin secretion system and the AcrAB/TolC drug efflux pump of Escherichia coli, which both employ TolC as an outer membrane component. Its remarkable conduit-like structure, protruding 100 A into the periplasmic space, reveals how both systems are capable of transporting substrates across both membranes directly from the cytosol into the external environment. Proteins of the channel-tunnel family are widespread within Gram-negative bacteria. Their involvement in drug resistance and in secretion of pathogenic factors makes them an interesting system for further studies. Understanding the mechanism of the different export apparatus could help to develop new drugs, which block the efflux pumps or the secretion system.
Collapse
Affiliation(s)
- C Andersen
- Department of Biotechnology, University of Würzburg, 97074 Würzburg, Germany.
| |
Collapse
|
26
|
Andersen C, Maier E, Kemmer G, Blass J, Hilpert AK, Benz R, Reidl J. Porin OmpP2 of Haemophilus influenzae shows specificity for nicotinamide-derived nucleotide substrates. J Biol Chem 2003; 278:24269-76. [PMID: 12695515 DOI: 10.1074/jbc.m213087200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Haemophilus influenzae has an absolute requirement for NAD (factor V) because it lacks all biosynthetic enzymes necessary for de novo synthesis of that cofactor. Therefore, growth in vitro requires the presence of NAD itself, NMN, or nicotinamide riboside (NR). To address uptake abilities of these compounds, we investigated outer membrane proteins. By analyzing ompP2 knockout mutants, we found that NAD and NMN uptake was prevented, whereas NR uptake was not. Through investigation of the properties of purified OmpP2 in artificial lipid membrane systems, the substrate specificity of OmpP2 for NAD and NMN was determined, with KS values of approximately 8 and 4mm, respectively, in 0.1 m KCl, whereas no interaction was detected for the nucleoside NR and other purine or pyrimidine nucleotide or nucleoside species. Based on our analysis, we assume that an intrinsic binding site within OmpP2 exists that facilitates diffusion of these compounds across the outer membrane, recognizing carbonyl and exposed phosphate groups. Because OmpP2 was formerly described as a general diffusion porin, an additional property of acting as a facilitator for nicotinamide-based nucleotide transport may have evolved to support and optimize utilization of the essential cofactor sources NAD and NMN in H. influenzae.
Collapse
Affiliation(s)
- Christian Andersen
- Lehrstuhl für Biotechnologie, Biozentrum der Universität Würzburg, Am Hubland, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Eswaran J, Hughes C, Koronakis V. Locking TolC entrance helices to prevent protein translocation by the bacterial type I export apparatus. J Mol Biol 2003; 327:309-15. [PMID: 12628238 DOI: 10.1016/s0022-2836(03)00116-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The periplasmic entrance of the TolC channel tunnel is sealed by close-packing of inner and outer coiled-coils, and it has been proposed that opening of the entrance is achieved by an iris-like realignment of the inner coiled-coils. This is supported by experimental disruption of the key links connecting them, which effects transition to the open state in TolC inserted into planar lipid bilayers. Here we provide in vivo evidence for this "twist to open" mechanism by constraining the coiled coils with disulphide bonds, either self-locking or bridged by a chemical cross-linker, and reconstituting the resulting TolC variants into the type I protein export system in Escherichia coli. Introducing an intermonomer disulphide bridge between Ala159 and Ser350 caused a fivefold reduction in export, and when the coiled coils were cross-linked at the entrance constriction, between Asp374 of adjacent monomers or between Asn156 and Ala375, TolC-dependent export was abolished. In vivo cross-linking showed that the locked non-exporting TolC variants were still recruited to assemble the type I export apparatus. The data show that untwisting the entrance helices is essential for the export function of TolC in E.coli, specifically to allow access and passage of substrates engaged at the inner membrane translocase.
Collapse
Affiliation(s)
- Jeyanthy Eswaran
- Department of Pathology, Cambridge University, Tennis Court Road, UK
| | | | | |
Collapse
|
28
|
Abstract
Porins are proteins that form water-filled channels across the outer membranes of Gram-negative bacteria and thus make this membrane semipermeable. There are four types of porins: general/nonspecific porins, substrate-specific porins, gated porins, and efflux porins (also called channel-tunnels). The recent publication of the genomic sequence of Pseudomonas aeruginosa PAO1 has dramatically increased our understanding of the porins of this organism. In particular this organism has 3 large families of porins: the OprD family of specific porins (19 members), the OprM family of efflux porins (18 members), and the TonB-interacting family of gated porins (35 members). These familial relationships underlie functional similarities such that well-studied members of these families become prototypes for other members. We summarize here the latest information on these porins.
Collapse
Affiliation(s)
- Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada V6T 1Z3.
| | | |
Collapse
|
29
|
Yoshihara E, Maseda H, Saito K. The outer membrane component of the multidrug efflux pump from Pseudomonas aeruginosa may be a gated channel. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4738-45. [PMID: 12354104 DOI: 10.1046/j.1432-1033.2002.03134.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OprM, the outer membrane component of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa, has been assumed to facilitate the export of antibiotics across the outer membrane of this organism. Here we purified to homogeneity the OprM protein, reconstituted it into liposome membranes, and tested its channel activity by using the liposome swelling assay. It was demonstrated that OprM is a channel-forming protein and exhibits the channel property that amino acids diffuse more efficiently than saccharides. However, antibiotics showed no significant diffusion through the OprM channel in the liposome membrane, suggesting that OprM functions as a gated channel. We reasoned that the protease treatment may cause the disturbance of the gate structure of OprM. Hence, we treated OprM reconstituted in the membranes with alpha-chymotrypsin and examined its solute permeability. The results demonstrated that the protease treatment caused the opening of an OprM channel through which antibiotics were able to diffuse. To elucidate which cleavage is intimately related to the opening, we constructed mutant OprM proteins where the amino acid at the cleavage site was replaced with another amino acid. By examining the channel activity of these mutant proteins, it was shown that the proteolysis at tyrosine 185 and tyrosine 196 of OprM caused the channel opening. Furthermore, these residues were shown to face into the periplasmic space and interact with other component(s). We considered the possible opening mechanism of the OprM channel based on the structure of TolC, a homologue of OprM.
Collapse
Affiliation(s)
- Eisaku Yoshihara
- Department of Molecular Life Science, School of Medicine Tokai University, Isehara, Japan.
| | | | | |
Collapse
|
30
|
Andersen C, Koronakis E, Bokma E, Eswaran J, Humphreys D, Hughes C, Koronakis V. Transition to the open state of the TolC periplasmic tunnel entrance. Proc Natl Acad Sci U S A 2002; 99:11103-8. [PMID: 12163644 PMCID: PMC123217 DOI: 10.1073/pnas.162039399] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TolC channel-tunnel spans the bacterial outer membrane and periplasm, providing a large exit duct for protein export and multidrug efflux when recruited by substrate-engaged inner membrane complexes. The sole constriction in the single pore of the homotrimeric TolC is the periplasmic tunnel entrance, which in its resting configuration is closed by dense packing of the 12 tunnel-forming alpha-helices. Recruitment of TolC must trigger opening for substrate transit to occur, but the mechanism underlying transition from the closed to the open state is not known. The high resolution structure of TolC indicates that the tunnel helices are constrained at the entrance by a circular network of intra- and intermonomer hydrogen bonds and salt bridges. To assess how opening is achieved, we disrupted these connections and monitored changes in the aperture size by measuring the single channel conductance of TolC derivatives in black lipid bilayers. Elimination of individual connections caused incremental weakening of the circular network, accompanied by gradual relaxation from the closed state and increased flexibility of the entrance. Simultaneous abolition of the key links caused a substantial increase in conductance, generating an aperture that corresponds to the modeled open state, with the capacity to allow access and passage of diverse substrates. The results support a model in which transition to the open state of TolC is achieved by an iris-like realignment of the tunnel entrance helices.
Collapse
Affiliation(s)
- Christian Andersen
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
Andersen C, Koronakis E, Hughes C, Koronakis V. An aspartate ring at the TolC tunnel entrance determines ion selectivity and presents a target for blocking by large cations. Mol Microbiol 2002; 44:1131-9. [PMID: 12068802 DOI: 10.1046/j.1365-2958.2002.02898.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The TolC protein of Escherichia coli comprises an outer membrane beta-barrel channel and a contiguous alpha-helical tunnel spanning the periplasm, providing an exit duct for protein export and multidrug efflux. It forms a single transmembrane pore that is open to the outside of the cell but constricted at the peri-plasmic tunnel entrance. This sole constriction is lined by a ring of six aspartate residues, two in each of the three identical monomers. When these were replaced by alanines, the resulting TolC(DADA) protein reconstituted normally in black lipid membranes but showed altered electrophysiological characteristics. In particular, it had lost the strong pH dependence of the wild type and had switched ion selectivity from cations to anions. The function of wild-type TolC as a membrane pore was severely inhibited by divalent and trivalent cations entering the channel tunnel from the channel ("extracurricular") side. Divalent cations bound reversibly to effect complete blocking of the transmembrane ion flux. Trivalent cations were more potent. Hexamminecobalt bound at nanomolar concentrations allowed visualization of single blocking events, whereas the smaller Cr(3+) cation bound irreversibly and could also access the cation binding site via the tunnel entrance. The inhibitory cations had no effect on the mutant TolC(DADA), supporting the view that the aspartate ring is the cation binding site. The electronegative entrance is widely conserved throughout the TolC family, which is essential for efflux and export my Gram-negative bacteria, suggesting that it could present a general target for drugs.
Collapse
Affiliation(s)
- Christian Andersen
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | |
Collapse
|
32
|
Yamanaka H, Izawa H, Okamoto K. Carboxy-terminal region involved in activity of Escherichia coli TolC. J Bacteriol 2001; 183:6961-4. [PMID: 11698388 PMCID: PMC95540 DOI: 10.1128/jb.183.23.6961-6964.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli TolC acts as a channel tunnel in the transport of various molecules across the outer membrane. Partial-deletion studies of tolC revealed that the region extending from the 50th to the 60th amino acid residue from the carboxy terminus plays an important role in this transport activity of TolC.
Collapse
Affiliation(s)
- H Yamanaka
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro, Tokushima 770-8514, Japan
| | | | | |
Collapse
|
33
|
Vakharia H, German GJ, Misra R. Isolation and characterization of Escherichia coli tolC mutants defective in secreting enzymatically active alpha-hemolysin. J Bacteriol 2001; 183:6908-16. [PMID: 11698380 PMCID: PMC95532 DOI: 10.1128/jb.183.23.6908-6916.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study describes the isolation and characterization of a unique class of TolC mutants that, under steady-state growth conditions, secreted normal levels of largely inactive alpha-hemolysin. Unlike the reduced activity in the culture supernatants, the cell-associated hemolytic activity in these mutants was identical to that in the parental strain, thus reflecting a normal intracellular toxin activation event. Treatment of the secreted toxin with guanidine hydrochloride significantly restored cytolytic activity, suggesting that the diminished activity may have been due to the aggregation or misfolding of the toxin molecules. Consistent with this notion, sedimentation and filtration analyses showed that alpha-hemolysin secreted from the mutant strain has a mass greater than that secreted from the parental strain. Experiments designed to monitor the time course of alpha-hemolysin release showed delayed appearance of toxin in the culture supernatant of the mutant strain, thus indicating a possible defect in alpha-hemolysin translocation or release. Eight different TolC substitutions displaying this toxin secretion defect were scattered throughout the protein, of which six localized in the periplasmically exposed alpha-helical domain, while the remaining two mapped within the outer membrane-embedded beta-barrel domain of TolC. A plausible model for the secretion of inactive alpha-hemolysin in these TolC mutants is discussed in the context of the recently determined three-dimensional structure of TolC.
Collapse
Affiliation(s)
- H Vakharia
- Department of Microbiology, Arizona State University, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
34
|
Sharff A, Fanutti C, Shi J, Calladine C, Luisi B. The role of the TolC family in protein transport and multidrug efflux. From stereochemical certainty to mechanistic hypothesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5011-26. [PMID: 11589692 DOI: 10.1046/j.0014-2956.2001.02442.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gram-negative bacteria are enveloped by a system of two membranes, and they use specialized multicomponent, energy-driven pumps to transport molecules directly across this double-layered partition from the cell interior to the extra-cellular environment. One component of these pumps is embedded in the outer-membrane, and the paradigm for its structure and function is the TolC protein from Escherichia coli. A common component of a wide variety of efflux pumps, TolC and its homologues are involved in the export of chemically diverse molecules ranging from large protein toxins, such as alpha-hemolysin, to small toxic compounds, such as antibiotics. TolC family members thus play important roles in conferring pathogenic bacteria with both virulence and multidrug resistance. These pumps assemble reversibly in a transient process that brings together TolC or its homologue, an inner-membrane-associated periplasmic component, an integral inner-membrane translocase and the substrate itself. TolC can associate in this fashion with a variety of different partners to participate in the transport of diverse substrates. We review here the structure and function of TolC and the other components of the efflux/transport pump.
Collapse
Affiliation(s)
- A Sharff
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|
35
|
Andersen C, Hughes C, Koronakis V. Protein export and drug efflux through bacterial channel-tunnels. Curr Opin Cell Biol 2001; 13:412-6. [PMID: 11454445 DOI: 10.1016/s0955-0674(00)00229-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The bacterial protein TolC assembles into an alpha-helical trans-periplasmic tunnel, which is embedded in the outer membrane by a contiguous beta-barrel channel. TolC and its homologues thus provide large exit ducts for a wide range of substrates, including protein toxins and antibacterial drugs, that are engaged by specific recognition proteins in the cytosolic membrane.
Collapse
Affiliation(s)
- C Andersen
- Cambridge University Department of Pathology, Tennis Court Road, CB2 1QP, Cambridge, UK
| | | | | |
Collapse
|
36
|
Wong KK, Brinkman FS, Benz RS, Hancock RE. Evaluation of a structural model of Pseudomonas aeruginosa outer membrane protein OprM, an efflux component involved in intrinsic antibiotic resistance. J Bacteriol 2001; 183:367-74. [PMID: 11114937 PMCID: PMC94886 DOI: 10.1128/jb.183.1.367-374.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer membrane protein OprM of Pseudomonas aeruginosa is involved in intrinsic and mutational multiple-antibiotic resistance as part of two resistance-nodulation-division efflux systems. The crystal structure of TolC, a homologous protein in Escherichia coli, was recently published (V. Koronakis, A. Sharff, E. Koronakis, B. Luisl, and C. Hughes, Nature 405:914-919, 2000), demonstrating a distinctive architecture comprising outer membrane beta-barrel and periplasmic helical-barrel structures, which assemble differently from the common beta-barrel-only conformation of porins. Based on their sequence similarity, a similar content of alpha-helical and beta-sheet structure determined by circular dichroism spectroscopy, and our observation that OprM, like TolC, reconstitutes channels in planar bilayer membranes, OprM and TolC were considered to be structurally homologous, and a model of OprM was constructed by threading its sequence to the TolC crystal structure. Residues thought to be important for the TolC structure were conserved in space in this OprM model. Analyses of deletion mutants and previously isolated insertion mutants of OprM in the context of this model allowed us to propose roles for different protein domains. Our data indicate that the helical barrel of the protein is critical for both the function and the integrity of the protein, while a C-terminal domain localized around the equatorial plane of this helical barrel is dispensable. Extracellular loops appear to play a lesser role in substrate specificity for this efflux protein compared to classical porins, and there appears to be a correlation between the change in antimicrobial activity for OprM mutants and the pore size. Our model and channel formation studies support the "iris" mechanism of action for TolC and permit us now to form more focused hypotheses about the functional domains of OprM and its related family of efflux proteins.
Collapse
Affiliation(s)
- K K Wong
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | |
Collapse
|
37
|
Andersen C, Hughes C, Koronakis V. Chunnel vision. Export and efflux through bacterial channel-tunnels. EMBO Rep 2000; 1:313-8. [PMID: 11269495 PMCID: PMC1083749 DOI: 10.1093/embo-reports/kvd075] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Escherichia coli TolC protein is central to toxin export and drug efflux across the inner and outer cell membranes and the intervening periplasmic space. The crystal structure has revealed that TolC assembles into a remarkable alpha-helical trans-periplasmic cylinder (tunnel) embedded in the outer membrane by a contiguous beta-barrel (channel), so providing a large duct open to the outside environment. The channel-tunnel structure is conserved in TolC homologues throughout Gram-negative bacteria, and it is envisaged that they are recruited and opened, through a common mechanism, by substrate-specific inner-membrane complexes.
Collapse
Affiliation(s)
- C Andersen
- University of Cambridge Department of Pathology, UK
| | | | | |
Collapse
|
38
|
Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 2000; 405:914-9. [PMID: 10879525 DOI: 10.1038/35016007] [Citation(s) in RCA: 792] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diverse molecules, from small antibacterial drugs to large protein toxins, are exported directly across both cell membranes of gram-negative bacteria. This export is brought about by the reversible interaction of substrate-specific inner-membrane proteins with an outer-membrane protein of the TolC family, thus bypassing the intervening periplasm. Here we report the 2.1-A crystal structure of TolC from Escherichia coli, revealing a distinctive and previously unknown fold. Three TolC protomers assemble to form a continuous, solvent-accessible conduit--a 'channel-tunnel' over 140 A long that spans both the outer membrane and periplasmic space. The periplasmic or proximal end of the tunnel is sealed by sets of coiled helices. We suggest these could be untwisted by an allosteric mechanism, mediated by protein-protein interactions, to open the tunnel. The structure provides an explanation of how the cell cytosol is connected to the external environment during export, and suggests a general mechanism for the action of bacterial efflux pumps.
Collapse
Affiliation(s)
- V Koronakis
- Department of Pathology, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
39
|
Wong KK, Hancock RE. Insertion mutagenesis and membrane topology model of the Pseudomonas aeruginosa outer membrane protein OprM. J Bacteriol 2000; 182:2402-10. [PMID: 10762238 PMCID: PMC111300 DOI: 10.1128/jb.182.9.2402-2410.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa OprM is a protein involved in multiple-antibiotic resistance as the outer membrane component for the MexA-MexB-OprM efflux system. Planar lipid bilayer experiments showed that OprM had channel-forming activity with an average single-channel conductance of only about 80 pS in 1 M KCl. The gene encoding OprM was subjected to insertion mutagenesis by cloning of a foreign epitope from the circumsporozoite form of the malarial parasite Plasmodium falciparum into 11 sites. In Escherichia coli, 8 of the 11 insertion mutant genes expressed proteins at levels comparable to those obtained with the wild-type gene and the inserted malarial epitopes were surface accessible as assessed by indirect immunofluorescence. When moved to a P. aeruginosa OprM-deficient strain, seven of the insertion mutant genes expressed proteins at variable levels comparable to that of wild-type OprM and three of these reconstituted MIC profiles resembling those of the wild-type protein, while the other mutant forms showed variable MIC results. Utilizing the data from these experiments, in conjunction with multiple sequence alignments and structure predictions, an OprM topology model with 16 beta strands was proposed.
Collapse
Affiliation(s)
- K K Wong
- Department of Microbiology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | |
Collapse
|
40
|
Jacob-Dubuisson F, El-Hamel C, Saint N, Guédin S, Willery E, Molle G, Locht C. Channel formation by FhaC, the outer membrane protein involved in the secretion of the Bordetella pertussis filamentous hemagglutinin. J Biol Chem 1999; 274:37731-5. [PMID: 10608832 DOI: 10.1074/jbc.274.53.37731] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many virulence factors of pathogenic microorganisms are presented at the cell surface. However, protein secretion across the outer membrane of Gram-negative bacteria remains poorly understood. Here we used the extremely efficient secretion of the Bordetella pertussis filamentous hemagglutinin (FHA) to decipher this process. FHA secretion requires a single specific accessory protein, FhaC, the prototype of a family of proteins necessary for the extracellular localization of various virulence proteins in Gram-negative bacteria. We show that FhaC is heat-modifiable and localized in the outer membrane. Circular dichroism spectra indicated that FhaC is rich in beta-strands, in agreement with structural predictions for this protein. We further demonstrated that FhaC forms pores in artificial membranes, as evidenced by single-channel conductance measurements through planar lipid bilayers, as well as by liposome swelling assays and patch-clamp experiments using proteoliposomes. Single-channel conductance appeared to fluctuate very fast, suggesting that the FhaC channels frequently assume a closed conformation. We thus propose that FhaC forms a specific beta-barrel channel in the outer membrane for the outward translocation of FHA.
Collapse
Affiliation(s)
- F Jacob-Dubuisson
- INSERM U447, Institut de Biologie de Lille, Institut Pasteur de Lille, 1 rue Calmette, 59019 Lille Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
41
|
Shannon JL, Fernandez RC. The C-terminal domain of the Bordetella pertussis autotransporter BrkA forms a pore in lipid bilayer membranes. J Bacteriol 1999; 181:5838-42. [PMID: 10482528 PMCID: PMC94107 DOI: 10.1128/jb.181.18.5838-5842.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BrkA is a 103-kDa outer membrane protein of Bordetella pertussis that mediates resistance to antibody-dependent killing by complement. It is proteolytically processed into a 73-kDa N-terminal domain and a 30-kDa C-terminal domain as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. BrkA is also a member of the autotransporter family of proteins. Translocation of the N-terminal domain of the protein across the outer membrane is hypothesized to occur through a pore formed by the C-terminal domain. To test this hypothesis, we performed black lipid bilayer experiments with purified recombinant protein. The BrkA C-terminal protein showed an average single-channel conductance of 3.0 nS in 1 M KCl. This result strongly suggests that the C-terminal autotransporter domain of BrkA is indeed capable of forming a pore.
Collapse
Affiliation(s)
- J L Shannon
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | |
Collapse
|
42
|
Andersen C, Bachmeyer C, Täuber H, Benz R, Wang J, Michel V, Newton SM, Hofnung M, Charbit A. In vivo and in vitro studies of major surface loop deletion mutants of the Escherichia coli K-12 maltoporin: contribution to maltose and maltooligosaccharide transport and binding. Mol Microbiol 1999; 32:851-67. [PMID: 10361287 DOI: 10.1046/j.1365-2958.1999.01406.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The trimeric protein LamB of Escherichia coli K-12 (maltoporin) specifically facilitates the diffusion of maltose and maltooligosaccharides through the outer membrane. Each monomer consists of an 18-stranded antiparallel beta-barrel with nine surface loops (L1 to L9). The effects on transport and binding of the deletion of some of the surface loops or of combinations of several of them were studied in vivo and in vitro. In vivo, single-, DeltaL4, DeltaL5, DeltaL6, and double-loop deletions, DeltaL4 + DeltaL5 and DeltaL5 + DeltaL6, abolished maltoporin functions, but not the double deletion DeltaL4 + DeltaL6 and the triple deletion DeltaL4 + DeltaL5 + DeltaL6. While deletion of the central variable portion of loop L9 (DeltaL9v) affected maltoporin function only moderately, the combination of DeltaL9v with the double deletion of loops L4 and L6 (triple deletion DeltaL4 + DeltaL6 + DeltaL9v) strongly impaired maltoporin function and resulted in sensitivity to large hydrophilic antibiotics without change in channel size as measured in vitro. In vitro, the carbohydrate-binding properties of the different loop mutants were studied in titration experiments using the asymmetric and symmetric addition of the mutant porins and of the carbohydrates to one or both sides of the lipid bilayer membranes. The deletion of loop L9v alone (LamBDeltaL9v), of two loops L4 and L6 (LamBDeltaL4 + DeltaL6), of three loops L4, L5 and L6 (LamBDeltaL4 + DeltaL5 + DeltaL6) or of L4, L6 and L9v (LamBDeltaL4 + DeltaL6 + DeltaL9v) had relatively little influence on the carbohydrate-binding properties of the mutant channels, and they had approximately similar binding properties for carbohydrate addition to both sides compared with only one side. The deletion of one of the loops L4 (LamBDeltaL4) or L6 (LamBDeltaL6) resulted in an asymmetric carbohydrate binding. The in vivo and in vitro results, together with those of the purification across the starch column, suggest that maltooligosaccharides enter the LamB channel from the cell surface side with the non-reducing end in advance. The absence of some of the loops leads to obstruction of the channel from the outside, which results in a considerable difference in the on-rate of carbohydrate binding from the extracellular side compared with that from the periplasmic side.
Collapse
Affiliation(s)
- C Andersen
- Lehrstuhl für Biotechnologie, Biozentrum der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ehrmann M, Bolek P, Mondigler M, Boyd D, Lange R. TnTIN and TnTAP: mini-transposons for site-specific proteolysis in vivo. Proc Natl Acad Sci U S A 1997; 94:13111-5. [PMID: 9371808 PMCID: PMC24271 DOI: 10.1073/pnas.94.24.13111] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tobacco etch virus (TEV) protease recognizes a 7-aa consensus sequence, Glu-Xaa-Xaa-Tyr-Xaa-Gln-Ser, where Xaa can be almost any amino acyl residue. Cleavage occurs between the conserved Gln and Ser residues. Because of its distinct specificity, TEV protease can be expressed in the cytoplasm without interfering with viability. Polypeptides that are not natural substrates of TEV protease are proteolyzed if they carry the appropriate cleavage site. Thus, this protease can be used to study target proteins in their natural environment in vivo, as well as in vitro. We describe two TnS-based mini-transposons that insert TEV protease cleavage sites at random into target proteins. TnTIN introduces TEV cleavage sites into cytoplasmic proteins. TnTAP facilitates the same operation for proteins localized to the bacterial cell envelope. By using two different target proteins, SecA and TolC, we show that such modified proteins can be cleaved in vivo and in vitro by TEV protease. Possible applications of the site-specific proteolysis approach are topological studies of soluble as well as of inner and outer membrane proteins, protein inactivation, insertion mutagenesis experiments, and protein tagging.
Collapse
Affiliation(s)
- M Ehrmann
- Fakultät für Biologie, Universität Konstanz, Germany.
| | | | | | | | | |
Collapse
|
44
|
Szabò I, Bàthori G, Tombola F, Brini M, Coppola A, Zoratti M. DNA translocation across planar bilayers containing Bacillus subtilis ion channels. J Biol Chem 1997; 272:25275-82. [PMID: 9312144 DOI: 10.1074/jbc.272.40.25275] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mechanisms by which genetic material crosses prokaryotic membranes are incompletely understood. We have developed a new methodology to study the translocation of genetic material via pores in a reconstituted system, using techniques from electrophysiology and molecular biology. We report here that planar bilayer membranes become permeable to double-stranded DNA (kilobase range) if Bacillus subtilis membrane vesicles containing high conductance channels have been fused into them. The translocation is an electrophoretic process, since it does not occur if a transmembrane electrical field opposing the movement of DNA, a polyanion, is applied. It is not an aspecific permeation through the phospholipid bilayer, since it does not take place if no proteins have been incorporated into the membrane. The transport is also not due simply to the presence of polypeptides in the membrane, since it does not occur if the latter contains gramicidin A or a eukaryotic, multi-protein vesicle fraction exhibiting 30-picosiemens anion-selective channel activity. The presence of DNA alters the behavior of the bacterial channels, indicating that it interacts with the pores and may travel through their lumen. These results support the idea that DNA translocation may take place through proteic pores and suggest that some of the high conductance bacterial channels observed in electrophysiological experiments may be constituents of the DNA translocating machinery in these organisms.
Collapse
Affiliation(s)
- I Szabò
- CNR Unit for the Study of Biomembranes, Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Infection of Escherichia coli by the filamentous phage f1 is initiated by binding of the phage to the tip of the F conjugative pilus via the gene III protein. Subsequent translocation of phage DNA requires the chromosomally encoded TolQ, TolR, and TolA proteins, after the pilus presumably has withdrawn, bringing the phage to the bacterial surface. Of these three proteins, TolA is proposed to span the periplasm, since it contains a long helical domain (domain II), which connects a cytoplasmic membrane anchor domain (domain I) to the carboxyl-terminal domain (domain III). By using a transducing phage, the requirement for TolA in an F+ strain was found to be absolute. The role of TolA domains II and III in the infective process was examined by analyzing the ability of various deletion mutants of tolA to facilitate infection. The C-terminal domain III was shown to be essential, whereas the polyglycine region separating domains I and II could be deleted with no effect. Deletion of helical domain II reduced the efficiency of infection, which could be restored to normal by retaining the C-terminal half of domain II. Soluble domain III, expressed in the periplasm but not in the cytoplasm or in the medium, interfered with infection of a tolA+ strain. The essential interaction of TolA domain III with phage via gene III protein appears to require interaction with a third component, either the pilus tip or a periplasmic entity.
Collapse
Affiliation(s)
- E M Click
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
46
|
-Schneider CG, Penfold CN, Moore GR, Kleanthous C, James R. Identification of residues in the putative TolA box which are essential for the toxicity of the endonuclease toxin colicin E9. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 9):2931-2938. [PMID: 9308177 DOI: 10.1099/00221287-143-9-2931] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
E colicins are plasmid-coded, protein antibiotics which bind to the BtuB outer membrane receptor of Escherichia coli cells and are then translocated either to the outer surface of the cytoplasmic membrane in the case of the pore-forming colicin E1, or to the cytoplasm in the case of the enzymic colicins E2-E9. Translocation has been proposed to be dependent on a putative TolA box; a pentapeptide (DGSGW) located in the N-terminal 39 residues of several Tol-dependent colicins. In this study, site-directed mutagenesis was used to change each of the residues of the putative TolA box of colicin E9 to alanines. In the case of the two glycine residues, the resulting mutant proteins were indistinguishable from the native colicin E9 protein in a biological assay; whereas the other three residues when mutated to alanines resulted in a complete loss of biological activity. Mutagenesis of two serine residues flanking the putative TolA box, Ser34 and Ser40, to alanines did not abolish the biological activity of the mutant colicin E9, although the zones of growth inhibition were hazy and slow to form. The size of the zone of inhibition was significantly smaller than the control in the case of the Ser40Ala mutant. The ColE9/Im9 complex was isolated from the three biologically inactive TolA box alanine mutants. In competition assays all three mutant protein complexes were capable of protecting sensitive E. coli cells against killing by the native ColE9/Im9 complex. On removal of the Im9 protein from the three mutant ColE9/Im9 complexes, all three mutant colicins exhibited DNase activity. These results confirm the importance of the putative TolA box in the biological activity of colicin E9, and suggest that the TolA box has a role in the translocation of colicin E9.
Collapse
Affiliation(s)
- Carole Garinot -Schneider
- School of Biological Sciences and School of Chemical Sciences2, University of East Anglia, Norwich NR4 7TJ, UK
| | - Christopher N Penfold
- School of Biological Sciences and School of Chemical Sciences2, University of East Anglia, Norwich NR4 7TJ, UK
| | - Geoffrey R Moore
- School of Biological Sciences and School of Chemical Sciences2, University of East Anglia, Norwich NR4 7TJ, UK
| | - Colin Kleanthous
- School of Biological Sciences and School of Chemical Sciences2, University of East Anglia, Norwich NR4 7TJ, UK
| | - Richard James
- School of Biological Sciences and School of Chemical Sciences2, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
47
|
Fralick JA. Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J Bacteriol 1996; 178:5803-5. [PMID: 8824631 PMCID: PMC178425 DOI: 10.1128/jb.178.19.5803-5805.1996] [Citation(s) in RCA: 322] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A study examining the influence of TolC on AcrA, AcrR, and MarR1 mutants indicates that functional TolC is required for the operation of the AcrAB efflux system and for the expression of the Mar phenotype. That the effect of TolC on the AcrAB pump is not regulatory in nature is shown by studies measuring the influence of a tolC::Tn10 insertion mutation on the expression of an acrA::lacZ reporter fusion. These results are compatible with the hypothesis that TolC is a component of the AcrAB efflux complex.
Collapse
Affiliation(s)
- J A Fralick
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock 79403, USA.
| |
Collapse
|
48
|
Gentschev I, Maier G, Kranig A, Goebel W. Mini-TnhlyAs: a new tool for the construction of secreted fusion proteins. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:266-74. [PMID: 8842146 DOI: 10.1007/bf02173772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A simple and efficient procedure for the construction of secreted fusion proteins in Escherichia coli is described that uses a new minitransposon, termed TnhlyAs, carrying the secretion signal (HlyAs) of E. coli hemolysin (HlyA). This transposon permits the generation of random gene fusions encoding proteins that carry the HlyAs at their C-termini. For the construction of model gene fusions we used lacZ, encoding the cytoplasmic beta-galactosidase (beta-Gal), and phoA, encoding the periplasmic alkaline phosphatase, as target genes. Our data suggest that all beta-Gal-HlyAs fusion proteins generated are secreted, albeit with varying efficiencies, by the HlyB/HlyD/TolC hemolysin secretion machinery under Sec-proficient conditions. In contrast, the PhoA-HlyAs fusion proteins are efficiently secreted in a secA mutant strain only under SecA-deficient conditions.
Collapse
Affiliation(s)
- I Gentschev
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften, Würzburg, Germany
| | | | | | | |
Collapse
|
49
|
Döbereiner A, Schmid A, Ludwig A, Goebel W, Benz R. The effects of calcium and other polyvalent cations on channel formation by Escherichia coli alpha-hemolysin in red blood cells and lipid bilayer membranes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:454-60. [PMID: 8841412 DOI: 10.1111/j.1432-1033.1996.0454h.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Channel formation by Escherichia coli alpha-hemolysin (HlyA) was studied in lipid bilayer membranes and in erythrocytes as a function of the concentration of divalent and trivalent cations. Hemolysin showed full channel-forming activity in artificial lipid bilayers, even in the presence of 5 mM EDTA and when the E. coli cells were grown in calcium-depleted media (< 1 microM Ca2+). The addition of divalent cations decreased the single-channel conductance by about 50% with half-saturation constants of 5 mM and less, while the mean lifetime of the HlyA channel was not affected. The addition of trivalent cations, such as Fe3+ or La3+, had a similar effect on the channel conductance, but the half-saturation constant was 1 microM or below. These effects may be caused by the binding of the cations to negatively charged groups at the channel mouth and have probably nothing to do with the possible binding of these cations to the repeat domain of the toxin, which is essential for target cell recognition. When cells were grown in calcium-depleted media, the supernatants showed absolutely no hemolytic activity. Addition of small amounts of Ca2+ to the supernatant led to toxin-mediated hemolysis. Its half-saturation constant was 120 microM. Of the other earth alkaline cations only strontium (Sr2+), which has an ion radius similar to Ca2+, led to full activation of HlyA with a K(m) of 1.5 mM. Ba2+ induced only weak hemolytic activity, while Mg2+ and several heavy metal cations had no effect. These results led to the conclusion that the target cell recognition sites formed by the repeat region of HlyA have defined sizes and bind only ions with defined radii.
Collapse
Affiliation(s)
- A Döbereiner
- Lehrstuhl für Biotechnologie Theodor-Boveri-Institut (Biozentrum), Universität Würzburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Chapter 29 colicin transport, channel formation and inhibition. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|