1
|
Wang DD, Hu XW, Jiang J, Sun LY, Qing Y, Yang XH, Gao Y, Cui GP, Li MH, Wang PK, Zhang J, Zhuang Y, Li ZZ, Li J, Guan LL, Zhang TH, Wang JJ, Ji F, Wan CL. Attenuated and delayed niacin skin flushing in schizophrenia and affective disorders: A potential clinical auxiliary diagnostic marker. Schizophr Res 2021; 230:53-60. [PMID: 33677199 DOI: 10.1016/j.schres.2021.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 11/27/2022]
Abstract
AIM Schizophrenia and affective disorders all show high heterogeneity in clinical manifestations. A lack of objective biomarkers has long been a challenge in the clinical diagnosis of these diseases. In this study, we aimed to investigate the performance of niacin skin flushing in schizophrenia and affective disorders and determine its clinical potential as an auxiliary diagnostic marker. METHODS In this case-control study, niacin skin-flushing tests were conducted in 613 patients (including 307 schizophrenia patients, 179 bipolar disorder patients, and 127 unipolar depression patients) and 148 healthy controls (HCs) with a modified method. Differences in niacin skin-flushing responses were compared with adjustment for gender, BMI, age, nicotine dependence, alcohol consumption and educational status. A diagnostic model was established based on a bivariate cut-off. RESULTS Schizophrenia and affective disorders showed similar performance of niacin bluntness, characterized by attenuated flushing extent and reduced flushing rate. An innovative bivariate cut-off was established according to these two features, by which we could identify -patients with either schizophrenia or affective disorders from HCs with a sensitivity of 55.28%, a specificity of 83.56% and a positive predictive value of 93.66%. CONCLUSIONS The niacin-induced skin flushing was prevalently blunted in patients with schizophrenia or affective disorders, indicating a promising potential as an auxiliary diagnostic marker in risk prediction and clinical management of these disorders. Additionally, the niacin-blunted subgroup implies a common biological basis in the investigated disorders, which provokes new thoughts in elucidating the pathological mechanisms.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Bio-X Institutes, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Wen Hu
- Bio-X Institutes, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Jiang
- Bio-X Institutes, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Ya Sun
- Bio-X Institutes, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Qing
- Bio-X Institutes, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Xu-Han Yang
- Bio-X Institutes, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Gao
- Bio-X Institutes, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Gao-Ping Cui
- Bio-X Institutes, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Hui Li
- Bio-X Institutes, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Peng-Kun Wang
- Bio-X Institutes, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhang
- Bio-X Institutes, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhuang
- Department of Obstetrics and Gyneocology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Zhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Li Guan
- Peking University Sixth Hospital and Institute of Mental Health, Beijing, China
| | - Tian-Hong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Jun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Ji
- Institute of Mental Health, Jining Medical University, Jining, Shandong, China.
| | - Chun-Ling Wan
- Bio-X Institutes, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Larson NB, McDonnell S, Cannon Albright L, Teerlink C, Stanford J, Ostrander EA, Isaacs WB, Xu J, Cooney KA, Lange E, Schleutker J, Carpten JD, Powell I, Bailey-Wilson JE, Cussenot O, Cancel-Tassin G, Giles GG, MacInnis RJ, Maier C, Whittemore AS, Hsieh CL, Wiklund F, Catalona WJ, Foulkes W, Mandal D, Eeles R, Kote-Jarai Z, Ackerman MJ, Olson TM, Klein CJ, Thibodeau SN, Schaid DJ. gsSKAT: Rapid gene set analysis and multiple testing correction for rare-variant association studies using weighted linear kernels. Genet Epidemiol 2017; 41:297-308. [PMID: 28211093 DOI: 10.1002/gepi.22036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/16/2016] [Accepted: 12/09/2016] [Indexed: 01/28/2023]
Abstract
Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly used to combine observed rare variation within a single gene. Causal variation may also aggregate across multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches for pathway-level analysis, although these methods tend to be computationally intensive at high-variant dimensionality and require access to complete data. An additional analytical issue in scans of large pathway definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant analysis using component gene-level linear kernel score test summary statistics as well as derive simple estimators of the effective number of tests for family-wise error rate control. We then conduct extensive simulation studies to characterize the behavior of our approach relative to direct application of kernel and adaptive methods under a variety of conditions. We also apply our method to two case-control studies, respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide open-source R code for public use to facilitate easy application of our methods to existing rare-variant analysis results.
Collapse
Affiliation(s)
- Nicholas B Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Shannon McDonnell
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lisa Cannon Albright
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Craig Teerlink
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Janet Stanford
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Elaine A Ostrander
- National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - William B Isaacs
- Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jianfeng Xu
- NorthShore University HealthSystem Research Institute, Chicago, Illinois, United States of America
| | - Kathleen A Cooney
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.,Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ethan Lange
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Johanna Schleutker
- Department of Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - John D Carpten
- Department of Translational Genomics, University of Southern California, Los Angeles, California, United States of America
| | - Isaac Powell
- Department of Urology, Wayne State University, Detroit, Michigan, United States of America
| | - Joan E Bailey-Wilson
- Statistical Genetics Section, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | | | | | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Robert J MacInnis
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | | | - Alice S Whittemore
- Department of Health Research and Policy, Stanford University, Stanford, California, United States of America
| | - Chih-Lin Hsieh
- Department of Urology, University of Southern California, Los Angeles, California, United States of America
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - William J Catalona
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - William Foulkes
- Department of Oncology, Montreal General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, Montreal General Hospital, Montreal, Quebec, Canada
| | - Diptasri Mandal
- Department of Genetics, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | | | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London, UK.,The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London
| | - Michael J Ackerman
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Timothy M Olson
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Christopher J Klein
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen N Thibodeau
- Department of Laboratory Medicine/Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Daniel J Schaid
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
4
|
Mahadik SP, Evans D, Lal H. Oxidative stress and role of antioxidant and omega-3 essential fatty acid supplementation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:463-93. [PMID: 11370992 DOI: 10.1016/s0278-5846(00)00181-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
1. Schizophrenia is a major mental disorder that has a lifetime risk of 1% and affects at young age (average age at the onset 24 +/- 4.6 years) in many cultures around the world. The etiology is unknown, the pathophysiology is complex, and most of the patients need treatment and care for the rest of their lives. 2. Cellular oxidative stress is inferred from higher tissue levels of reactive oxygen species (ROS, e.g., O2*-, OH*, OH-, NO* and ONOO--) than its antioxidant defense that cause peroxidative cell injury, i.e., peroxidation of membrane phospholipids, particularly esterified essential polyunsaturated fatty acids (EPUFAS), proteins and DNA. 3. Oxidative stress can lead to global cellular with predominantly neuronal peroxidation, since neurons are enriched in highly susceptible EPUFAs and proteins, and damages DNA is not repaired effectively. 4. Such neuronal peroxidation may affect its function (i.e., membrane transport, loss of mitochondrial energy production, gene expression and therefore receptor-mediated phospholipid-dependent signal transduction) that may explain the altered information processing in schizophrenia. 5. It is possible that the oxidative neuronal injury can be prevented by dietary supplementation of antioxidants (e.g., vitamins E, C and A; beta-carotene, Q-enzyme, flavons, etc.) and that membrane phospholipids can be corrected by dietary supplementation of EPUFAs. 6. It may be that the oxidative stress is lower in populations consuming a low caloric diet rich in antioxidants and EPUFAs, and minimizing smoking and drinking. 7. Oxidative stress exists in schizophrenia based on altered antioxidant enzyme defense, increased lipid peroxidation and reduced levels of EPUFAs. The life style of schizophrenic patients is also prooxidative stress, i.e., heavy smoking, drinking, high caloric intake with no physical activity and treatment with pro-oxidant drugs. 8. The patients in developed countries show higher levels of lipid peroxidation and lower levels of membrane phospholipids as compared to patients in the developing countries. 9. Initial observations on the improved outcome of schizophrenia in patients supplemented with EPUFAs and antioxidants suggest the possible beneficial effects of dietary supplementation. 10. Since the oxidative stress exists at or before the onset of psychosis the use of antioxidants from the very onset of psychosis may reduce the oxidative injury and dramatically improve the outcome of illness.
Collapse
Affiliation(s)
- S P Mahadik
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta, USA.
| | | | | |
Collapse
|