1
|
Morrison K, Tincher M, Rothchild A, Yehl K. Fingerprinting DNAzyme Cross-Reactivity for Pattern-Based Detection of Heavy Metals. Anal Chem 2024; 96:11780-11789. [PMID: 39001810 DOI: 10.1021/acs.analchem.4c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Heavy metal contamination in food and water is a major public health concern because heavy metals are toxic in minute amounts. DNAzyme sensors are emerging as a promising tool for rapid onsite detection of heavy metals, which can aid in minimizing exposure. However, DNAzyme activity toward its target metal is not absolute and has cross-reactivity with similar metals, which is a major challenge in the wide-scale application of DNAzyme sensors for environmental monitoring. To address this, we constructed a four DNAzyme array (17E, GR-5, EtNA, and NaA43) and used a pattern-based readout to improve sensor accuracy. We measured cross-reactivity between three metal cofactors (Pb2+, Ca2+, and Na+) and common interferents (Mg2+, Zn2+, Mn2+, UO22+, Li+, K+, and Ag+) and then used t-SNE analysis to identify and quantify the metal ion. We further showed that this method can be used for distinguishing mixtures of metals and detecting Pb2+ in environmental soil samples at micromolar concentrations.
Collapse
Affiliation(s)
- Kevin Morrison
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Madeleine Tincher
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alexis Rothchild
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Kevin Yehl
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
2
|
Zhang Y, Ji Z, Wang X, Cao Y, Pan H. Single-Molecule Study of DNAzyme Reveals Its Intrinsic Conformational Dynamics. Int J Mol Sci 2023; 24:ijms24021212. [PMID: 36674728 PMCID: PMC9864658 DOI: 10.3390/ijms24021212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
DNAzyme is a class of DNA molecules that can perform catalytic functions with high selectivity towards specific metal ions. Due to its potential applications for biosensors and medical therapeutics, DNAzyme has been extensively studied to characterize the relationships between its biochemical properties and functions. Similar to protein enzymes and ribozymes, DNAzymes have been found to undergo conformational changes in a metal-ion-dependent manner for catalysis. Despite the important role the conformation plays in the catalysis process, such structural and dynamic information might not be revealed by conventional approaches. Here, by using the single-molecule fluorescence resonance energy transfer (smFRET) technique, we were able to investigate the detailed conformational dynamics of a uranyl-specific DNAzyme 39E. We observed conformation switches of 39E to a folded state with the addition of Mg2+ and to an extended state with the addition of UO22+. Furthermore, 39E can switch to a more compact configuration with or without divalent metal ions. Our findings reveal that 39E can undergo conformational changes spontaneously between different configurations.
Collapse
Affiliation(s)
- Yiming Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Wenzhou–Kean University, Wenzhou 325060, China
| | - Zongzhou Ji
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Northeastern University, Shenyang 110819, China
| | - Xin Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yi Cao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan 250117, China
- National Laboratory of Solid–State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Hai Pan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Correspondence:
| |
Collapse
|
3
|
Liu F, Li N, Shang Y, Wang Y, Liu Q, Ma Z, Jiang Q, Ding B. A DNA‐Based Plasmonic Nanodevice for Cascade Signal Amplification. Angew Chem Int Ed Engl 2022; 61:e202114706. [DOI: 10.1002/anie.202114706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Fengsong Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Na Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
| | - Yiming Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
| | - Zhentao Ma
- He'nan Institute of Advanced Technology School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- He'nan Institute of Advanced Technology School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
4
|
Liu F, Li N, Shang Y, Wang Y, Liu Q, Ma Z, Jiang Q, Ding B. A DNA‐based plasmonic nanodevice for cascade signal amplification. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fengsong Liu
- National Center for Nanoscience and Technology CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Na Li
- National Center for Nanoscience and Technology CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Yingxu Shang
- National Center for Nanoscience and Technology CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Yiming Wang
- National Center for Nanoscience and Technology CAS Key Labortory of Nanosystem and Hierarchical Fabrication CHINA
| | - Qing Liu
- National Center for Nanoscience and Technology CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Zhentao Ma
- Zhengzhou University School of Materials Science and Engineering CHINA
| | - Qiao Jiang
- National Center for Nanoscience and Technology CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Baoquan Ding
- National Center for Nanoscience and Technology, China CAS Key Laboratory of Nanosystem and Hierarchical Fabrication No. 11, BeiYiTiao, ZhongGuanCun 100190 Beijing CHINA
| |
Collapse
|
5
|
Mishra E, Majumder S, Varma S, Dowben PA. X-ray photoemission studies of the interaction of metals and metal ions with DNA. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2021-3037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
X-ray Photoelectron Spectroscopy (XPS) has been used to study the interactions of heavy metal ions with DNA with some success. Surface sensitivity and selectivity of XPS are advantageous for identifying and characterizing the chemical and elemental structure of the DNA to metal interaction. This review summarizes the status of what amounts to a large part of the photoemission investigations of biomolecule interactions with metals and offers insight into the mechanism for heavy metal-bio interface interactions. Specifically, it is seen that metal interaction with DNA results in conformational changes in the DNA structure.
Collapse
Affiliation(s)
- Esha Mishra
- Department of Physics and Astronomy , University of Nebraska–Lincoln , Jorgenson Hall, 855 North 16th Street , Lincoln , NE 68588-0299 , USA
| | - Subrata Majumder
- Department of Physics , National Institute of Technology , Patna , Bihar 800005 , India
| | - Shikha Varma
- Institute of Physics , Sachivalaya Marg , Bhubaneswar 751005 , India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar , Mumbai 400085 , India
| | - Peter A. Dowben
- Department of Physics and Astronomy , University of Nebraska–Lincoln , Jorgenson Hall, 855 North 16th Street , Lincoln , NE 68588-0299 , USA
| |
Collapse
|
6
|
Jaapar FN, Parmin NA, Halim NHA, Hashim U, Gopinath SCB, Halim FS, Ruslinda AR, Voon CH, Uda MNA, Uda MNA, Nadzirah S, Rejali Z, Afzan A, Zakaria II. Designing DNA probe from HPV 18 and 58 in the E6 region for sensing element in the development of genosensor-based gold nanoparticles. Biotechnol Appl Biochem 2021; 69:1966-1983. [PMID: 34554606 DOI: 10.1002/bab.2260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/19/2021] [Indexed: 11/09/2022]
Abstract
The E6 region has higher protuberant probability annealing than consensus probe focusing on another region in the human papillomavirus (HPV) genome in terms of detection and screening method. Here, we designed the first multiple virus single-stranded deoxyribonucleic acid (ssDNA) for multiple detections in an early phase of screening for cervical cancer in the E6 region and became a fundamental evolution of detection electrochemical HPV biosensor. Gene profiling of the virus ssDNA sequences has been carried by high-end bioinformatics tools such as GenBank, Basic Local Alignment Searching Tools (BLAST), and Clustal OMEGA in a row. The output from bioinformatics tools resulted in 100% of similarities between our virus ssDNA probe and HPV complete genome in the databases. The cross-validation between HPV genome and our designed virus ssDNA provided high specificity and selectivity during screening methods compared with Pap smear. The DNA probe for HPV 18, 5' COOH-GAT CCA GAA GGT ACA GAC GGG GAG GGC ACG 3', while 5'COOH-GGG CGC TGT GCA GTG TGT TGG AGA CCC CGA3' as DNA probe for HPV 58 designed with 66.77% guanine (G) and cytosine (C) content for both. Our virus ssDNA probe for the HPV biosensor promises high sensitivity, specificity, selectivity, repeatability, low fluid consumption, and will be useful in mini-size diagnostic devices for cervical cancer detection.
Collapse
Affiliation(s)
- F Nadhirah Jaapar
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - N A Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - N Hamidah A Halim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - F Syakirah Halim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - A Rahim Ruslinda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - C H Voon
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - M N A Uda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - M N Afnan Uda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Sh Nadzirah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Zulida Rejali
- Department of Obstetrics and Gynaecology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Amilia Afzan
- Department of Obstetrics and Gynaecology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Iffah Izzati Zakaria
- Malaysia Genome Institute (MGI), National Institute of Biotechnology (NIBM), Kajang, Selangor, Malaysia
| |
Collapse
|
7
|
Hui CY, Guo Y, Li LM, Liu L, Chen YT, Yi J, Zhang NX. Indigoidine biosynthesis triggered by the heavy metal-responsive transcription regulator: a visual whole-cell biosensor. Appl Microbiol Biotechnol 2021; 105:6087-6102. [PMID: 34291315 DOI: 10.1007/s00253-021-11441-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
During the last few decades, whole-cell biosensors have attracted increasing attention for their enormous potential in monitoring bioavailable heavy metal contaminations in the ecosystem. Visual and measurable output signals by employing natural pigments have been demonstrated to offer another potential choice to indicate the existence of bioavailable heavy metals in recent years. The biosynthesis of the blue pigment indigoidine has been achieved in E. coli following heterologous expression of both BpsA (a single-module non-ribosomal peptide synthetase) and PcpS (a PPTase to activate apo-BpsA). Moreover, we demonstrated herein the development of the indigoidine-based whole-cell biosensors to detect bioavailable Hg(II) and Pb(II) in water samples by employing metal-responsive transcriptional regulator MerR and PbrR as the sensory elements, and the indigoidine biosynthesis gene cluster as a reporter element. The resulting indigoidine-based biosensors presented a good selectivity and high sensitivity to target metal ions. High concentration of target metal exposure could be clearly recognized by the naked eye due to the color change by the secretion of indigoidine, and quantified by measuring the absorbance of the culture supernatants at 600 nm. Dose-response relationships existed between the exposure concentrations of target heavy metals and the production of indigoidine. Although fairly good linear relationships were obtained in a relatively limited concentration range of the concentrations of heavy metal ions, these findings suggest that genetically controlled indigoidine biosynthesis triggered by the MerR family transcriptional regulator can enable a sensitive, visual, and qualitative whole-cell biosensor for bioindicating the presence of bioaccessible heavy metal in environmental water samples. KEY POINTS: • Biosynthesis pathway of indigoidine reconstructed in a high copy number plasmid in E. coli. • Visual and colorimetric detection of Hg(II) and Pb(II) by manipulation of indigoidine biosynthesis through MerR family metalloregulator. •Enhanced detection sensitivity toward Hg(II) and Pb(II) achieved using novel pigment-based whole-cell biosensors.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Li-Mei Li
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yu-Ting Chen
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Juan Yi
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Nai-Xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| |
Collapse
|
8
|
Wada M, Endo T, Hisamoto H, Sueyoshi K. Fractionation of Single-stranded DNAs with/without Stable Preorganized Structures Using Capillary Sieving Electrophoresis for Aptamer Selection. ANAL SCI 2021; 37:799-802. [PMID: 33952863 DOI: 10.2116/analsci.21c003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aptamers, single-stranded DNAs/RNAs with a strong and specific interaction towards a target molecule, have wide applications in the fields of medicine and biosensors. In conventional aptamer selection methods, it is difficult to obtain "preorganized" and/or "induced-fit" type of aptamers selectively. In this study, separation and fractionation of single-stranded DNAs with/without stable preorganized structures were carried out using capillary sieving electrophoresis. The fractionated DNAs showed different mobilities and thermodynamic stabilities of their secondary structures; this outcome is deemed to be necessary for the synthesis of novel aptasensors with a desirable sensing mechanism.
Collapse
Affiliation(s)
- Masahide Wada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University.,PRESTO, Japan Science and Technology Agency
| |
Collapse
|
9
|
Microwave Sensors for In Situ Monitoring of Trace Metals in Polluted Water. SENSORS 2021; 21:s21093147. [PMID: 34062849 PMCID: PMC8125159 DOI: 10.3390/s21093147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022]
Abstract
Thousands of pollutants are threatening our water supply, putting at risk human and environmental health. Between them, trace metals are of significant concern, due to their high toxicity at low concentrations. Abandoned mining areas are globally one of the major sources of toxic metals. Nowadays, no method can guarantee an immediate response for quantifying these pollutants. In this work, a novel technique based on microwave spectroscopy and planar sensors for in situ real-time monitoring of water quality is described. The sensors were developed to directly probe water samples, and in situ trial measurements were performed in freshwater in four polluted mining areas in the UK. Planar microwave sensors were able to detect the water pollution level with an immediate response specifically depicted at three resonant peaks in the GHz range. To the authors’ best knowledge, this is the first time that planar microwave sensors were tested in situ, demonstrating the ability to use this method for classifying more and less polluted water using a multiple-peak approach.
Collapse
|
10
|
Xu W, He W, Du Z, Zhu L, Huang K, Lu Y, Luo Y. Functional Nucleic Acid Nanomaterials: Development, Properties, and Applications. Angew Chem Int Ed Engl 2021; 60:6890-6918. [PMID: 31729826 PMCID: PMC9205421 DOI: 10.1002/anie.201909927] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/29/2019] [Indexed: 01/01/2023]
Abstract
Functional nucleic acid (FNA) nanotechnology is an interdisciplinary field between nucleic acid biochemistry and nanotechnology that focuses on the study of interactions between FNAs and nanomaterials and explores the particular advantages and applications of FNA nanomaterials. With the goal of building the next-generation biomaterials that combine the advantages of FNAs and nanomaterials, the interactions between FNAs and nanomaterials as well as FNA self-assembly technologies have established themselves as hot research areas, where the target recognition, response, and self-assembly ability, combined with the plasmon properties, stability, stimuli-response, and delivery potential of various nanomaterials can give rise to a variety of novel fascinating applications. As research on the structural and functional group features of FNAs and nanomaterials rapidly develops, many laboratories have reported numerous methods to construct FNA nanomaterials. In this Review, we first introduce some widely used FNAs and nanomaterials along with their classification, structure, and application features. Then we discuss the most successful methods employing FNAs and nanomaterials as elements for creating advanced FNA nanomaterials. Finally, we review the extensive applications of FNA nanomaterials in bioimaging, biosensing, biomedicine, and other important fields, with their own advantages and drawbacks, and provide our perspective about the issues and developing trends in FNA nanotechnology.
Collapse
Affiliation(s)
- Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Wanchong He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Zaihui Du
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana, Illinois 61801 (USA)
| | - Yunbo Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| |
Collapse
|
11
|
Mukherjee S, Bhattacharyya S, Ghosh K, Pal S, Halder A, Naseri M, Mohammadniaei M, Sarkar S, Ghosh A, Sun Y, Bhattacharyya N. Sensory development for heavy metal detection: A review on translation from conventional analysis to field-portable sensor. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
A rhodanine-based fluorescent chemosensor for sensing Zn2+ and Cd2+: Applications to water sample and cell imaging. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Xu W, He W, Du Z, Zhu L, Huang K, Lu Y, Luo Y. Funktionelle Nukleinsäure‐Nanomaterialien: Entwicklung, Eigenschaften und Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Wanchong He
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Zaihui Du
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Yi Lu
- Department of Chemistry University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Yunbo Luo
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| |
Collapse
|
14
|
Xiong M, Yang Z, Lake RJ, Li J, Hong S, Fan H, Zhang XB, Lu Y. DNAzyme-Mediated Genetically Encoded Sensors for Ratiometric Imaging of Metal Ions in Living Cells. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 132:1907-1912. [PMID: 36312441 PMCID: PMC9615436 DOI: 10.1002/ange.201912514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 09/07/2024]
Abstract
Genetically encoded fluorescent proteins (FPs) have been used for metal ion detection. However, their applications are restricted to a limited number of metal ions owing to the lack of available metal-binding proteins or peptides that can be fused to FPs and the difficulty in transforming the binding of metal ions into a change of fluorescent signal. We report herein the use of Mg2+-specific 10-23 or Zn2+-specific 8-17 RNA-cleaving DNAzymes to regulate the expression of FPs as a new class of ratiometric fluorescent sensors for metal ions. Specifically, we demonstrate the use of DNAzymes to suppress the expression of Clover2, a variant of the green FP (GFP), by cleaving the mRNA of Clover2, while the expression of Ruby2, a mutant of the red FP (RFP), is not affected. The Mg2+ or Zn2+ in HeLa cells can be detected using both confocal imaging and flow cytometry. Since a wide variety of metal-specific DNAzymes can be obtained, this method can likely be applied to imaging many other metal ions, expanding the range of the current genetically encoded fluorescent protein-based sensors.
Collapse
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University Changsha 410082 (P. R. China)
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Zhenglin Yang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Ryan J Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Junjie Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Shanni Hong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Huanhuan Fan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University Changsha 410082 (P. R. China)
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University Changsha 410082 (P. R. China)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| |
Collapse
|
15
|
Xiong M, Yang Z, Lake RJ, Li J, Hong S, Fan H, Zhang XB, Lu Y. DNAzyme-Mediated Genetically Encoded Sensors for Ratiometric Imaging of Metal Ions in Living Cells. Angew Chem Int Ed Engl 2019; 59:1891-1896. [PMID: 31746514 DOI: 10.1002/anie.201912514] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Genetically encoded fluorescent proteins (FPs) have been used for metal ion detection. However, their applications are restricted to a limited number of metal ions owing to the lack of available metal-binding proteins or peptides that can be fused to FPs and the difficulty in transforming the binding of metal ions into a change of fluorescent signal. We report herein the use of Mg2+ -specific 10-23 or Zn2+ -specific 8-17 RNA-cleaving DNAzymes to regulate the expression of FPs as a new class of ratiometric fluorescent sensors for metal ions. Specifically, we demonstrate the use of DNAzymes to suppress the expression of Clover2, a variant of the green FP (GFP), by cleaving the mRNA of Clover2, while the expression of Ruby2, a mutant of the red FP (RFP), is not affected. The Mg2+ or Zn2+ in HeLa cells can be detected using both confocal imaging and flow cytometry. Since a wide variety of metal-specific DNAzymes can be obtained, this method can likely be applied to imaging many other metal ions, expanding the range of the current genetically encoded fluorescent protein-based sensors.
Collapse
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhenglin Yang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ryan J Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Junjie Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shanni Hong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huanhuan Fan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
16
|
Sun C, Ou X, Cheng Y, Zhai T, Liu B, Lou X, Xia F. Coordination-induced structural changes of DNA-based optical and electrochemical sensors for metal ions detection. Dalton Trans 2019; 48:5879-5891. [PMID: 30681098 DOI: 10.1039/c8dt04733b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal ions play a critical role in human health and abnormal levels are closely related to various diseases. Therefore, the detection of metal ions with high selectivity, sensitivity and accuracy is particularly important. This article highlights and comments on the coordination-induced structural changes of DNA-based optical, electrochemical and optical-electrochemical-combined sensors for metal ions detection. Challenges and potential solutions of DNA-based sensors for the simultaneous detection of multiple metal ions are also discussed for further development and exploitation.
Collapse
Affiliation(s)
- Chunli Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering; Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering; National Engineering Research Center for Nanomedicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ma Y, Li W, Zhou Z, Qin X, Wang D, Gao Y, Yu Z, Yin F, Li Z. Peptide-Aptamer Coassembly Nanocarrier for Cancer Therapy. Bioconjug Chem 2019; 30:536-540. [PMID: 30702869 DOI: 10.1021/acs.bioconjchem.8b00903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We reported methionine bis-alkylated nonapeptide Wpc as an efficient siRNA vehicle previously. Herein, we report an aptamer could also spontaneously coassemble with Wpc to form uniformed nanoparticles for efficient delivery. This unique peptide-based aptamer nanocarrier showed significantly improved cell penetration and antiproliferation effect with high biocompatibility toward various cancer cell lines.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Wenjun Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Ziyuan Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China.,Chemical Biology Laboratory for Infectious Diseases, State Key Discipline of Infectious Diseases , Shenzhen Third People's Hospital , Shenzhen 518020 , China
| | - Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Dongyuan Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Yubo Gao
- School of Information Engineering , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening , Southern Medical University , Guangzhou 510515 , China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| |
Collapse
|
18
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
19
|
Wang W, Satyavolu NSR, Wu Z, Zhang JR, Zhu JJ, Lu Y. Near-Infrared Photothermally Activated DNAzyme-Gold Nanoshells for Imaging Metal Ions in Living Cells. Angew Chem Int Ed Engl 2017; 56:6798-6802. [PMID: 28471018 PMCID: PMC5861726 DOI: 10.1002/anie.201701325] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/30/2017] [Indexed: 12/31/2022]
Abstract
DNAzymes have enjoyed success as metal ion sensors outside cells. Their susceptibility to metal-dependent cleavage during delivery into cells has limited their intracellular applications. To overcome this limitation, a near-infrared (NIR) photothermal activation method is presented for controlling DNAzyme activity in living cells. The system consists of a three-stranded DNAzyme precursor (TSDP), the hybridization of which prevents the DNAzyme from being active. After conjugating the TSDP onto gold nanoshells and upon NIR illumination, the increased temperature dehybridizes the TSDP to release the active DNAzyme, which then carries out metal-ion-dependent cleavage, resulting in releasing the cleaved product containing a fluorophore. Using this construct, detecting Zn2+ in living HeLa cells is demonstrated. This method has expanded the DNAzyme versatility for detecting metal ions in biological systems under NIR light that exhibits lower phototoxicity and higher tissue penetration ability.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- State Key Laboratory of Analytical for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, P.R. China
| | | | - Zhenkun Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P.R. China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, P.R. China
- School of Chemistry and Life Science, Nanjing University, Jinling College, Nanjing, Jiangsu, 210089, P.R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, P.R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
20
|
Modh H, Witt M, Urmann K, Lavrentieva A, Segal E, Scheper T, Walter JG. Aptamer-based detection of adenosine triphosphate via qPCR. Talanta 2017; 172:199-205. [PMID: 28602295 DOI: 10.1016/j.talanta.2017.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/07/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022]
Abstract
Sensitive and specific detection and quantification of small molecules often remain challenging. We developed a novel magnetic bead-based aptamer-assisted real-time PCR (Apta-qPCR) assay to provide a versatile platform for quantification of small molecules. The assay has been realized for the detection of ATP as a model system. The assay relies on a combination of qPCR with the target-induced dissociation (TID) of ATP aptamer from an oligonucleotide, complementary to the ATP binding site of the aptamer. The complementary oligonucleotide was immobilized on deoxythymidine (dT)-modified magnetic beads (dT-beads) and hybridized with the aptamer. The presence of ATP resulted in dissociation of the aptamer from the dT-beads and the dissociated aptamer was quantified using qPCR. The Apta-qPCR assay was able to detect 17nM ATP with a broad dynamic range from 50nM to 5mM. The assay is label-free, and real-time PCR-based detection of aptamer facilitates high sensitivity. The presented method is highly versatile and can be applied to various aptamer-target pairs to allow detection of a broad range of target analytes.
Collapse
Affiliation(s)
- Harshvardhan Modh
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany
| | - Martin Witt
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany
| | - Katharina Urmann
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany; Department of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Technion City, 32000 Haifa, Israel
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Technion City, 32000 Haifa, Israel
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany
| | - Johanna-Gabriela Walter
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany
| |
Collapse
|
21
|
Wang W, Satyavolu NSR, Wu Z, Zhang JR, Zhu JJ, Lu Y. Near-Infrared Photothermally Activated DNAzyme-Gold Nanoshells for Imaging Metal Ions in Living Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701325] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenjing Wang
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
- State Key Laboratory of Analytical for Life Science; School of Chemistry & Chemical Engineering; Nanjing University; Nanjing Jiangsu 210093 P.R. China
| | | | - Zhenkun Wu
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
- State Key Laboratory of Chemo/BioSensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha Hunan 410082 P.R. China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical for Life Science; School of Chemistry & Chemical Engineering; Nanjing University; Nanjing Jiangsu 210093 P.R. China
- School of Chemistry and Life Science; Nanjing University, Jinling College; Nanjing Jiangsu 210089 P.R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical for Life Science; School of Chemistry & Chemical Engineering; Nanjing University; Nanjing Jiangsu 210093 P.R. China
| | - Yi Lu
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| |
Collapse
|
22
|
Kasprowicz A, Stokowa-Sołtys K, Jeżowska-Bojczuk M, Wrzesiński J, Ciesiołka J. Characterization of Highly Efficient RNA-Cleaving DNAzymes that Function at Acidic pH with No Divalent Metal-Ion Cofactors. ChemistryOpen 2016; 6:46-56. [PMID: 28168150 PMCID: PMC5288747 DOI: 10.1002/open.201600141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/29/2016] [Indexed: 12/02/2022] Open
Abstract
Here, we describe the characterization of new RNA‐cleaving DNAzymes that showed the highest catalytic efficiency at pH 4.0 to 4.5, and were completely inactive at pH values higher than 5.0. Importantly, these DNAzymes did not require any divalent metal ion cofactors for catalysis. This clearly suggests that protonated nucleic bases are involved in the folding of the DNAzymes into catalytically active structures and/or in the cleavage mechanism. The trans‐acting DNAzyme variants were also catalytically active. Mutational analysis revealed a conservative character of the DNAzyme catalytic core that underpins the high structural requirements of the cleavage mechanism. A significant advantage of the described DNAzymes is that they are inactive at pH values close to physiological pH and under a wide range of conditions in the presence of monovalent and divalent metal ions. These pH‐dependent DNAzymes could be used as molecular cassettes in biotechnology or nanotechnology, in molecular processes that consist of several steps. The results expand the repertoire of DNAzymes that are active under nonphysiological conditions and shed new light on the possible mechanisms of catalysis.
Collapse
Affiliation(s)
- Aleksandra Kasprowicz
- Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| | | | | | - Jan Wrzesiński
- Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| |
Collapse
|
23
|
DasGupta S, Shelke SA, Li NS, Piccirilli JA. Spinach RNA aptamer detects lead(II) with high selectivity. Chem Commun (Camb) 2016; 51:9034-7. [PMID: 25940073 DOI: 10.1039/c5cc01526j] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spinach RNA aptamer contains a G-quadruplex motif that serves as a platform for binding and fluorescence activation of a GFP-like fluorophore. Here we show that Pb(2+) induces formation of Spinach's G-quadruplex and activates fluorescence with high selectivity and sensitivity. This device establishes the first example of an RNA-based sensor that provides a simple and inexpensive tool for Pb(2+) detection.
Collapse
Affiliation(s)
- Saurja DasGupta
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
24
|
Kasprowicz A, Stokowa-Sołtys K, Wrzesiński J, Jeżowska-Bojczuk M, Ciesiołka J. In vitro selection of deoxyribozymes active with Cd(2+) ions resulting in variants of DNAzyme 8-17. Dalton Trans 2016; 44:8138-49. [PMID: 25836771 DOI: 10.1039/c5dt00187k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vitro selection was performed to search for RNA-cleaving DNAzymes catalytically active with Cd(2+) ions from the oligonucleotide combinatorial library with a 23-nucleotide random region. All the selected, catalytically active variants turned out to belong to the 8-17 type DNAzyme. Three DNAzymes were prepared in shortened, cis-acting versions which were subjected to a detailed study of the kinetic properties and metal ion preferences. Although the selection protocol was designed for Cd(2+)-dependent DNAzymes, the variants showed broader metal ion specificity. They preferred Cd(2+) but were also active with Mn(2+) and Zn(2+), suggesting that binding of the catalytic ion does not require an extremely specific coordination pattern. The unexpected decrease of the catalytic activity of the variants along with the temperature increase suggested that some changes occurred in their structures or the rate-limiting step of the reaction was changed. Two elements of the catalytic core of DNAzyme 1/VIIWS, the nucleotide at position 12 and the three-base-pair hairpin motif, were mutated. The presence of a purine residue at position 12 was crucial for the catalytic activity but the changes at that position had a relatively small influence on the metal ion preferences of this variant. The middle base pair of the three-base-pair hairpin was changed from A-T to C-G interaction. The catalytic activity of the mutated variant was increased with Zn(2+), decreased with Mn(2+), and was not changed in the presence of Cd(2+) ions. Clearly, this base pair was important for defining the metal ion preferences of the DNAzyme 1/VIIWS.
Collapse
Affiliation(s)
- Aleksandra Kasprowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | | | | | | | | |
Collapse
|
25
|
DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease. SENSORS 2015; 15:14539-68. [PMID: 26102488 PMCID: PMC4507582 DOI: 10.3390/s150614539] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 11/17/2022]
Abstract
Detection of disease at an early stage is one of the biggest challenges in medicine. Different disciplines of science are working together in this regard. The goal of nanodiagnostics is to provide more accurate tools for earlier diagnosis, to reduce cost and to simplify healthcare delivery of effective and personalized medicine, especially with regard to chronic diseases (e.g., diabetes and cardiovascular diseases) that have high healthcare costs. Up-to-date results suggest that DNA-based nanobiosensors could be used effectively to provide simple, fast, cost-effective, sensitive and specific detection of some genetic, cancer, and infectious diseases. In addition, they could potentially be used as a platform to detect immunodeficiency, and neurological and other diseases. This review examines different types of DNA-based nanobiosensors, the basic principles upon which they are based and their advantages and potential in diagnosis of acute and chronic diseases. We discuss recent trends and applications of new strategies for DNA-based nanobiosensors, and emphasize the challenges in translating basic research to the clinical laboratory.
Collapse
|
26
|
Zhang D, Fu R, Zhao Q, Rong H, Wang H. Nanoparticles-Free Fluorescence Anisotropy Amplification Assay for Detection of RNA Nucleotide-Cleaving DNAzyme Activity. Anal Chem 2015; 87:4903-9. [DOI: 10.1021/acs.analchem.5b00479] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dapeng Zhang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
| | - Rong Fu
- School
of Medicine and Life Sciences, University of Jinan-Shangdong Academy of Medical Sciences, Jinan 250062, People’s Republic of China
| | - Qiang Zhao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
| | - Haiqin Rong
- School
of Medicine and Life Sciences, University of Jinan-Shangdong Academy of Medical Sciences, Jinan 250062, People’s Republic of China
| | - Hailin Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
| |
Collapse
|
27
|
|
28
|
Wang R, Wang W, Ren H, Chae J. Detection of copper ions in drinking water using the competitive adsorption of proteins. Biosens Bioelectron 2014; 57:179-85. [DOI: 10.1016/j.bios.2014.01.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
|
29
|
Abstract
Increasing interest in detecting metal ions in many chemical and biomedical fields has created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal-ion-dependent DNAzymes and metal-ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attachment of these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detection. These sensors are highly sensitive (with a detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of "dipstick tests", portable fluorometers, computer-readable disks, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal-ion sensing and imaging in many fields of applications.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Fax: 217-244-3186; Tel: 217-333-2619
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Fax: 217-244-3186; Tel: 217-333-2619
| |
Collapse
|
30
|
Ma D, Yuan Y, Xiao X, Gao Y, Li Y, Xu W, Long W. A label-free electrochemical biosensor for trace uranium based on DNAzymes and gold nanoparticles. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-013-2897-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Yu HZ, Li Y, Ou LML. Reading disc-based bioassays with standard computer drives. Acc Chem Res 2013; 46:258-68. [PMID: 23025412 DOI: 10.1021/ar300104b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Traditional methods of disease diagnosis are both time-consuming and labor-intensive, and many tests require expensive instrumentation and trained professionals, which restricts their use to biomedical laboratories. Because patients can wait several days (even weeks) for the results, the consequences of delayed treatment could be disastrous. Therefore, affordable and simple point-of-care (POC) biosensor devices could fill a diagnostic niche in the clinic or even at home, as personal glucose meters do for diabetics. These devices would allow patients to check their own health conditions and enable physicians to make prompt treatment decisions, which could improve the chances for rapid recovery and cure. Compact discs (CDs) provide inexpensive substrate materials for the preparation of microarray biochips, and conventional computer drives/disc players can be adapted as precise optical reading devices for signal processing. Researchers can employ the polycarbonate (PC) base of a CD as an alternative substrate to glass slides or silicon wafers for the preparation of microanalytical devices. Using the characteristic optical phenomena occurring on the metal layer of a CD, researchers can develop biosensors based on advanced spectroscopic readout (interferometry or surface plasmon resonance). If researchers integrate microfluidic functions with CD mechanics, they can control fluid transfer through the spinning motion of the disc, leading to "lab-on-a-CD" devices. Over the last decade, our laboratory has focused on the construction of POC biosensor devices from off-the-shelf CDs or DVDs and standard computer drives. Besides the initial studies of the suitability of CDs for surface and materials chemistry research (fabrication of self-assembled monolayers and oxide nanostructures), we have demonstrated that an ordinary optical drive, without modification of either the hardware or the software driver, can function as the signal transducing element for reading disc-based bioassays quantitatively. In this Account, we first provide a brief introduction to CD-related materials chemistry and microfluidics research. Then we describe the mild chemistry developed in our laboratory for the preparation of computer-readable biomolecular screening assays: photochemical activation of the polycarbonate (PC) disc surface and immobilization and delivery of probe and target biomolecules. We thoroughly discuss the analysis of the molecular recognition events: researchers can "read" these devices quantitatively with an unmodified optical drive of any personal computer. Finally, and critically, we illustrate our digitized molecular diagnosis approach with three trial systems: DNA hybridization, antibody-antigen binding, and ultrasensitive lead detection with a DNAzyme assay. These examples demonstrate the broad potential of this new analytical/diagnostic tool for medical screening, on-site food/water safety testing, and remote environmental monitoring.
Collapse
Affiliation(s)
- Hua-Zhong Yu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Yunchao Li
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Lily M.-L. Ou
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
32
|
Xiang Y, Wu P, Tan LH, Lu Y. DNAzyme-functionalized gold nanoparticles for biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 140:93-120. [PMID: 24026635 DOI: 10.1007/10_2013_242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in using DNAzyme-functionalized gold nanoparticles (AuNPs) for biosensing is summarized in this chapter. A variety of methods, including those for attaching DNA on AuNPs, detecting metal ions and small molecules by DNAzyme-functionalized AuNPs, and intracellular applications of DNAzyme-functionalized AuNPs are discussed. DNAzyme-functionalized AuNPs will increasingly play more important roles in biosensing and many other multidisciplinary applications. This chapter covers the recent advancement in biosensing applications of DNAzyme-functionalized gold nanoparticles, including the detection of metal ions, small molecules, and intracellular imaging.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | | | |
Collapse
|
33
|
Xin J, Zhang F, Gao Y, Feng Y, Chen S, Wu A. A rapid colorimetric detection method of trace Cr (VI) based on the redox etching of Agcore–Aushell nanoparticles at room temperature. Talanta 2012; 101:122-7. [DOI: 10.1016/j.talanta.2012.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/02/2012] [Accepted: 09/08/2012] [Indexed: 10/27/2022]
|
34
|
Chung CH, Kim JH, Jung J, Chung BH. Nuclease-resistant DNA aptamer on gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+ in human serum. Biosens Bioelectron 2012; 41:827-32. [PMID: 23137944 DOI: 10.1016/j.bios.2012.10.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
There has been great progress in the development of functional DNA-based sensors for the detection of metal ions. However, many functional DNAs are vulnerable to hydrolysis by nucleases in human blood. In addition, the detection methods that are based on DNA often exhibit interference due to the high blood concentrations of other ions, such as K(+) and Na(+). Therefore, we selected highly Pb(2+)-specific DNA-aptamer sequences based on CD spectroscopy of 4 G-rich DNA sequences and Hg(2+)-specific T-rich DNA sequences and immobilized them on gold nanoparticles for the simultaneous detection of Pb(2+) and Hg(2+) in human serum. We used gold nanoparticles because these have a superior fluorescence-quenching efficiency over a broad range of wavelengths compared with other organic quenchers. In addition, gold nanoparticles have a stabilizing effect on the immobilized DNA, which makes it more resistant to degradation by nucleases than free DNA. As a result, even in the presence of DNase, we were able to simultaneously detect Pb(2+) and Hg(2+) in serum at concentrations as low as 128 pM and 121 pM, respectively, within 10 min. These detection limits for Pb(2+) and Hg(2+) were 39-fold and 26.4-fold lower, respectively, than the detection limits that were obtained using free DNAs. Given the multi-color-fluorescence quenching capability of the gold nanoparticles and the possibility of developing functional nucleic acids for the detection of other metal ions, this study extends the application of oligonucleotides to a point-of-care detection system for the detection of multiple harmful metal ions in body fluids.
Collapse
Affiliation(s)
- Chan Ho Chung
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | | | |
Collapse
|
35
|
Vendrell M, Zhai D, Er JC, Chang YT. Combinatorial strategies in fluorescent probe development. Chem Rev 2012; 112:4391-420. [PMID: 22616565 DOI: 10.1021/cr200355j] [Citation(s) in RCA: 469] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marc Vendrell
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, 138667 Singapore.
| | | | | | | |
Collapse
|
36
|
Kirubaharan CJ, Kalpana D, Lee YS, Kim AR, Yoo DJ, Nahm KS, Kumar GG. Biomediated Silver Nanoparticles for the Highly Selective Copper(II) Ion Sensor Applications. Ind Eng Chem Res 2012. [DOI: 10.1021/ie3003232] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Joseph Kirubaharan
- Department of Physical Chemistry, Madurai Kamaraj University, Madurai-625 021, Tamilnadu,
India
| | - D. Kalpana
- Department of Forest
Science
and Technology, Institute of Agricultural Science and Technology, Chonbuk National University, Jeonju 561-756, South
Korea
| | - Yang Soo Lee
- Department of Forest
Science
and Technology, Institute of Agricultural Science and Technology, Chonbuk National University, Jeonju 561-756, South
Korea
| | - A. R. Kim
- Department of Hydrogen
and Fuel
Cells Engineering, Specialized Graduate School, Chonbuk National University, Jeonju 561-756, South Korea
| | - Don Jin Yoo
- Department of Hydrogen
and Fuel
Cells Engineering, Specialized Graduate School, Chonbuk National University, Jeonju 561-756, South Korea
| | - Kee Suk Nahm
- Department of Hydrogen
and Fuel
Cells Engineering, Specialized Graduate School, Chonbuk National University, Jeonju 561-756, South Korea
| | - G. Gnana Kumar
- Department of Physical Chemistry, Madurai Kamaraj University, Madurai-625 021, Tamilnadu,
India
| |
Collapse
|
37
|
Nelson KE, Ihms HE, Mazumdar D, Bruesehoff PJ, Lu Y. The importance of peripheral sequences in determining the metal selectivity of an in vitro-selected Co(2+) -dependent DNAzyme. Chembiochem 2012; 13:381-91. [PMID: 22250000 PMCID: PMC3299816 DOI: 10.1002/cbic.201100724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Indexed: 11/12/2022]
Abstract
DNAzymes are catalytically active DNA molecules that use metal cofactors for their enzymatic functions. While a growing number of DNAzymes with diverse functions and metal selectivities have been reported, the relationships between metal ion selectivity, conserved sequences and structures responsible for selectivity remain to be elucidated. To address this issue, we report biochemical assays of a family of previously reported in vitro selected DNAzymes. This family includes the clone 11 DNAzyme, which was isolated by positive and negative selection, and the clone 18 DNAzyme, which was isolated by positive selection alone. The clone 11 DNAzyme has a higher selectivity for Co(2+) over Pb(2+) compared with clone 18. The reasons for this difference are explored here through phylogenetic comparison, mutational analysis and stepwise truncation. A novel DNAzyme truncation method incorporated a nick in the middle of the DNAzyme to allow for truncation close to the nicked site while preserving peripheral sequences at both ends of the DNAzyme. The results demonstrate that peripheral sequences within the substrate binding arms, most notably the stem loop, loop II, are sufficient to restore its selectivity for Co(2+) over Pb(2+) to levels observed in clone 11. A comparison of these sequences' secondary structures and Co(2+) selectivities suggested that metastable structures affect metal ion selectivity. The Co(2+) selectivity of the clone 11 DNAzyme showed that the metal ion binding and selectivities of small, in vitro selected DNAzymes may be more complex than previously appreciated, and that clone 11 may be more similar to larger ribozymes than to other small DNAzymes in its structural complexity and behavior. These factors should be taken into account when metal-ion selectivity is required in rationally designed DNAzymes and DNAzyme-based biosensors.
Collapse
Affiliation(s)
- Kevin E. Nelson
- Department of Biochemistry, University of Illinois, 600 South Mathews Avenue, Urbana, IL 61801 (USA)
- Department of Pediatrics, Primary Children’s Medical Center, University of Utah, 100 North Mario Capecchi Drive, Salt Lake City, UT 84113 (USA)
| | - Hannah E. Ihms
- Department of Chemistry, University of Illinois, A322 Chemical and Life Sciences Laboratory, MC-712, Box 8–6, 600 South Mathews Avenue, Urbana, IL 61801 (USA)
| | - Debapriya Mazumdar
- Department of Chemistry, University of Illinois, A322 Chemical and Life Sciences Laboratory, MC-712, Box 8–6, 600 South Mathews Avenue, Urbana, IL 61801 (USA)
| | - Peter J. Bruesehoff
- Department of Chemistry, University of Illinois, A322 Chemical and Life Sciences Laboratory, MC-712, Box 8–6, 600 South Mathews Avenue, Urbana, IL 61801 (USA)
| | - Yi Lu
- Department of Biochemistry, University of Illinois, 600 South Mathews Avenue, Urbana, IL 61801 (USA)
- Department of Chemistry, University of Illinois, A322 Chemical and Life Sciences Laboratory, MC-712, Box 8–6, 600 South Mathews Avenue, Urbana, IL 61801 (USA)
| |
Collapse
|
38
|
Abstract
Metal ions are inextricably involved with nucleic acids due to their polyanionic nature. In order to understand the structure and function of RNAs and DNAs, one needs to have detailed pictures on the structural, thermodynamic, and kinetic properties of metal ion interactions with these biomacromolecules. In this review we first compile the physicochemical properties of metal ions found and used in combination with nucleic acids in solution. The main part then describes the various methods developed over the past decades to investigate metal ion binding by nucleic acids in solution. This includes for example hydrolytic and radical cleavage experiments, mutational approaches, as well as kinetic isotope effects. In addition, spectroscopic techniques like EPR, lanthanide(III) luminescence, IR and Raman as well as various NMR methods are summarized. Aside from gaining knowledge about the thermodynamic properties on the metal ion-nucleic acid interactions, especially NMR can be used to extract information on the kinetics of ligand exchange rates of the metal ions applied. The final section deals with the influence of anions, buffers, and the solvent permittivity on the binding equilibria between metal ions and nucleic acids. Little is known on some of these aspects, but it is clear that these three factors have a large influence on the interaction between metal ions and nucleic acids.
Collapse
Affiliation(s)
- Maria Pechlaner
- Institute of Inorganic Chemistry, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
39
|
Lan T, Lu Y. Metal Ion-Dependent DNAzymes and Their Applications as Biosensors. Met Ions Life Sci 2012; 10:217-48. [DOI: 10.1007/978-94-007-2172-2_8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
40
|
Abstract
The convergence of terahertz spectroscopy and single molecule experimentation offers significant promise of enhancement in sensitivity and selectivity in molecular recognition, identification and quantitation germane to military and security applications. This paper provides a brief overview of the constraints set by single molecule recognition systems and reports the results of experiments which address fundamental barriers to the integration of large, patterned bio-compatible molecular opto-electronic systems with silicon based microelectronic systems. Central to this thrust is an approach involving sequential epitaxy on surface bound single stranded DNA one-dimensional substrates. The challenge of producing highly structured macromolecular substrates, which are necessary in order to implement molecular nanolithography, has been addressed experimentally by combining “designer” synthetic DNA with biosynthetically derived plasmid components. By design, these one dimensional templates are composed of domains which contain sites which are recognized, and therefore addressable by either complementary DNA sequences and/or selected enzymes. Such design is necessary in order to access the nominal 2 nm linewidth potential resolution of nanolithography on these one-dimensional substrates. The recognition and binding properties of DNA ensure that the lithographic process is intrinsically self-organizing, and therefore self-aligning, a necessity for assembly processes at the requisite resolution. Another requirement of this molecular epitaxy approach is that the substrate must be immobilized. The challenge of robust surface immobilization is being addressed via the production of the equivalent of molecular tube sockets. In this application, multi-valent core-shell fluorescent quantum dots provide a mechanism to prepare surface attachment sites with a pre-determined 1:1 attachment site : substrate (DNA) molecule ratio.
Collapse
Affiliation(s)
- Michael Norton
- Department of Chemistry, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA
| |
Collapse
|
41
|
Ma DL, Chan DSH, Man BYW, Leung CH. Oligonucleotide-based luminescent detection of metal ions. Chem Asian J 2011; 6:986-1003. [PMID: 21337527 DOI: 10.1002/asia.201000870] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Indexed: 01/20/2023]
Abstract
Metal ions are prevalent in biological systems and are critically involved in essential life processes. However, excess concentrations of metals can pose a serious danger to living organisms. Oligonucleotides represent a versatile sensing platform for the detection of various molecular entities including metal ions. This review summarizes the recent advances in the development of oligonucleotide-based luminescent detection methods for metal ions.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, China.
| | | | | | | |
Collapse
|
42
|
Wang H, Ou LML, Suo Y, Yu HZ. Computer-Readable DNAzyme Assay on Disc for ppb-Level Lead Detection. Anal Chem 2011; 83:1557-63. [DOI: 10.1021/ac103177w] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Honglun Wang
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, P.R. China
| | - Lily M. L. Ou
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Yourui Suo
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, P.R. China
| | - Hua-Zhong Yu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
43
|
Wang L, Jin Y, Deng J, Chen G. Gold nanorods-based FRET assay for sensitive detection of Pb2+ using 8-17DNAzyme. Analyst 2011; 136:5169-74. [DOI: 10.1039/c1an15783c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Facile preparation of a DNA sensor for rapid herpes virus detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2010.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
|
46
|
Zuo P, Yin BC, Ye BC. DNAzyme-based microarray for highly sensitive determination of metal ions. Biosens Bioelectron 2009; 25:935-9. [DOI: 10.1016/j.bios.2009.08.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/08/2009] [Accepted: 08/15/2009] [Indexed: 10/20/2022]
|
47
|
Sefah K, Phillips JA, Xiong X, Meng L, Van Simaeys D, Chen H, Martin J, Tan W. Nucleic acid aptamers for biosensors and bio-analytical applications. Analyst 2009; 134:1765-75. [PMID: 19684896 DOI: 10.1039/b905609m] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oligonucleotides were once considered only functional as molecules for the storage of genetic information. However, the discovery of RNAzymes, and later, DNAzymes, unravelled the innate potential of oligonucleotides in many other biological applications. In the last two decades, these applications have been further expanded through the introduction of Systematic Evolution of Ligands by EXponential enrichment (SELEX) which has generated, by repeated rounds of in vitro selection, a type of molecular probe termed aptamers. Aptamers are oligonucleic acid (or peptide) molecules that can bind to various molecular targets and are viewed as complements to antibodies. Aptamers have found applications in many areas, such as bio-technology, medicine, pharmacology, microbiology, and analytical chemistry, including chromatographic separation and biosensors. In this review, we focus on the use of aptamers in the development of biosensors. Coupled with their ability to bind a variety of targets, the robust nature of oligonucleotides, in terms of synthesis, storage, and wide range of temperature stability and chemical manipulation, makes them highly suitable for biosensor design and engineering. Among the many design strategies, we discuss three general paradigms that have appeared most frequently in the literature: structure-switching, enzyme-based, and aptazyme-based designs.
Collapse
Affiliation(s)
- Kwame Sefah
- Center for Research at Bio/nano Interface, Department of Chemistry, Shands Cancer Center, UF Genetics Institute, University of Florida, Gainesville, FL 32611-7200, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Nagraj N, Liu J, Sterling S, Wu J, Lu Y. DNAzyme catalytic beacon sensors that resist temperature-dependent variations. Chem Commun (Camb) 2009:4103-5. [PMID: 19568647 DOI: 10.1039/b903059j] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The temperature-dependent variability of a Pb2+-specific 8-17E DNAzyme catalytic beacon sensor has been addressed through the introduction of mismatches in the DNAzyme, and the resulting sensors resist temperature-dependent variations from 4 to 30 degrees C.
Collapse
Affiliation(s)
- Nandini Nagraj
- Department of Chemistry, University of Illinois at Urbana, Champaign Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
49
|
Teo P, Koh LL, Hor TSA. Na+ and Ca2+ ion selective pyridylcarboxylate rings of Pd(II) and Pt(II). Dalton Trans 2009:5637-46. [DOI: 10.1039/b821379h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Bi X, Agarwal A, Balasubramanian N, Yang KL. Tripeptide-modified silicon nanowire based field-effect transistors as real-time copper ion sensors. Electrochem commun 2008. [DOI: 10.1016/j.elecom.2008.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|