1
|
Mruga D, Dzyadevych S, Soldatkin O. Development and optimisation of the biosensor for aspartate aminotransferase blood level determination. Anal Bioanal Chem 2024:10.1007/s00216-024-05682-2. [PMID: 39666000 DOI: 10.1007/s00216-024-05682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
This work presents the development and optimisation of an amperometric biosensor for determining aspartate aminotransferase (AST) activity in blood serum, using glutamate oxidase and platinum disc electrodes. AST is a key biomarker for diagnosing cardiovascular and liver diseases. The biosensor's bioselective membrane composition and formation protocol and the working solution (aspartate 8 mM, α-ketoglutarate 2 mM, pyridoxal-5-phosphate 100 µM) were optimised. The sensor demonstrated high selectivity, stability (70% retention over 2 months at - 18 °C), and sensitivity (2.37 nA min⁻1 per 10 U L⁻1), with a dynamic range of 0-500 U L⁻1 and a limit of detection of 1 U L⁻1. Comparative analysis showed the calibration curve method outperforms the standard addition method for AST measurement in serum samples. Additionally, a reference spectrophotometric technique was adapted for AST level determination, showing a strong correlation (r = 0.989) with the biosensor results. This research offers a fast, affordable, and accurate tool for early check-ups of liver and heart conditions. The biosensor's flexibility and ease of use make it suitable for further development into point-of-care testing and personalised healthcare techniques.
Collapse
Affiliation(s)
- Daryna Mruga
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Zabolotnogo Street 150, Kyiv, 03680, Ukraine.
| | - Sergei Dzyadevych
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Zabolotnogo Street 150, Kyiv, 03680, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01003, Ukraine
| | - Oleksandr Soldatkin
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Zabolotnogo Street 150, Kyiv, 03680, Ukraine
- Igor Sikorsky Kyiv Polytechnic Institute, Prospect Beresteiskyi, 37, Kyiv, 03056, Ukraine
| |
Collapse
|
2
|
Li S, Chen Z, Yang F, Yue W. Self-template sacrifice and in situ oxidation of a constructed hollow MnO 2 nanozymes for smartphone-assisted colorimetric detection of liver function biomarkers. Anal Chim Acta 2023; 1278:341744. [PMID: 37709473 DOI: 10.1016/j.aca.2023.341744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
Liver function tests play a vital role in accurately diagnosing liver diseases, monitoring treatment outcomes, and assessing liver damage severity. Here, we introduce a novel approach to develop a smartphone-assisted portable colorimetric sensor for rapid detection of three liver function biomarkers: aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). This sensor is based on the inherent enzyme-like activities of hollow MnO2 (H-MnO2). The H-MnO2 is synthesized via a self-template sacrifice and in situ oxidation strategy, utilizing a manganese-based Prussian blue analogue (Mn-PBA) as a sacrificial template. The resulting H-MnO2 exhibits a polycrystalline structure with a large specific surface area. By encapsulating the H-MnO2 in sodium alginate, we construct a portable sensing platform facilitating specific and rapid colorimetric detection of the three liver function biomarkers with the assistance of a smartphone. The developed sensor demonstrates outstanding sensitivity and stability, achieving detection limits of 4.9 U L-1, 3.6 U L-1, and 0.99 U L-1 for AST, ALT, and ALP, respectively. Importantly, this work introduces an innovative in situ oxidation method for fabricating hollow nanozymes, offering a cost-effective and convenient assay for liver function biomarkers detection.
Collapse
Affiliation(s)
- Shuaiwen Li
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, PR China
| | - Zihui Chen
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, PR China
| | - Feng Yang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, PR China
| | - Wanqing Yue
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, PR China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, PR China.
| |
Collapse
|
3
|
Chinnappan R, Mir TA, Alsalameh S, Makhzoum T, Alzhrani A, Al-Kattan K, Yaqinuddin A. Low-Cost Point-of-Care Monitoring of ALT and AST Is Promising for Faster Decision Making and Diagnosis of Acute Liver Injury. Diagnostics (Basel) 2023; 13:2967. [PMID: 37761334 PMCID: PMC10529728 DOI: 10.3390/diagnostics13182967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 09/29/2023] Open
Abstract
Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are important liver enzymes in clinical settings. Their levels are known to be elevated in individuals with underlying liver diseases and those consuming hepatotoxic drugs. Serum ALT and AST levels are crucial for diagnosing and assessing liver diseases. Serum ALT is considered the most reliable and specific candidate as a disease biomarker for liver diseases. ALT and AST levels are routinely analyzed in high-risk individuals for the bioanalysis of both liver function and complications associated with drug-induced liver injury. Typically, ALT and AST require blood sampling, serum separation, and testing. Traditional methods require expensive or sophisticated equipment and trained specialists, which is often time-consuming. Therefore, developing countries have limited or no access to these methods. To address the above issues, we hypothesize that low-cost biosensing methods (paper-based assays) can be applied to the analysis of ALT and AST levels in biological fluids. The paper-based biodetection technique can semi-quantitatively measure ALT and AST from capillary finger sticks, and it will pave the way for the development of an inexpensive and rapid alternative method for the early detection and diagnosis of liver diseases. This method is expected to significantly reduce the economic burden and aid routine clinical analysis in both developed and underdeveloped countries. The development of low-cost testing platforms and their diagnostic utility will be extremely beneficial in helping millions of patients with liver disorders.
Collapse
Affiliation(s)
- Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.M.); (A.A.); (K.A.-K.)
- Tissue/Organ Bioengineering & BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- Tissue/Organ Bioengineering & BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Suliman Alsalameh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.M.); (A.A.); (K.A.-K.)
| | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.M.); (A.A.); (K.A.-K.)
| | - Alaa Alzhrani
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.M.); (A.A.); (K.A.-K.)
- Tissue/Organ Bioengineering & BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.M.); (A.A.); (K.A.-K.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.M.); (A.A.); (K.A.-K.)
| |
Collapse
|
4
|
Chinnappan R, Mir TA, Alsalameh S, Makhzoum T, Adeeb S, Al-Kattan K, Yaqinuddin A. Aptasensors Are Conjectured as Promising ALT and AST Diagnostic Tools for the Early Diagnosis of Acute Liver Injury. Life (Basel) 2023; 13:1273. [PMID: 37374056 DOI: 10.3390/life13061273] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Abnormal levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in human serum are the most sensitive indicator of hepatocellular damage. Because liver-related health problems are directly linked to elevated levels of ALT and AST, it is important to develop accurate and rapid methods to detect these enzymes for the early diagnosis of liver disease and prevention of long-term liver damage. Several analytical methods have been developed for the detection of ALT and AST. However, these methods are based on complex mechanisms and require bulky instruments and laboratories, making them unsuitable for point-of-care application or in-house testing. Lateral flow assay (LFA)-based biosensors, on the other hand, provide rapid, accurate, and reliable results, are easy to operate, and are affordable for low-income populations. However, due to the storage, stability, batch-to-batch variations, and error margins, antibody-based LFAs are considered unaffordable for field applications. In this hypothesis, we propose the selection of aptamers with high affinity and specificity for the liver biomarkers ALT and AST to build an efficient LFA device for point-of-care applications. Though the aptamer-based LFA would be semiquantitative for ALT and AST, it would be an inexpensive option for the early detection and diagnosis of liver disease. Aptamer-based LFA is anticipated to minimize the economic burden. It can also be used for routine liver function tests regardless of the economic situation in each country. By developing a low-cost testing platform, millions of patients suffering from liver disease can be saved.
Collapse
Affiliation(s)
- Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Tissue/Organ Bioengineering & BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- Tissue/Organ Bioengineering & BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Salma Adeeb
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
5
|
Lai W, Shi Y, Zhong J, Zhou X, Yang Y, Chen Z, Zhang C. A dry chemistry-based electrochemiluminescence device for point-of-care testing of alanine transaminase. Talanta 2023; 256:124287. [PMID: 36738623 DOI: 10.1016/j.talanta.2023.124287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Liver disease causes serious public health problems because of its high prevalence, particularly affecting low- and middle-income countries. Alanine transaminase (ALT) is considered to be one of the most sensitive indicators for diagnosing liver disease. Although many strategies have been reported for ALT detection, few of them have solved the problem of automatic detection. In this work, for the first time, a dry chemistry-based electrochemiluminescence (DC-ECL) device is developed for point-of-care testing (POCT) of ALT, achieving real sample-to-answer detection. The proposed DC-ECL device consists of the following two components: (a) a DC-ECL chip consisting of the outer shell (including the top cap and pedestal) and detection layer (including the baseplate, electrode pad and carrier pad) and (b) an automatic ECL analyzer mainly including the data processing and instrument control unit, imaging detection unit, electrochemical reaction excitation unit, open detection window unit and rechargeable power supply. Under optimized conditions, the device had a wide detection range (0-1000 U/L), the ECL intensity linearly increased with ALT concentration (5-50 U/L) and logarithmic ALT concentration (50-1000 U/L), and the limit of detection was calculated to be 1.702 U/L. In addition, the DC-ECL device had the ability to measure ALT levels in human serum samples and showed acceptable selectivity, stability and repeatability. These results reveal that the DC-ECL device can overcome the disadvantages of traditional methods for ALT detection (such as high cost and requirement of professional technicians) and potentially opens the door to the development of similar POCT analyzers.
Collapse
Affiliation(s)
- Wei Lai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yanyang Shi
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Jinbiao Zhong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xinya Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yang Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zhenyu Chen
- Guangzhou First People's Hospital Nansha Hospital, Guangzhou, 511457, China
| | - Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
6
|
Effect of substituting steam-flaked corn for course ground corn on in vitro digestibility, average daily gain, serum metabolites and ruminal volatile fatty acids, and bacteria diversity in growing yaks. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2022.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Ensiling of rice straw enhances the nutritive quality, improves average daily gain, reduces in vitro methane production and increases ruminal bacterial diversity in growing Hu lambs. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Moed S, Zaman MH. A quantitative electrochemical assay for liver injury. Biosens Bioelectron 2019; 131:74-78. [PMID: 30826653 DOI: 10.1016/j.bios.2019.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
Liver diseases represent a vastly underestimated and historically neglected public health problem, disproportionately affecting those in low- and middle- income countries (LMICs). Patients on hepatotoxic medications, such as HIV and TB medications, need consistent monitoring of liver function as part of their standard of care. In high resource settings, this is often the case, but in LMICs traditional methods fail due to high cost and lack of proper equipment, supplies and trained personnel. To address this gap in technology and patient care, we have developed a quantitative, electrochemical assay capable of quantifying levels of alanine aminotransferase (ALT), a primary biomarker associated with liver function. We can quantify ALT with increased sensitivity (1.53 nA/(U/L*mm2) and over a wide, linear concentration range (40-1990 U/L). The assay demonstrated in this study can be used to overcome several pressing challenges associated with effective, timely treatment of liver disease in LMICs.
Collapse
Affiliation(s)
- Saundria Moed
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States.
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States; Howard Hughes Medical Institute, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
9
|
Thuy TNT, Tseng TTC. A Micro-Platinum Wire Biosensor for Fast and Selective Detection of Alanine Aminotransferase. SENSORS 2016; 16:s16060767. [PMID: 27240366 PMCID: PMC4934193 DOI: 10.3390/s16060767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 11/26/2022]
Abstract
In this study, a miniaturized biosensor based on permselective polymer layers (overoxidized polypyrrole (Ppy) and Nafion®) modified and enzyme (glutamate oxidase (GlutOx)) immobilized micro-platinum wire electrode for the detection of alanine aminotransferase (ALT) was fabricated. The proposed ALT biosensor was measured electrochemically by constant potential amperometry at +0.7 V vs. Ag/AgCl. The ALT biosensor provides fast response time (~5 s) and superior selectivity towards ALT against both negatively and positively charged species (e.g., ascorbic acid (AA) and dopamine (DA), respectively). The detection range of the ALT biosensor is found to be 10–900 U/L which covers the range of normal ALT levels presented in the serum and the detection limit and sensitivity are found to be 8.48 U/L and 0.059 nA/(U/L·mm2) (N = 10), respectively. We also found that one-day storage of the ALT biosensor at −20 °C right after the sensor being fabricated can enhance the sensor sensitivity (1.74 times higher than that of the sensor stored at 4 °C). The ALT biosensor is stable after eight weeks of storage at −20 °C. The sensor was tested in spiked ALT samples (ALT activities: 20, 200, 400, and 900 U/L) and reasonable recoveries (70%~107%) were obtained.
Collapse
Affiliation(s)
- Tran Nguyen Thanh Thuy
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Tina T-C Tseng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
10
|
Stefan-van Staden RI, Bokretsion RG, van Staden JF, Aboul-Enein HY. Immunosensors in Clinical and Environmental Analysis. Crit Rev Anal Chem 2014. [DOI: 10.1080/10408347.2013.866035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Seo JH, Lee HY, Cha HJ. Characterization of the GM1 pentasaccharide–Vibrio cholera toxin interaction using a carbohydrate-based electrochemical system. Analyst 2012; 137:2860-5. [DOI: 10.1039/c2an16221k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Wu J, Park JP, Dooley K, Cropek DM, West AC, Banta S. Rapid development of new protein biosensors utilizing peptides obtained via phage display. PLoS One 2011; 6:e24948. [PMID: 22003385 PMCID: PMC3189179 DOI: 10.1371/journal.pone.0024948] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/24/2011] [Indexed: 01/20/2023] Open
Abstract
There is a consistent demand for new biosensors for the detection of protein targets, and a systematic method for the rapid development of new sensors is needed. Here we present a platform where short unstructured peptides that bind to a desired target are selected using M13 phage display. The selected peptides are then chemically synthesized and immobilized on gold, allowing for detection of the target using electrochemical techniques such as electrochemical impedance spectroscopy (EIS). A quartz crystal microbalance (QCM) is also used as a diagnostic tool during biosensor development. We demonstrate the utility of this approach by creating a novel peptide-based electrochemical biosensor for the enzyme alanine aminotransferase (ALT), a well-known biomarker of hepatotoxicity. Biopanning of the M13 phage display library over immobilized ALT, led to the rapid identification of a new peptide (ALT5-8) with an amino acid sequence of WHWRNPDFWYLK. Phage particles expressing this peptide exhibited nanomolar affinity for immobilized ALT (K(d,app) = 85±20 nM). The newly identified ALT5-8 peptide was then chemically synthesized with a C-terminal cysteine for gold immobilization. The performance of the gold-immobilized peptides was studied with cyclic voltammetry (CV), QCM, and EIS. Using QCM, the sensitivity for ALT detection was 8.9±0.9 Hz/(µg/mL) and the limit of detection (LOD) was 60 ng/mL. Using EIS measurements, the sensitivity was 142±12 impedance percentage change %/(µg/mL) and the LOD was 92 ng/mL. In both cases, the LOD was below the typical concentration of ALT in human blood. Although both QCM and EIS produced similar LODs, EIS is preferable due to a larger linear dynamic range. Using QCM, the immobilized peptide exhibited a nanomolar dissociation constant for ALT (K(d) = 20.1±0.6 nM). These results demonstrate a simple and rapid platform for developing and assessing the performance of sensitive, peptide-based biosensors for new protein targets.
Collapse
Affiliation(s)
- Jun Wu
- Department of Chemical Engineering, Columbia University, New York, New York, United States of America
| | - Jong Pil Park
- Department of Chemical Engineering, Columbia University, New York, New York, United States of America
| | - Kevin Dooley
- Department of Chemical Engineering, Columbia University, New York, New York, United States of America
| | - Donald M. Cropek
- United States Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), Champaign, Illinois, United States of America
| | - Alan C. West
- Department of Chemical Engineering, Columbia University, New York, New York, United States of America
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Hsueh CJ, Wang JH, Dai L, Liu CC. Determination of alanine aminotransferase with an electrochemical nano ir-C biosensor for the screening of liver diseases. BIOSENSORS-BASEL 2011; 1:107-17. [PMID: 25586923 PMCID: PMC4264364 DOI: 10.3390/bios1030107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 06/15/2011] [Accepted: 07/01/2011] [Indexed: 11/16/2022]
Abstract
Alanine aminotransaminase (ALT), is an enzyme that normally resides in serum and body tissues, especially in the liver. It is released into the serum as a result of tissue injury; hence the concentration of ALT in the serum may be increased with acute damage to hepatic cells. A single use, disposable biosensor, comprising iridium nano-particle as catalyst dispersed on carbon paste, has been developed for the determination of ALT concentration. The biosensor is based on quantifying H2O2 concentration produced by a serial of ALT enzymatic reactions. It operates well at room temperature in different physiological fluids: phosphate buffer, calf serum and human serum for ALT concentration of 0–544 ng/mL. Experimental results in human serum are compared to those obtained by spectrophotometric assays with excellent agreement. Therefore, the Ir/C biosensor shows good relationship on the dilution of concentrated ALT clinical applications.
Collapse
Affiliation(s)
- Chang-Jung Hsueh
- Department of Chemical Engineering and Electronics Design Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Joanne H Wang
- Department of Biology, Brown University, 69 Brown Street, Providence, RI 02912, USA.
| | - Liming Dai
- Department of Chemical Engineering and Electronics Design Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Chung-Chiun Liu
- Department of Chemical Engineering and Electronics Design Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
14
|
Han YD, Song SY, Lee JH, Lee DS, Yoon HC. Multienzyme-modified biosensing surface for the electrochemical analysis of aspartate transaminase and alanine transaminase in human plasma. Anal Bioanal Chem 2011; 400:797-805. [DOI: 10.1007/s00216-011-4797-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/28/2022]
|
15
|
Development and molecular recognition of Calixcrownchip as an electrochemical ALT immunosensor. J INCL PHENOM MACRO 2009. [DOI: 10.1007/s10847-009-9702-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Kim HJ, Oh SW, Kim DJ, Choi EY. Abundance of Immunologically Active Alanine Aminotransferase in Sera of Liver Cirrhosis and Hepatocellular Carcinoma Patients. Clin Chem 2009; 55:1022-5. [DOI: 10.1373/clinchem.2008.102996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Although alanine aminotransferase (ALT) is a widely used indicator of liver function, ALT enzymatic activity may not always reflect the degree of liver damage. Improved methods or approaches would be useful.
Methods: Monoclonal antibodies (mAbs) to ALT were generated to develop a sandwich enzyme immunoassay system. We used an immunoassay to measure ALT mass concentration and a common biochemical analyzer to assay ALT enzymatic activity in serum samples from patients with liver diseases and healthy individuals. The results from the 2 methods were compared and analyzed by ROC curve analysis.
Results: The ALT sandwich enzyme immunoassay system demonstrated reliable performance in linearity, recovery, and imprecision studies. The ALT activity assay exhibited a higher diagnostic accuracy in acute hepatitis (AH) patients, but the ALT immunoassay exhibited higher sensitivity and specificity in patients with chronic liver diseases. The areas under the ROC curve for ALT mass and enzymatic activity were 0.82 and 0.98, respectively, in AH, 0.99 and 0.52 in hepatocellular carcinoma (HCC), and 0.94 and 0.45 in liver cirrhosis (LC). Serum samples from HCC and LC patients had higher amounts of ALT–immunoglobulin complexes [median A450, 1.7 (interquartile range, 1.4–1.9)] than the other groups [1.3 (interquartile range, 0.9–1.6)].
Conclusions: Our analysis of sera from the HCC and LC patient groups revealed considerable amounts of immunologically active but catalytically inactive ALT. The amount of the ALT–immunoglobulin complex increased with the severity of the liver disease. The 2-site immunoassay method may be useful in the differential diagnosis of some causes of liver disease.
Collapse
Affiliation(s)
- Hyun Jeong Kim
- Department of BioMedical Sciences, Hallym University, ChunCheon, Korea
| | - Sang Wook Oh
- Department of Biology Education, Institute of Fusion Science and Institute of Science Education, Chonbuk National University, JeonJu, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University Medical Center, ChunCheon, Korea
| | - Eui Yul Choi
- Department of BioMedical Sciences, Hallym University, ChunCheon, Korea
| |
Collapse
|
17
|
Jamal M, Worsfold O, McCormac T, Dempsey E. A stable and selective electrochemical biosensor for the liver enzyme alanine aminotransferase (ALT). Biosens Bioelectron 2009; 24:2926-30. [PMID: 19356918 DOI: 10.1016/j.bios.2009.02.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/13/2009] [Accepted: 02/26/2009] [Indexed: 11/19/2022]
Abstract
An electrochemical method to determine alanine aminotransferase (ALT) activity over its normal and elevated physiological range was developed based upon detection of L-glutamate at a glutamate oxidase-modified platinum electrode. Measurements were carried out in the presence of ALT co-substrates L-alanine and alpha-ketoglutarate and current response from either the oxidation of hydrogen peroxide or the re-oxidation of the mediator ferrocene carboxylic acid was employed. The enzyme electrode was tested over a 6-month period and found to retain 79% of its original activity towards ALT detection with >200 measurements performed over this time. Signals associated with interfering electroactive species (ascorbic acid and uric acid) were eliminated using background subtraction at a denatured glutamate oxidase enzyme electrode. The sensitivity of the device was found to be 0.845 nA U(-1) L ALT with t(90)=180 s, linear range 10-1000 U L(-1) and LOD of 3.29 U L(-1) using amperometry at E(app)=0.4 V vs. Ag/AgCl at 308 K (35 degrees C).
Collapse
Affiliation(s)
- Mamun Jamal
- Centre for Research in Electroanalytical Technologies (CREATE), Department of Science, Institute of Technology Tallaght, Tallaght, Dublin 24, Ireland
| | | | | | | |
Collapse
|
18
|
An electrochemical biosensor array for rapid detection of alanine aminotransferase and aspartate aminotransferase. Biosci Biotechnol Biochem 2009; 73:474-8. [PMID: 19270406 DOI: 10.1271/bbb.60043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An increment of alanine aminotransferase (ALT) or aspartate aminotransferase (AST) in human serum indicates an abnormal symptom of the liver. Hence, an electrochemical biosensor array that uses micro electro mechanical systems technology is required for rapid and integrated measurement of ALT/AST. Here we describe a biosensor array consisting of two glutamate sensors. It turned out that porous silicon layers formed on each working electrode were useful to increase the effective surface area. This biosensor array was constructed with platinum electrodes and a polydimethylsiloxane (PDMS) microchannel. Electrodes in sampling wells minimized a cross-interference effect and permitted multiple sampling by immobilization with glutamate oxidase using a silanization technique. The device sensitivities derived from semi-logarithmic plots were 0.145 microA/(U/l) for ALT and 0.463 microA/(U/l) for AST over a range of 1.3 U/l to 250 U/l. Hene, this ALT/AST biosensor array can be applied in diagnostic and home use.
Collapse
|
19
|
Peng Y, Shi M, Kong J. Detection of Biomarkers for Liver Fibrosis Using High-Throughput Electrochemical Microimmunosensor. ELECTROANAL 2008. [DOI: 10.1002/elan.200804250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Aspartate Aminotransferase (AST/GOT) and Alanine Aminotransferase (ALT/GPT) Detection Techniques. SENSORS 2006. [DOI: 10.3390/s6070756] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Díaz-González M, González-García M, Costa-García A. Recent Advances in Electrochemical Enzyme Immunoassays. ELECTROANAL 2005. [DOI: 10.1002/elan.200503357] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Jung HS, Kim JM, Park JW, Lee HY, Kawai T. Amperometric immunosensor for direct detection based upon functional lipid vesicles immobilized on nanowell array electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:6025-9. [PMID: 15952856 DOI: 10.1021/la047212k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
An original electrochemical immunosensor has now been developed that is based upon the spontaneous immobilization of biotinylated, functional lipid vesicles (FLVs) on a polymeric resist layer. An electrode was fabricated utilizing a form of electron-beam (e-beam) that has been used to fabricate 200 nm (nanoscale) wells in the resist layer covering of the gold electrode. The stability of adhered FLVs upon the nanowell (NW) electrode was observed by atomic force microscopy (AFM). From these observations, we were able to determine that the assembled FLVs primarily adhered as individual molecules, that is, without the aggregation or fusion noted in earlier designs. Additionally, these immobilized FLVs demonstrated clearly defined redox activity in electrochemical measurements. Streptavidin, biotinylated capture antibody, and target proteins were consequently injected in order to set up the immunoassay environment. Electrochemical immunoassay experimentation was performed on the NW array electrode with model proteins, such as human serum albumin (HSA) and carbonic anhydrase from bovine (CAB). We observed a notable current decrease, following the redox path, interrupted by the target HSA, indicating the binding of the capture antibody with the target antigen. On the basis of these results, we propose a new type of immunosensor incorporating this mechanism of spontaneous immobilization of FLVs.
Collapse
Affiliation(s)
- Ho Sup Jung
- Institute for Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | | | | | | | |
Collapse
|