1
|
Liu Z, Cheng S, Zhang X, Yang M, Wei J, Ye F, Ma Z, Kang H, Zhang Z, Li H, Xiang H. Characterization of the regulatory network and pathways in duodenum affecting chicken abdominal fat deposition. Poult Sci 2024; 103:104463. [PMID: 39504821 DOI: 10.1016/j.psj.2024.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The excessive accumulation of abdominal fat in chickens has resulted in a reduction in both the feed conversion efficiency and the slaughter yield. To elucidate the regulatory mechanisms and metabolic pathways affecting abdominal fat deposition in the context of broiler breeding, a cohort of 400 Qingyuan partridge chickens with varying abdominal fat deposition was established. Whole transcriptome sequencing analyses were conducted on the duodenum of 20 representative chickens to ascertain the regulatory networks at this vital digestive and absorptive organ. Consequently, 116 differentially expressed genes were identified, exhibiting a trend of increasing or decreasing expression in correlation with the accumulation of abdominal fat. A total of 36 DEmRNAs, 170 DElncRNAs, 92 DEcircRNAs and 88 DEmiRNAs were identified as differentially expressed between chickens with extremely high and low abdominal fat deposition. The functional enrichment analyses demonstrated that the differentially expressed RNA in the duodenum were involved in the regulation of chicken abdominal fat deposition by mediating a series of metabolic pathways, including the Wnt signaling pathway, the PPAR signaling pathway, the Hippo signaling pathway, the FoxO signaling pathway, the MAPK signaling pathway and other signaling pathways that are involved in fatty acid metabolism and degradation. The construction of putative interaction pairs led to the suggestion of two lncRNA-miRNA-mRNA ceRNA networks comprising two mRNAs, two miRNAs, and 29 lncRNAs, as well as two circRNA-lncRNA-miRNA-mRNA ceRNA networks comprising 26 mRNAs, 12 miRNAs, 17 lncRNAs, and nine circRNAs, as core regulatory networks in the duodenum affecting chicken abdominal fat deposition. The aforementioned genes including TMEM150C, REXO1, PIK3C2G, ppp1cb, PARP12, SERPINE2, LRAT, CYP1A1, INSR and APOA4, were proposed as candidate genes, while the miRNAs, including miR-107-y, miR-22-y, miR-25-y, miR-2404-x and miR-16-x, as well as lncRNAs such as ENSGALT00000100291, TCONS_00063508, TCONS_00061201 and TCONS_00079402 were the candidate regulators associated with chicken abdominal fat deposition. The findings of this study provide a theoretical foundation for the molecular mechanisms of mRNAs and non-coding RNAs in duodenal tissues on abdominal fat deposition in chickens.
Collapse
Affiliation(s)
- Zhijie Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Sibei Cheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Xing Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Miaomiao Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Jixiang Wei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China; Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, 511827, China
| | - Fei Ye
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Huimin Kang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Zhengfen Zhang
- Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, 511827, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China; Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, 511827, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Animal Science and Technology, Foshan University, Foshan, 528225, China.
| |
Collapse
|
2
|
Mak KM, Wu C, Cheng CP. Lipid droplets, the Holy Grail of hepatic stellate cells: In health and hepatic fibrosis. Anat Rec (Hoboken) 2022; 306:983-1010. [PMID: 36516055 DOI: 10.1002/ar.25138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Lipid droplets (LDs) are distinct morphological markers of hepatic stellate cells (HSCs). They are composed of a core of predominantly retinyl esters and triacylglycerols surrounded by a phospholipid layer; the latter harbors perilipins 2, 3, and 5, which help control LD lipolysis. Electron microscopy distinguishes between Types I and II LDs. Type I LDs are surrounded by acid phosphatase-positive lysosomes, which likely digest LDs. LD count and retinoid concentration are modulated by vitamin A intake. Alcohol consumption depletes hepatic retinoids and HSC LDs, with concomitant transformation of HSCs to fibrogenic myofibroblast-like cells. LD loss and accompanying HSC activation occur in HSC cell culture models. Loss of LDs is a consequence of and not a prerequisite for HSC activation. LDs are endowed with enzymes for synthesizing retinyl esters and triacylglycerols as well as neutral lipases and lysosomal acid lipase for breaking down LDs. HSCs have two distinct metabolic LD pools: an "original" pool in quiescent HSCs and a "new" pool emerging in HSC activation; this two-pool model provides a platform for analyzing LD dynamics in HSC activation. Besides lipolysis, LDs are degraded by lipophagy; however, the coordination between and relative contributions of these two pathways to LD removal are unclear. While induction of autophagy accelerates LD loss in quiescent HSCs and promotes HSC activation, blocking autophagy impairs LD degradation and inhibits HSC activation and fibrosis. This article is a critique of five decades of investigations into the morphology, molecular structure, synthesis, and degradation of LDs associated with HSC activation and fibrosis.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Catherine Wu
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christopher P Cheng
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Bobowski-Gerard M, Zummo FP, Staels B, Lefebvre P, Eeckhoute J. Retinoids Issued from Hepatic Stellate Cell Lipid Droplet Loss as Potential Signaling Molecules Orchestrating a Multicellular Liver Injury Response. Cells 2018; 7:cells7090137. [PMID: 30217095 PMCID: PMC6162435 DOI: 10.3390/cells7090137] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 02/08/2023] Open
Abstract
Hepatic stellate cells (HSCs) serve as the main body storage compartment for vitamin A through retinyl ester (RE)-filled lipid droplets (LDs). Upon liver injury, HSCs adopt a myofibroblastic phenotype characterized by an elevated expression of extracellular matrix proteins and a concomitant loss of LDs. On the one hand, LD breakdown has been suggested to provide the energy required for HSC activation into myofibroblast-like cells. On the other hand, this process could mitigate HSC activation following the transformation of released REs into retinoic acids (RAs), ligands for nuclear receptors exerting antifibrotic transcriptional regulatory activities in HSCs. Importantly, RAs may also constitute a means for HSCs to orchestrate the liver response to injury by triggering transcriptional effects in multiple additional surrounding liver cell populations. We envision that new approaches, such as single-cell technologies, will allow to better define how RAs are issued from LD loss in HSCs exert a multicellular control of the liver (patho)physiology.
Collapse
Affiliation(s)
- Marie Bobowski-Gerard
- Institut Pasteur de Lille, The University of Lille, Inserm, CHU Lille, U1011-EGID, F-59000 Lille, France.
| | - Francesco Paolo Zummo
- Institut Pasteur de Lille, The University of Lille, Inserm, CHU Lille, U1011-EGID, F-59000 Lille, France.
| | - Bart Staels
- Institut Pasteur de Lille, The University of Lille, Inserm, CHU Lille, U1011-EGID, F-59000 Lille, France.
| | - Philippe Lefebvre
- Institut Pasteur de Lille, The University of Lille, Inserm, CHU Lille, U1011-EGID, F-59000 Lille, France.
| | - Jérôme Eeckhoute
- Institut Pasteur de Lille, The University of Lille, Inserm, CHU Lille, U1011-EGID, F-59000 Lille, France.
| |
Collapse
|
4
|
The stellate cell system (vitamin A-storing cell system). Anat Sci Int 2017; 92:387-455. [PMID: 28299597 DOI: 10.1007/s12565-017-0395-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 01/18/2023]
Abstract
Past, present, and future research into hepatic stellate cells (HSCs, also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells) are summarized and discussed in this review. Kupffer discovered black-stained cells in the liver using the gold chloride method and named them stellate cells (Sternzellen in German) in 1876. Wake rediscovered the cells in 1971 using the same gold chloride method and various modern histological techniques including electron microscopy. Between their discovery and rediscovery, HSCs disappeared from the research history. Their identification, the establishment of cell isolation and culture methods, and the development of cellular and molecular biological techniques promoted HSC research after their rediscovery. In mammals, HSCs exist in the space between liver parenchymal cells (PCs) or hepatocytes and liver sinusoidal endothelial cells (LSECs) of the hepatic lobule, and store 50-80% of all vitamin A in the body as retinyl ester in lipid droplets in the cytoplasm. SCs also exist in extrahepatic organs such as pancreas, lung, and kidney. Hepatic (HSCs) and extrahepatic stellate cells (EHSCs) form the stellate cell (SC) system or SC family; the main storage site of vitamin A in the body is HSCs in the liver. In pathological conditions such as liver fibrosis, HSCs lose vitamin A, and synthesize a large amount of extracellular matrix (ECM) components including collagen, proteoglycan, glycosaminoglycan, and adhesive glycoproteins. The morphology of these cells also changes from the star-shaped HSCs to that of fibroblasts or myofibroblasts.
Collapse
|
5
|
Yanguas SC, Cogliati B, Willebrords J, Maes M, Colle I, van den Bossche B, de Oliveira CPMS, Andraus W, Alves VAF, Leclercq I, Vinken M. Experimental models of liver fibrosis. Arch Toxicol 2015; 90:1025-1048. [PMID: 26047667 DOI: 10.1007/s00204-015-1543-4] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/28/2015] [Indexed: 02/08/2023]
Abstract
Hepatic fibrosis is a wound healing response to insults and as such affects the entire world population. In industrialized countries, the main causes of liver fibrosis include alcohol abuse, chronic hepatitis virus infection and non-alcoholic steatohepatitis. A central event in liver fibrosis is the activation of hepatic stellate cells, which is triggered by a plethora of signaling pathways. Liver fibrosis can progress into more severe stages, known as cirrhosis, when liver acini are substituted by nodules, and further to hepatocellular carcinoma. Considerable efforts are currently devoted to liver fibrosis research, not only with the goal of further elucidating the molecular mechanisms that drive this disease, but equally in view of establishing effective diagnostic and therapeutic strategies. The present paper provides a state-of-the-art overview of in vivo and in vitro models used in the field of experimental liver fibrosis research.
Collapse
Affiliation(s)
- Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Colle
- Department of Hepato-Gastroenterology, Algemeen Stedelijk Ziekenhuis, Aalst, Belgium
| | - Bert van den Bossche
- Department of Abdominal Surgery and Hepato-Pancreatico-Biliary Surgery, Algemeen Stedelijk Ziekenhuis, Aalst, Belgium
| | | | - Wellington Andraus
- Laboratory of Medical Investigation, Department of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Isabelle Leclercq
- Laboratoire d'Hépato-Gastro-Entérologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
de Mesquita FC, Bitencourt S, Caberlon E, da Silva GV, Basso BS, Schmid J, Ferreira GA, de Oliveira FDS, de Oliveira JR. Fructose-1,6-bisphosphate induces phenotypic reversion of activated hepatic stellate cell. Eur J Pharmacol 2013; 720:320-5. [DOI: 10.1016/j.ejphar.2013.09.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/13/2013] [Accepted: 09/29/2013] [Indexed: 12/27/2022]
|
7
|
Dixon JL, Kim YK, Brinker A, Quadro L. Loss of β-carotene 15,15'-oxygenase in developing mouse tissues alters esterification of retinol, cholesterol and diacylglycerols. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:34-43. [PMID: 23988655 DOI: 10.1016/j.bbalip.2013.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 11/20/2022]
Abstract
We provide novel insights into the function(s) of β-carotene-15,15'-oxygenase (CMOI) during embryogenesis. By performing in vivo and in vitro experiments, we showed that CMOI influences not only lecithin:retinol acyltransferase but also acyl CoA:retinol acyltransferase reaction in the developing tissues at mid-gestation. In addition, LC/MS lipidomics analysis of the CMOI-/- embryos showed reduced levels of four phosphatidylcholine and three phosphatidylethanolamine acyl chain species, and of eight triacylglycerol species with four or more unsaturations and fifty-two or more carbons in the acyl chains. Cholesteryl esters of arachidonate, palmitate, linoleate, and DHA were also reduced to less than 30% of control. Analysis of the fatty acyl CoA species ruled out a loss in fatty acyl CoA synthetase capability. Comparison of acyl species suggested significantly decreased 18:2, 18:3, 20:1, 20:4, or 22:6 acyl chains within the above lipids in CMOI-null embryos. Furthermore, LCAT, ACAT1 and DGAT2 mRNA levels were also downregulated in CMOI-/- embryos. These data strongly support the notion that, in addition to cleaving β-carotene to generate retinoids, CMOI serves an additional function(s) in retinoid and lipid metabolism and point to its role in the formation of specific lipids, possibly for use in nervous system tissue.
Collapse
Affiliation(s)
- Joseph L Dixon
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
8
|
Hepatic stellate cell (vitamin A-storing cell) and its relative--past, present and future. Cell Biol Int 2011; 34:1247-72. [PMID: 21067523 DOI: 10.1042/cbi20100321] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
HSCs (hepatic stellate cells) (also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells or Ito cells) exist in the space between parenchymal cells and liver sinusoidal endothelial cells of the hepatic lobule and store 50-80% of vitamin A in the whole body as retinyl palmitate in lipid droplets in the cytoplasm. In physiological conditions, these cells play pivotal roles in the regulation of vitamin A homoeostasis. In pathological conditions, such as hepatic fibrosis or liver cirrhosis, HSCs lose vitamin A and synthesize a large amount of extracellular matrix components including collagen, proteoglycan, glycosaminoglycan and adhesive glycoproteins. Morphology of these cells also changes from the star-shaped SCs (stellate cells) to that of fibroblasts or myofibroblasts. The hepatic SCs are now considered to be targets of therapy of hepatic fibrosis or liver cirrhosis. HSCs are activated by adhering to the parenchymal cells and lose stored vitamin A during hepatic regeneration. Vitamin A-storing cells exist in extrahepatic organs such as the pancreas, lungs, kidneys and intestines. Vitamin A-storing cells in the liver and extrahepatic organs form a cellular system. The research of the vitamin A-storing cells has developed and expanded vigorously. The past, present and future of the research of the vitamin A-storing cells (SCs) will be summarized and discussed in this review.
Collapse
|
9
|
Kim YK, Wassef L, Chung S, Jiang H, Wyss A, Blaner WS, Quadro L. β-Carotene and its cleavage enzyme β-carotene-15,15'-oxygenase (CMOI) affect retinoid metabolism in developing tissues. FASEB J 2011; 25:1641-52. [PMID: 21285397 DOI: 10.1096/fj.10-175448] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mammalian embryo relies on maternal circulating retinoids (vitamin A derivatives) for development. β-Carotene is the major human dietary provitamin A. β-Carotene-15,15'-oxygenase (CMOI) has been proposed as the main enzyme generating retinoid from β-carotene in vivo. CMOI is expressed in embryonic tissues, suggesting that β-carotene provides retinoids locally during development. We performed loss of CMOI function studies in mice lacking retinol-binding protein (RBP), an established model of embryonic vitamin A deficiency (VAD). We show that, unexpectedly, lack of CMOI in the developing tissues further exacerbates the severity of VAD and thus the embryonic malformations of RBP(-/-) mice. Since β-carotene was not present in any of the mouse diets, we unveiled a novel action of CMOI independent from its β-carotene cleavage activity. We also show for the first time that CMOI exerts an additional function on retinoid metabolism by influencing retinyl ester formation via modulation of lecithin:retinol acyltransferase (LRAT) activity, at least in developing tissues. Finally, we demonstrate unequivocally that β-carotene can serve as an alternative vitamin A source for the in situ synthesis of retinoids in developing tissues by the action of CMOI.
Collapse
Affiliation(s)
- Youn-Kyung Kim
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Lee TF, Mak KM, Rackovsky O, Lin YL, Kwong AJ, Loke JC, Friedman SL. Downregulation of hepatic stellate cell activation by retinol and palmitate mediated by adipose differentiation-related protein (ADRP). J Cell Physiol 2010; 223:648-57. [PMID: 20143336 DOI: 10.1002/jcp.22063] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic stellate cells (HSCs) store retinoids and triacylglycerols in cytoplasmic lipid droplets. Two prominent features of HSC activation in liver fibrosis are loss of lipid droplets along with increase of alpha-smooth muscle actin (alpha-SMA), but the link between these responses and HSC activation remains elusive. In non-adipose cells, adipose differentiation-related protein (ADRP) coats lipid droplets and regulates their formation and lipolysis; however its function in HSCs is unknown. Here, we observed, in human liver sections or primary HSC culture, ADRP localization to lipid droplets of HSCs, and reduced staining coincident with loss of lipid droplets in liver fibrosis and in culture-activated HSCs, consistent with HSC activation. In the LX-2 human immortalized HSCs, with scant lipid droplets and features of activated HSCs, we found that the upregulation of ADRP mRNA by palmitate is potentiated by retinol, accompanied by increased ADRP protein, generation of retinyl palmitate, and lipid droplet formation. ADRP induction also led to decreased expression of alpha-SMA mRNA and its protein, while ADRP knockdown with small interfering RNA (siRNA) normalized alpha-SMA expression. Furthermore, ADRP induction by retinol and palmitate resulted in decreased expression of collagen I and matrix metalloproteinase-2 mRNA, fibrogenic genes associated with activated HSCs, while increasing matrix metalloproteinase-1 mRNA; ADRP knockdown with siRNA reversed these changes. Tissue inhibitor of metalloproteinase-1 was not affected. Thus, ADRP upregulation mediated by retinol and palmitate promotes downregulation of HSC activation and is functionally linked to the expression of fibrogenic genes.
Collapse
Affiliation(s)
- Ting Fang Lee
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Muniz A, Betts BS, Trevino AR, Buddavarapu K, Roman R, Ma JX, Tsin ATC. Evidence for two retinoid cycles in the cone-dominated chicken eye. Biochemistry 2009; 48:6854-63. [PMID: 19492794 DOI: 10.1021/bi9002937] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the classic retinoid cycle, 11-cis retinol is synthesized in the retinal pigment epithelium (RPE) by two enzymes: Isomerase I (RPE65) and lecithin:retinol acyltransferase (LRAT). The purpose of this study is to provide experimental evidence for two active isomerases in the cone-dominated chicken eye: an LRAT-dependent Isomerase I in the RPE and an ARAT (acyl CoA:retinol acyltransferase)-dependent isomerase (Isomerase II) in the retina. First, we show that whole chicken retina in vitro, removed from the RPE/choroid and sclera, produces 11-cis retinoids upon light exposure, indicating the existence of RPE-independent isomerase (Isomerase II) activity in the retina. Reverse transcriptase polymerase chain reaction studies show high levels of RPE65 expression in the RPE, low levels in the retina, and none in primary Muller cell cultures, indicating the presence of Isomerase I in the RPE and a minimal amount in the retina. Activities of the RPE and retina isomerases were then measured by enzyme assays with specific enzyme inhibitors. 2,2'-Bipyridine, a known Isomerase I inhibitor, and N-ethylmaleimide (NEM), a known LRAT inhibitor, significantly reduced Isomerase I activity but not Isomerase II activity. Progesterone, a known ARAT inhibitor, completely blocked Isomerase II activity but not Isomerase I activity. Thus, this study reports novel results for distinguishing the biochemical properties of Isomerase I from those of Isomerase II, as well a difference in their locations in the chicken eye. On the basis of these differences, the cone-dominated chicken eye must contain two retinoid cycles: a classic visual cycle for retinoid exchange between the RPE and the retina supported by Isomerase I in the RPE and an additional visual cycle for retinoid processing in the retina supported by Isomerase II.
Collapse
Affiliation(s)
- Alberto Muniz
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Teodoro AJ, Perrone D, Martucci RB, Borojevic R. Lycopene isomerisation and storage in an in vitro model of murine hepatic stellate cells. Eur J Nutr 2009; 48:261-8. [PMID: 19533199 DOI: 10.1007/s00394-009-0001-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 01/28/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Lycopene is a carotenoid whose biological activities and protective effect on prostate and breast cancer have been described, but little is known on its extra-intestinal metabolism and storage. While most alimentary lycopene is in all-trans configuration, in animal and human tissues approximately half of the lycopene is in cis isoforms. AIM OF STUDY Our object was to monitor the capacity of storage, isomerisation, and intracellular localization of all-trans and cis lycopene in hepatic stellate cells, which are the major sites of metabolism and storage of retinoids and carotenoids in the body. METHODS We used the GRX cell line representative of murine hepatic stellate cells, incubated with 1-30 muM lycopene in culture medium. Analysis was done by high-performance liquid chromatography. RESULTS Lycopene was able to induce expression of the lipocyte phenotype and it was internalized into GRX cells. Its cellular release only occurred in presence of albumin with a rapid initial decrease of intracellular lycopene. A corresponding increase in the culture medium was observed at 24 h. All-trans, 13-cis and 9-cis lycopene isoforms were identified in all the cell compartments. The membrane fraction contained the major part of lycopene, followed by the cytoplasmic fraction, lipid droplets and nuclei. The ratio between all-trans and cis isomers was approximately 2/1 in the majority parts of cell compartments. CONCLUSIONS This study identified a novel hepatic cell type able to store and isomerise lycopene. Liver can contribute to the serum and tissue equilibrium of cis/trans isomers of lycopene, and to participate in storage of lycopene under high extracellular concentration such as observed after the alimentary input.
Collapse
Affiliation(s)
- Anderson J Teodoro
- Laboratório de Bioquímica Nutricional e de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
13
|
Metabolism and Biological Activities of Topical 4-Oxoretinoids in Mouse Skin. J Invest Dermatol 2008; 128:999-1008. [DOI: 10.1038/sj.jid.5701106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK, Bhanot S, Monia BP, Li YX, Diehl AM. Diacylglycerol acyltranferase 1 anti-sense oligonucleotides reduce hepatic fibrosis in mice with nonalcoholic steatohepatitis. Hepatology 2008; 47:625-35. [PMID: 18000880 DOI: 10.1002/hep.21988] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
UNLABELLED Retinyl ester (RE) stores decrease during hepatic stellate cell (HSC) activation and liver fibrosis. Although retinol esterification is mostly catalyzed by lecithin:retinol acyltransferase (LRAT), diacylglycerol acyltransferase (DGAT)1 also does this. In previous reports, LRAT(-/-) mice had reduced hepatic RE but neither excessive HSC activation nor liver fibrosis, and DGAT1(-/-) mice had increased liver levels of RE and retinol. We sought to clarify the role of DGAT1 in liver fibrosis. Expression of DGAT1/2 was compared by real time PCR in freshly isolated, primary mouse HSCs and hepatocytes. To induce nonalcoholic steatohepatitis (NASH) and liver fibrosis, adult male db/db mice were fed methionine choline-deficient (MCD) diets. Half were treated with DGAT1 antisense oligonucleotide (ASO); the rest were injected with saline. Results were compared with chow-fed controls. Inhibition of DGAT1 in liver had no effect on hepatic triglyceride content or liver necroinflammation but reduced HSC activation and liver fibrosis in mice with NASH. To evaluate the role of DGAT1 in HSC activation, HSC were isolated from healthy rats treated with DGAT1 ASO or saline. DGAT1 was expressed at relatively high levels in HSCs. HSC isolated from DGAT1 ASO-treated rats had reduced DGAT1 expression and increased messenger RNA (mRNA) levels of LRAT and cellular retinol binding protein-1. During culture, they retained more vitamin A, had repressed collagen a2 (I) transcriptional activity, and expressed less collagen a1 (I) and a2 (I) mRNA. CONCLUSION DGAT1 may be a therapeutic target in NASH because inhibiting DGAT1 favorably altered. HSC retinoid homeostasis and inhibited hepatic fibrosis in mice with NASH.
Collapse
Affiliation(s)
- Kanji Yamaguchi
- Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mezaki Y, Yoshikawa K, Yamaguchi N, Miura M, Imai K, Kato S, Senoo H. Rat hepatic stellate cells acquire retinoid responsiveness after activation in vitro by post-transcriptional regulation of retinoic acid receptor alpha gene expression. Arch Biochem Biophys 2007; 465:370-9. [PMID: 17693386 DOI: 10.1016/j.abb.2007.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 06/13/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
Activation of hepatic stellate cells (HSCs) is a key process in liver fibrogenesis and retinoid loss is a remarkable feature of activated HSCs. However, roles of retinoids in liver fibrogenesis are obscure. We show that mRNA levels of RARalpha, beta and gamma were decreased during rat HSC activation in vitro. However, protein levels of RARalpha and beta were increased during HSC activation. A retinoic acid response element-containing luciferase assay indicated that HSCs became responsive to retinoids only after activation in vitro and that this response was mediated by, at least in part, RARalpha subtype. Immunocytochemical analysis showed that RARalpha proteins were mainly distributed in cytosol as many spots. All-trans retinoic acid treatment strongly lowered the cytosolic RARalpha protein levels. These results indicate that rat HSCs become retinoid responsive after activation in vitro, through post-transcriptional up-regulation of RARalpha gene expression.
Collapse
Affiliation(s)
- Yoshihiro Mezaki
- Department of Cell Biology and Histology, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
de Aguirres AB, Mello PA, Andrade CMB, Breier AC, Margis R, Guaragna RM, Borojevic R, Guma FCR, Trindade VMT. Variations of ganglioside biosynthetic pathways in the phenotype conversion from myofibroblasts to lipocytes in murine hepatic stellate cell line. Mol Cell Biochem 2007; 303:121-30. [PMID: 17440688 DOI: 10.1007/s11010-007-9464-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 03/21/2007] [Indexed: 01/30/2023]
Abstract
GRX cell line represents hepatic stellate cell and can be transformed from an actively proliferation myofibroblast phenotype into a quiescent fat-storing lipocyte phenotype. Both express the same gangliosides (GM3, GM2, GM1 and GD1a), which are resolved as doublets on HPTLC. Upper/lower band ratio is increased in lipocyte-like cells and the upper band is composed by ceramides with long-chain fatty acids. This study evaluated the contribution of de novo synthesis, sphingosine and Golgi recycling pathways on ganglioside biosynthesis, in both phenotypes. Cells were preincubated with 5 mM beta-chloroalanine (SPT: serine palmitoyltransferase inhibitor) or with 25 muM fumonisin B1 (ceramide synthase inhibitor) and then radiolabeled with [U-(14)C]galactose in the continued presence of inhibitors. Gangliosides were extracted, purified and analyzed by HPTLC. In myofibroblast-like cells, simple gangliosides use the de novo pathway while complex gangliosides are mainly synthesized by recycling pathways. In lipocyte-like cells, de novo pathway has a lesser contribution and this is in agreement with the lower activity of the committed enzyme of sphingolipid synthesis (SPT) detected in this phenotype. SPT mRNA has an identical expression in both phenotypes. It was also observed that gangliosides doublets from myofibroblast-like cells have the same distribution between triton soluble and insoluble fractions (upper band > lower band) while the gangliosides doublets from lipocyte-like cells show an inversion in the insoluble fraction (lower band > upper band) in comparison to soluble fraction. These results indicate that myofibroblast- and lipocyte-like cells have important differences between the glycosphingolipid biosynthetic pathways, which could contribute with the respective glycosphingolipid-enriched membrane microdomain's composition.
Collapse
Affiliation(s)
- Aline B de Aguirres
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 - anexo, CEP 90.035-003, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mata NL, Ruiz A, Radu RA, Bui TV, Travis GH. Chicken retinas contain a retinoid isomerase activity that catalyzes the direct conversion of all-trans-retinol to 11-cis-retinol. Biochemistry 2005; 44:11715-21. [PMID: 16128572 PMCID: PMC2851629 DOI: 10.1021/bi050942m] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vertebrate retinas contain two types of light-detecting cells. Rods subserve vision in dim light, while cones provide color vision in bright light. Both contain light-sensitive proteins called opsins. The light-absorbing chromophore in most opsins is 11-cis-retinaldehyde, which is isomerized to all-trans-retinaldehyde by absorption of a photon. Restoration of light sensitivity requires chemical re-isomerization of retinaldehyde by an enzymatic pathway called the visual cycle in the retinal pigment epithelium. The isomerase in this pathway uses all-trans-retinyl esters synthesized by lecithin retinol acyl transferase (LRAT) as the substrate. Several lines of evidence suggest that cone opsins regenerate by a different mechanism. Here we demonstrate the existence of two catalytic activities in chicken retinas. The first is an isomerase activity that effects interconversion of all-trans-retinol and 11-cis-retinol. The second is an ester synthase that effects palmitoyl coenzyme A-dependent synthesis of all-trans- and 11-cis-retinyl esters. Kinetic analysis of these two activities suggests that they act in concert to drive the formation of 11-cis-retinoids in chicken retinas. These activities may be part of a new visual cycle for the regeneration of chromophores in cones.
Collapse
Affiliation(s)
- Nathan L. Mata
- Sytera, Inc., La Jolla, California 92037
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095
| | - Alberto Ruiz
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095
| | - Roxana A. Radu
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095
| | - Tam V. Bui
- Sytera, Inc., La Jolla, California 92037
| | - Gabriel H. Travis
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095
- To whom correspondence should be addressed: Jules Stein Eye Institute, 100 Stein Plaza/Room BH-667, UCLA School of Medicine, Los Angeles, CA 90095. Telephone: (310) 267-2673. Fax: (310) 794-2144.
| |
Collapse
|
18
|
Kaschula CH, Jin MH, Desmond-Smith NS, Travis GH. Acyl CoA:retinol acyltransferase (ARAT) activity is present in bovine retinal pigment epithelium. Exp Eye Res 2005; 82:111-21. [PMID: 16054134 DOI: 10.1016/j.exer.2005.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 05/27/2005] [Indexed: 11/16/2022]
Abstract
Visual perception is mediated by a family of G protein-coupled receptors called the opsins. The light-absorbing chromophore in most opsins is 11-cis-retinaldehyde, which is isomerized to all-trans-retinaldehyde upon absorption of a photon. Restoration of light sensitivity to the photobleached opsin requires chemical re-isomerization of the chromophore. This is carried out by an enzymatic pathway called the visual cycle in retinal pigment epithelial cells. The isomerase in this pathway uses fatty-acyl esters of all-trans-retinol as substrate. A retinyl-ester synthase that produces these esters, called lecithin:retinol acyltransferase (LRAT), has been extensively characterized. Based on prior biochemical studies and the phenotype in lrat(-/-) knockout mice, it has been assumed that LRAT is the sole or dominant retinyl-ester synthase in the retinal pigment epithelium. Here we demonstrate the presence of a second ester synthase activity in these cells called acyl CoA:retinol acyltransferase (ARAT). We show that this activity uses palmitoyl coenzyme A as an acyl donor, unlike LRAT which uses phosphatidylcholine. Similar to LRAT, ARAT esterifies both all-trans-retinol and 11-cis-retinol. LRAT and ARAT are both potently inhibited by the retinyl-ester analog, all-trans-retinylbromoacetate, but only ARAT is inhibited by progesterone. Unexpectedly, the maximum turnover rate (V(max)) of ARAT was similar to that of LRAT. However, the Michaelis constant (K(M)) of ARAT was 10-fold higher than the K(M) of LRAT for all-trans-retinol. These observations suggest that ARAT may complement LRAT to provide additional retinyl-ester synthase activity under conditions of high all-trans-retinol. These conditions occur in the retina following exposure to bright light.
Collapse
|
19
|
Huang GC, Zhang JS, Tang QQ. Involvement of C/EBP-alpha gene in in vitro activation of rat hepatic stellate cells. Biochem Biophys Res Commun 2005; 324:1309-18. [PMID: 15504357 DOI: 10.1016/j.bbrc.2004.09.196] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Indexed: 02/07/2023]
Abstract
Hepatic stellate cells (HSCs) play key roles in hepatic fibrosis. One of the most striking alterations in activated HSCs is loss of cytoplasmic lipid droplets. However, the association of lipid storage with the activation of HSCs remains unclear. CCAAT/enhancer-binding proteins family (C/EBPs), especially C/EBP-alpha, controls differentiation of adipocytes. We suggested that C/EBP-alpha gene may be involved in HSCs activation. The present results showed that the expression levels of C/EBP-alpha and C/EBP-beta genes declined in activated HSCs. Over-expression of C/EBP-alpha gene in activated HSCs: (1) inhibited HSCs proliferation, extracellular matrix-producing, alpha-smooth muscle actin gene expression, and induced rebound of cytoplasmic lipid droplets; (2) reduced retinoic acid receptor-beta, C/EBP-delta and -beta gene expressions, but increased the active form C/EBP-beta PSer(105), and induced retinoid X receptor-alpha gene expression; and (3) did not affect the protein level of p16INK4a, p21Cip1/WAF1 or p27Kip1. In conclusions, C/EBP-alpha gene is involved in in vitro activation of rat HSCs.
Collapse
Affiliation(s)
- Guang-Cun Huang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | | | | |
Collapse
|
20
|
Martucci RB, Ziulkoski AL, Fortuna VA, Guaragna RM, Guma FCR, Trugo LC, Borojevic R. ?-Carotene storage, conversion to retinoic acid, and induction of the lipocyte phenotype in hepatic stellate cells. J Cell Biochem 2004; 92:414-23. [PMID: 15108365 DOI: 10.1002/jcb.20073] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatic stellate cells (HSCs) are the major site of retinol (ROH) metabolism and storage. GRX is a permanent murine myofibroblastic cell line, derived from HSCs, which can be induced to display the fat-storing phenotype by treatment with retinoids. Little is known about hepatic or serum homeostasis of beta-carotene and retinoic acid (RA), although the direct biogenesis of RA from beta-carotene has been described in enterocytes. The aim of this study was to identify the uptake, metabolism, storage, and release of beta-carotene in HSCs. GRX cells were plated in 25 cm(2) tissue culture flasks, treated during 10 days with 3 micromol/L beta-carotene and subsequently transferred into the standard culture medium. beta-Carotene induced a full cell conversion into the fat-storing phenotype after 10 days. The total cell extracts, cell fractions, and culture medium were analyzed by reverse phase high-performance liquid chromatography for beta-carotene and retinoids. Cells accumulated 27.48 +/- 6.5 pmol/L beta-carotene/10(6) cells, but could not convert it to ROH nor produced retinyl esters (RE). beta-Carotene was directly converted to RA, which was found in total cell extracts and in the nuclear fraction (10.15 +/- 1.23 pmol/L/10(6) cells), promoting the phenotype conversion. After 24-h chase, cells contained 20.15 +/- 1.12 pmol/L beta-carotene/10(6) cells and steadily released beta-carotene into the medium (6.69 +/- 1.75 pmol/ml). We conclude that HSC are the site of the liver beta-carotene storage and release, which can be used for RA production as well as for maintenance of the homeostasis of circulating carotenoids in periods of low dietary uptake.
Collapse
Affiliation(s)
- Renata B Martucci
- Laboratório de Bioquímica Nutricional e de Alimentos, Instituto de Química, and Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
21
|
Batten ML, Imanishi Y, Maeda T, Tu DC, Moise AR, Bronson D, Possin D, Van Gelder RN, Baehr W, Palczewski K. Lecithin-retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. J Biol Chem 2003; 279:10422-32. [PMID: 14684738 PMCID: PMC1351249 DOI: 10.1074/jbc.m312410200] [Citation(s) in RCA: 284] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lecithin-retinol acyltransferase (LRAT), an enzyme present mainly in the retinal pigmented epithelial cells and liver, converts all-trans-retinol into all-trans-retinyl esters. In the retinal pigmented epithelium, LRAT plays a key role in the retinoid cycle, a two-cell recycling system that replenishes the 11-cis-retinal chromophore of rhodopsin and cone pigments. We disrupted mouse Lrat gene expression by targeted recombination and generated a homozygous Lrat knock-out (Lrat-/-) mouse. Despite the expression of LRAT in multiple tissues, the Lrat-/- mouse develops normally. The histological analysis and electron microscopy of the retina for 6-8-week-old Lrat-/- mice revealed that the rod outer segments are approximately 35% shorter than those of Lrat+/+ mice, whereas other neuronal layers appear normal. Lrat-/- mice have trace levels of all-trans-retinyl esters in the liver, lung, eye, and blood, whereas the circulating all-trans-retinol is reduced only slightly. Scotopic and photopic electroretinograms as well as pupillary constriction analyses revealed that rod and cone visual functions are severely attenuated at an early age. We conclude that Lrat-/- mice may serve as an animal model with early onset severe retinal dystrophy and severe retinyl ester deprivation.
Collapse
Affiliation(s)
| | | | | | - Daniel C. Tu
- Departments of Ophthalmology and Visual Sciences, and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | - Russell N. Van Gelder
- Departments of Ophthalmology and Visual Sciences, and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Wolfgang Baehr
- the Departments of Ophthalmology
- Biology, and
- Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84112, and the
| | - Krzysztof Palczewski
- From the Departments of Ophthalmology
- Pharmacology, and
- Chemistry, University of Washington, Seattle, Washington 98195
- To whom correspondence should be addressed: Dept. of Ophthalmology, University of Washington, Box 356485, Seattle, WA 98195-6485. Tel.: 206-543-9074; Fax: 206-221-6784; E-mail:
| |
Collapse
|
22
|
Fortuna VA, Martucci RB, Trugo LC, Borojevic R. Hepatic stellate cells uptake of retinol associated with retinol-binding protein or with bovine serum albumin. J Cell Biochem 2003; 90:792-805. [PMID: 14587034 DOI: 10.1002/jcb.10703] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Retinol is stored in liver, and the dynamic balance between its accumulation and mobilization is regulated by hepatic stellate cells (HSC). Representing less than 1% total liver protein, HSC can reach a very high intracellular retinoid (vitamin-A and its metabolites) concentration, which elicits their conversion from the myofibroblast to the fat-storing lipocyte phenotype. Circulating retinol is associated with plasma retinol-binding protein (RBP) or bovine serum albumin (BSA). Here we have used the in vitro model of GRX cells to compare incorporation and metabolism of BSA versus RBP associated [(3)H]retinol in HSC. We have found that lipocytes, but not myofibroblasts, expressed a high-affinity membrane receptor for RBP-retinol complex (KD = 4.93 nM), and both cell types expressed a low-affinity one (KD = 234 nM). The RBP-retinol complex, but not the BSA-delivered retinol, could be dislodged from membranes by treatments that specifically disturb protein-protein interactions (high RBP concentrations). Under both conditions, treatments that disturb the membrane lipid layer (detergent, cyclodextrin) released the membrane-bound retinol. RBP-delivered retinol was found in cytosol, microsomal fraction and, as retinyl esters, in lipid droplets, while albumin-delivered retinol was mainly associated with membranes. Disturbing the clathrin-mediated endocytosis did not interfere with retinol uptake. Retinol derived from the holo-RBP complex was differentially incorporated in lipocytes and preferentially reached esterification sites close to lipid droplets through a specific intracellular traffic route. This direct influx pathway facilitates the retinol uptake into HSC against the concentration gradients, and possibly protects cell membranes from undesirable and potentially noxious high retinol concentrations.
Collapse
Affiliation(s)
- Vitor A Fortuna
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-970 Cidade Universitária, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|