1
|
The Role Played by Ferroptosis in Osteoarthritis: Evidence Based on Iron Dyshomeostasis and Lipid Peroxidation. Antioxidants (Basel) 2022; 11:antiox11091668. [PMID: 36139742 PMCID: PMC9495695 DOI: 10.3390/antiox11091668] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis, a recently discovered regulated cell death modality, is characterised by iron-dependent accumulation of lipid hydroperoxides, which can reach lethal levels but can be specifically reversed by ferroptosis inhibitors. Osteoarthritis (OA), the most common degenerative joint disease, is characterised by a complex pathogenesis involving mechanical overload, increased inflammatory mediator levels, metabolic alterations, and cell senescence and death. Since iron accumulation and oxidative stress are the universal pathological features of OA, the role played by ferroptosis in OA has been extensively explored. Increasing evidence has shown that iron dyshomeostasis and lipid peroxidation are closely associated with OA pathogenesis. Therefore, in this review, we summarize recent evidence by focusing on ferroptotic mechanisms and the role played by ferroptosis in OA pathogenesis from the perspectives of clinical findings, animal models, and cell research. By summarizing recent research advances that characterize the relationship between ferroptosis and OA, we highlight avenues for further research and potential therapeutic targets.
Collapse
|
2
|
Huang TL, Yang CH, Yanai G, Liao JY, Sumi S, Yang KC. Synergistic effect of l
-ascorbic acid and hyaluronic acid on the expressions of matrix metalloproteinase-3 and −9 in human chondrocytes. J Biomed Mater Res B Appl Biomater 2017; 106:1809-1817. [DOI: 10.1002/jbm.b.33988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 07/07/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Teng-Le Huang
- Department of Orthopedics; Tai-An Hospital Shuang Shi Branch; Taichung 40455 Taiwan
- Department of Biomedical Imaging and Radiological Science, College of Medicine; China Medical University; Taichung 40402 Taiwan
| | - Che-Hua Yang
- Graduate Institute of Manufacturing Technology, National Taipei University of Technology; Taipei 10608 Taiwan
| | - Goichi Yanai
- Laboratory of Organ and Tissue Reconstruction; Institute for Frontier Life and Medical Sciences, Kyoto University; 606-8507 Japan
| | - Jo-Yu Liao
- Department of Orthopedics; Tai-An Hospital Shuang Shi Branch; Taichung 40455 Taiwan
- Department of Biomedical Imaging and Radiological Science, College of Medicine; China Medical University; Taichung 40402 Taiwan
| | - Shoichiro Sumi
- Laboratory of Organ and Tissue Reconstruction; Institute for Frontier Life and Medical Sciences, Kyoto University; 606-8507 Japan
| | - Kai-Chiang Yang
- Laboratory of Organ and Tissue Reconstruction; Institute for Frontier Life and Medical Sciences, Kyoto University; 606-8507 Japan
- School of Dental Technology, College of Oral Medicine; Taipei Medical University; Taipei 11031 Taiwan
| |
Collapse
|
3
|
Bhatti FU, Mehmood A, Latief N, Zahra S, Cho H, Khan SN, Riazuddin S. Vitamin E protects rat mesenchymal stem cells against hydrogen peroxide-induced oxidative stress in vitro and improves their therapeutic potential in surgically-induced rat model of osteoarthritis. Osteoarthritis Cartilage 2017; 25:321-331. [PMID: 27693502 DOI: 10.1016/j.joca.2016.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/04/2016] [Accepted: 09/23/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Oxidative stress is a major obstacle against cartilage repair in osteoarthritis (OA). Anti-oxidant agents can play a vital role in addressing this issue. We evaluated the effect of Vitamin E preconditioning in improving the potential of mesenchymal stem cells (MSCs) to confer resistance against oxidative stress prevailing during OA. METHODS Vitamin E pretreated MSCs were exposed to oxidative stress in vitro by hydrogen peroxide (H2O2) and also implanted in surgically-induced rat model of OA. Analysis was done in terms of cell proliferation, apoptosis, cytotoxicity, chondrogenesis and repair of cartilage tissue. RESULTS Vitamin E pretreatment enabled MSCs to counteract H2O2-induced oxidative stress in vitro. Proliferative markers, proliferating cell nuclear antigen (PCNA) and Ki67 were up-regulated, along with the increase in the viability of MSCs. Expression of transforming growth factor-beta (TGFβ) was also increased. Reduction of apoptosis, expression of vascular endothelial growth factor (VEGF) and caspase 3 (Casp3) genes, and lactate dehydrogenase (LDH) release were also observed. Transplantation of Vitamin E pretreated MSCs resulted in increased proteoglycan contents of cartilage matrix. Increased expression of chondrogenic markers, Aggrecan (Acan) and collagen type-II alpha (Col2a1) accompanied by decreased expression of collagen type-I alpha (Col1a1) resulted in increased differentiation index that signifies the formation of hyaline cartilage. Further, there was an increased expression of PCNA and TGFβ genes along with a decreased expression of Casp3 and VEGF genes with increased histological score. CONCLUSION Taken together results of this study demonstrated that Vitamin E pretreated MSCs have an improved ability to impede the progression of OA and thus increased potential to treat OA.
Collapse
Affiliation(s)
- F U Bhatti
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan; University of Tennessee Health Science Center-Campbell Clinic, Memphis, TN, USA.
| | - A Mehmood
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.
| | - N Latief
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.
| | - S Zahra
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.
| | - H Cho
- University of Tennessee Health Science Center-Campbell Clinic, Memphis, TN, USA; Veterans Affairs Medical Center, Memphis, TN, USA.
| | - S N Khan
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.
| | - S Riazuddin
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan; Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
4
|
Kokubo M, Sato M, Yamato M, Mitani G, Kutsuna T, Ebihara G, Okano T, Mochida J. Characterization of chondrocyte sheets prepared using a co-culture method with temperature-responsive culture inserts. J Tissue Eng Regen Med 2013; 10:486-95. [DOI: 10.1002/term.1764] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 02/02/2013] [Accepted: 04/13/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Mami Kokubo
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; Isehara Kanagawa Japan
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; Isehara Kanagawa Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science; Tokyo, Women's Medical University; Shinjuku-ku Tokyo Japan
| | - Genya Mitani
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; Isehara Kanagawa Japan
| | - Toshiharu Kutsuna
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; Isehara Kanagawa Japan
| | - Goro Ebihara
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; Isehara Kanagawa Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science; Tokyo, Women's Medical University; Shinjuku-ku Tokyo Japan
| | - Joji Mochida
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; Isehara Kanagawa Japan
| |
Collapse
|
5
|
Vitamin E protects chondrocytes against hydrogen peroxide-induced oxidative stress in vitro. Inflamm Res 2013; 62:781-9. [DOI: 10.1007/s00011-013-0635-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/08/2013] [Indexed: 02/05/2023] Open
|
6
|
Neither age nor osteoarthritis is associated with synovial fluid antioxidant disturbance or depletion in the horse. COMPARATIVE EXERCISE PHYSIOLOGY 2009. [DOI: 10.1017/s175525400999016x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Regan EA, Bowler RP, Crapo JD. Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury. Osteoarthritis Cartilage 2008; 16:515-21. [PMID: 18203633 DOI: 10.1016/j.joca.2007.09.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 09/01/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Excess reactive oxygen species and oxidative damage have been associated with the pathogenesis of osteoarthritis (OA). Extracellular superoxide dismutase (EC-SOD or SOD3) scavenges superoxide is the major catalytic antioxidant in joint fluid and is decreased in OA cartilage. We studied human joint fluid samples to test whether there is an association between OA and EC-SOD or other low molecular antioxidants in the joint fluid. METHODS Joint fluid samples were obtained from 28 subjects with severe OA undergoing arthrocentesis or knee joint replacement and compared to joint fluid from 12 subjects undergoing knee arthroscopy for chronic knee pain, meniscal tears or anterior cruciate ligament reconstruction. EC-SOD protein was assayed by enzyme-linked immunosorbent assay (ELISA). Ascorbate and urate were measured with high performance liquid chromatography (HPLC) and total nitrates by the Greiss reaction. Glutathione (GSH) and oxidized glutathione were measured using a colorimetric method. Interleukin-6 (IL-6) and transforming growth factor-beta (TGF-beta) were both measured with ELISA. RESULTS Human joint fluid contains significant amounts of the extracellular, catalytic antioxidant EC-SOD. Joint fluid from OA subjects is characterized by significantly decreased EC-SOD levels and significant decreases in GSH, and ascorbate compared to the reference group of knee joints with pain or subacute injury but macroscopically intact cartilage. GSH and ascorbate show only an age effect with no effect from disease state on regression modeling. Urate is present in joint fluid but does not show a significant difference between groups. IL-6 and TGF-beta both show non-significant trends to increases in the arthritic subjects. There was no correlation of EC-SOD levels with IL-6 as a marker of inflammation in either the comparison group or the OA group. CONCLUSIONS EC-SOD, the major scavenger of reactive oxygen species (ROS) in extracellular spaces and fluids, is decreased in late stage OA joint fluid compared to fluid from injured/painful joints with intact cartilage. Injured joints may be able to increase or maintain secretion of EC-SOD but it appears that late stage OA joints fail to do so in spite of increased oxidative stress seen in the disease. Associated age related declines in GSH and ascorbate might also contribute to the development of severe OA. The net effect of these changes in joint fluid antioxidants is likely to accelerate the damaging oxidant effects on extracellular matrix stability in cartilage tissue.
Collapse
Affiliation(s)
- E A Regan
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206, United States.
| | | | | |
Collapse
|
8
|
Claassen H, Schünke M, Kurz B. Estradiol protects cultured articular chondrocytes from oxygen-radical-induced damage. Cell Tissue Res 2005; 319:439-45. [PMID: 15668798 DOI: 10.1007/s00441-004-1029-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 10/20/2004] [Indexed: 10/25/2022]
Abstract
Osteoarthritis (OA) is aggravated in menopausal women possibly because of changed serum estrogen levels. Estradiol has been postulated to affect oxidative stress induced by reactive oxygen species (ROS) in articular chondrocytes. We generated ROS in cultured bovine articular chondrocytes by incubating them with combined Fe2SO4, vitamin C, and hydrogen peroxide. The release of thiobarbituric-acid-reactive substances (TBARS, lipid peroxidation) and lactate dehydrogenase (LDH, membrane damage) was measured photometrically. Various estradiol doses and vitamin E, serving as control with an established anti-oxidative capacity, were applied either upon each exchange of medium and during radical production (strategy 1) or only during radical production (strategy 2). In chondrocytes incubated according to strategy 1, the production of TBARS and LDH release were significantly suppressed by 10(-10)-10(-4) M estradiol or by vitamin E. Under strategy 2, the production of TBARS was significantly suppressed at estradiol concentrations higher than 10(-6) M, whereas LDH release was inhibited at concentrations of 10(-6)-10(-4) M. Vitamin E showed no significant effects. As repeated application of estradiol and vitamin E produced the best results, estradiol, like vitamin E, was speculated to accumulate in the plasma membrane and to decrease membrane fluidity resulting in protection against lipid peroxidation (non-genomic effect). Thus, in contrast to the neuroprotective effect of 17beta-estradiol in supraphysiological doses reported recently, the anti-oxidative potential of estradiol appears to protect articular chondrocytes from ROS-induced damage when the hormone is given repeatedly in a physiological range. Decreased estradiol levels may therefore contribute to menopausal OA in the long term.
Collapse
Affiliation(s)
- Horst Claassen
- Institut für Anatomie und Zellbiologie der Martin-Luther-Universität Halle-Wittenberg, Grosse Steinstrasse 52, 06097, Halle, Germany.
| | | | | |
Collapse
|
9
|
Kurz B, Lemke A, Kehn M, Domm C, Patwari P, Frank EH, Grodzinsky AJ, Schünke M. Influence of tissue maturation and antioxidants on the apoptotic response of articular cartilage after injurious compression. ACTA ACUST UNITED AC 2004; 50:123-30. [PMID: 14730608 DOI: 10.1002/art.11438] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To study the influence of tissue maturation and antioxidants on apoptosis in bovine articular cartilage induced by injurious compression. METHODS Bovine articular cartilage disks were obtained from the femoropatellar groove of animals ages 0.5-23 months and placed in culture. Cartilage disks were preincubated overnight with the cell-permeable superoxide dismutase (SOD) mimetic Mn(III) porphyrin (0-12.5 microM) or alpha-tocopherol (0-50 microM) and then injured by a single unconfined compression to a final strain of 50% at a velocity of 1 mm/second. After 4 days of additional incubation, the disks were fixed and embedded for light and electron microscopy. Apoptotic cells were quantified morphologically by the appearance of nuclear blebbing on light microscopy. Biosynthetic activity was demonstrated by incorporation of radiolabeled proline. The antioxidative action of the SOD mimetic was confirmed by histologic examination of cartilage after incubation with nitroblue tetrazolium. RESULTS Injurious compression induced significantly more apoptosis in cartilage disks from newborn calves (22% of cells) than in cartilage from more mature cows (2-6%). In cartilage from 22-month-old animals, the SOD mimetic reduced the percentage of apoptotic cells induced by injury in a dose-dependent manner (complete inhibition with 2.5 microM), while alpha-tocopherol had no effect. Neither antioxidant altered protein biosynthesis or cellular ultrastructure. CONCLUSION Our data suggest that the apoptotic response of articular cartilage to mechanical injury is affected by maturation and is mediated in part by reactive oxygen species. The antioxidative status of the tissue might be important for the prevention of mechanically induced cell death in articular cartilage.
Collapse
Affiliation(s)
- Bodo Kurz
- Anatomisches Institut der Christian-Albrechts-Universität, Kiel, Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Vandenabeele F, De Bari C, Moreels M, Lambrichts I, Dell'Accio F, Lippens PL, Luyten FP. Morphological and immunocytochemical characterization of cultured fibroblast-like cells derived from adult human synovial membrane. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2003; 66:145-53. [PMID: 12846554 DOI: 10.1679/aohc.66.145] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The synovial membrane (SM) is a source of multipotent mesenchymal stem cells (MSCs), which appeared microscopically to be a relatively homogeneous population of fibroblast-like cells (FCs) in culture (De Bari et al., 2001). The aim of this study was to investigate phenotypic characteristics of the SM-derived FCs (SD-FCs) that could elucidate their origin inside the synovial tissue. Morphological characterization of SD-FCs was assessed by electron microscopy and by expression of surfactant protein A (SPA). This study, yielded substantial evidence that SD-FCs show ultrastructural and immunocytochemical features of type B synoviocytes; they contained characteristic lamellar bodies (LBs) that are secreted by exocytosis. LB secretion ability was maintained upon passaging (P3-P10). Immunocytochemistry showed that SD-FCs express surfactant protein A (SP-A). Taken together, these results indicate that multipotent SD-MSCs may originate from the synovial lining, having a phenotype highly similar to that of type B synoviocytes. We believe our data highlight the potent ability of type B synoviocytes to have a multilineage differentiation potential.
Collapse
Affiliation(s)
- F Vandenabeele
- Laboratory of Histology, Biomedical Research Institute-DWI, Limburgs Universitaire Centrum, Diepenbeek, Belgium.
| | | | | | | | | | | | | |
Collapse
|