1
|
Yamaura H, Shimoyama A, Hosomi K, Kabayama K, Kunisawa J, Fukase K. Chemical Synthesis of Acetobacter pasteurianus Lipid A with a Unique Tetrasaccharide Backbone and Evaluation of Its Immunological Functions. Angew Chem Int Ed Engl 2024; 63:e202402922. [PMID: 38581637 DOI: 10.1002/anie.202402922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Lipopolysaccharide (LPS), a cell surface component of Gram-negative bacteria, activates innate immunity. Its active principle is the terminal glycolipid lipid A. Acetobacter pasteurianus is a Gram-negative bacterium used in the fermentation of traditional Japanese black rice vinegar (kurozu). In this study, we focused on A. pasteurianus lipid A, which is a potential immunostimulatory component of kurozu. The active principle structure of A. pasteurianus lipid A has not yet been identified. Herein, we first systematically synthesized three types of A. pasteurianus lipid As containing a common and unique tetrasaccharide backbone. We developed an efficient method for constructing the 2-trehalosamine skeleton utilizing borinic acid-catalyzed glycosylation to afford 1,1'-α,α-glycoside in high yield and stereoselectivity. A common tetrasaccharide intermediate with an orthogonal protecting group pattern was constructed via [2+2] glycosylation. After introducing various fatty acids, all protecting groups were removed to achieve the first chemical synthesis of three distinct types of A. pasteurianus lipid As. After evaluating their immunological function using both human and murine cell lines, we identified the active principles of A. pasteurianus LPS. We also found the unique anomeric structure of A. pasteurianus lipid A contributes to its high chemical stability.
Collapse
Affiliation(s)
- Haruki Yamaura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 567-0085, Osaka, Japan
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, 1-1 Yamadaoka, 565-0871, Suita, Osaka, Japan
- Forefront Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 567-0085, Osaka, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
- Forefront Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 567-0085, Osaka, Japan
- Forefront Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, 1-1 Yamadaoka, 565-0871, Suita, Osaka, Japan
- Forefront Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama, 560-0043, Toyonaka, Osaka, Japan
| |
Collapse
|
2
|
Ding D, Wen Y, Liao CM, Yin XG, Zhang RY, Wang J, Zhou SH, Zhang ZM, Zou YK, Gao XF, Wei HW, Yang GF, Guo J. Self-Adjuvanting Protein Vaccine Conjugated with a Novel Synthetic TLR4 Agonist on Virus-Like Liposome Induces Potent Immunity against SARS-CoV-2. J Med Chem 2023; 66:1467-1483. [PMID: 36625758 PMCID: PMC9844103 DOI: 10.1021/acs.jmedchem.2c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 01/11/2023]
Abstract
Exploring potent adjuvants and new vaccine strategies is crucial for the development of protein vaccines. In this work, we synthesized a new TLR4 agonist, structurally simplified lipid A analogue GAP112, as a potent built-in adjuvant to improve the immunogenicity of SARS-CoV-2 spike RBD protein. The new TLR4 agonist GAP112 was site-selectively conjugated on the N-terminus of RBD to construct an adjuvant-protein conjugate vaccine in a liposomal formulation. It is the first time that a TLR4 agonist is site-specifically and quantitatively conjugated to a protein antigen. Compared with an unconjugated mixture of GAP112/RBD, a two-dose immunization of the GAP112-RBD conjugate vaccine strongly activated innate immune cells, elicited a 223-fold increase in RBD-specific antibodies, and markedly enhanced T-cell responses. Antibodies induced by GAP112-RBD also effectively cross-neutralized SARS-CoV-2 variants (Delta/B.1.617.2 and Omicron/B.1.1.529). This conjugate strategy provides an effective method to greatly enhance the immunogenicity of antigen in protein vaccines against SARS-CoV-2 and other diseases.
Collapse
Affiliation(s)
- Dong Ding
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Yu Wen
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Chun-Miao Liao
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Xu-Guang Yin
- School of Medicine, Shaoxing
University, Shaoxing312000, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Jian Wang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Zhi-Ming Zhang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Yong-Ke Zou
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and
Instrumentation, East China University of Technology,
Nanchang330013, China
| | - Hua-Wei Wei
- Jiangsu East-Mab Biomedical Technology
Co. Ltd, Nantong226499, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| |
Collapse
|
3
|
Balas L, Feillet-Coudray C, Durand T. Branched Fatty Acyl Esters of Hydroxyl Fatty Acids (FAHFAs), Appealing Beneficial Endogenous Fat against Obesity and Type-2 Diabetes. Chemistry 2018; 24:9463-9476. [DOI: 10.1002/chem.201800853] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Laurence Balas
- Institut des Biomolécules Max Mousseron, IBMM; Université de Montpellier; CNRS, ENSCM; Faculté de Pharmacie; 15 av Charles Flahault, BP 14491 F-34093 Montpellier Cedex 05 France
| | | | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM; Université de Montpellier; CNRS, ENSCM; Faculté de Pharmacie; 15 av Charles Flahault, BP 14491 F-34093 Montpellier Cedex 05 France
| |
Collapse
|
4
|
Baldridge JR, Cluff CW, Evans JT, Lacy MJ, Stephens JR, Brookshire VG, Rong Wang, Ward JR, Yorgensen YM, Persing DH, Johnson DA. Immunostimulatory activity of aminoalkyl glucosaminide 4-phosphates (AGPs): induction of protective innate immune responses by RC-524 and RC-529. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519020080061501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Earlier we showed that the structural requirements for adjuvanticity among the aminoalkyl glucosaminide 4-phosphate (AGP) class of synthetic immunostimulants may be less strict than those for other endotoxic activities, including the induction of nitric oxide synthase in murine macrophages and cytokine production in human whole blood. The known role of nitric oxide and pro-inflammatory cytokines in the activation of host defenses against infection prompted us to examine the ability of certain AGPs to enhance non-specific resistance in mice to Listeria monocytogenes and influenza infections as well as to stimulate the production of pro-inflammatory cytokines in mouse splenocytes, human PBMCs, and human U937 histiocytic lymphoma cells. Intranasal administration of RC-524 or RC-529 to mice 2 days prior to a lethal influenza challenge provided significant protection in each case. Similarly, the intravenous administration of these AGPs induced resistance to L. monocytogenes infection as measured by survival or reduction of bacteria in the spleen. Activation of the innate immune response by AGPs appears to involve activation of Toll-like receptor 4 (TLR4) because RC-524 failed to elicit a protective effect in C3H/HeJ mice which have a defect in TLR4 signaling or induce significant cytokine levels in C3H/HeJ splenocytes. Both AGPs also stimulated pro-inflammatory cytokine release in human cell cultures in a dose-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rong Wang
- Corixa Corporation, Hamilton, Montana, USA
| | | | | | | | | |
Collapse
|
5
|
Preparation of enantiomerically enriched aromatic β-hydroxynitriles and halohydrins by ketone reduction with recombinant ketoreductase KRED1-Pglu. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Ianni F, Pataj Z, Gross H, Sardella R, Natalini B, Lindner W, Lämmerhofer M. Direct enantioseparation of underivatized aliphatic 3-hydroxyalkanoic acids with a quinine-based zwitterionic chiral stationary phase. J Chromatogr A 2014; 1363:101-8. [DOI: 10.1016/j.chroma.2014.03.060] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 01/10/2023]
|
7
|
Xu GC, Yu HL, Zhang ZJ, Xu JH. Stereocomplementary Bioreduction of β-Ketonitrile without Ethylated Byproduct. Org Lett 2013; 15:5408-11. [DOI: 10.1021/ol402733y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guo-Chao Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Hui-Lei Yu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Zhi-Jun Zhang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| |
Collapse
|
8
|
Magano J, Dunetz JR. Large-Scale Carbonyl Reductions in the Pharmaceutical Industry. Org Process Res Dev 2012. [DOI: 10.1021/op2003826] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Javier Magano
- Chemical Research and Development, Pharmaceutical Sciences, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Joshua R. Dunetz
- Chemical Research and Development, Pharmaceutical Sciences, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
9
|
|
10
|
Maiti KK, Decastro M, El-Sayed ABMAA, Foote MI, Wolfert MA, Boons GJ. Chemical synthesis and proinflammatory responses of monophosphoryl lipid A adjuvant candidates. European J Org Chem 2010; 2010:80-91. [PMID: 20228877 PMCID: PMC2835315 DOI: 10.1002/ejoc.200900973] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Indexed: 11/08/2022]
Abstract
Lipopolysaccharides (LPS), which are structural components of the outer surface membrane of Gram-negative bacteria, trigger innate immune responses through activation of Toll-like receptor 4 (TLR4). Such responses may be exploited for the development of adjuvants and in particular monophosphoryl lipid A (MPLA) obtained by controlled hydrolysis of LPS of Salmonella minnesota, exhibits low toxicity yet possesses beneficial immuno-stimulatory properties. We have developed an efficient synthetic approach for the preparation of a major component of MPLA (1), which has as a key feature the use of allyloxycarbonates (Alloc) as permanent protecting groups for the C-3 and C-4 hydroxyls of the proximal glucosamine unit. The latter protecting groups greatly facilitated deprotection of the fully assembled compound. Furthermore, the amino functions were protected as N-2,2,2-trichloroethoxycarbamates (Troc), which performed efficient neighboring group participation to give selectively 1,2-trans-glycosides and could easily be removed under mild conditions without affecting the permanent Alloc carbonates and anomeric dimethylthexylsilyl (TDS) ether. The synthetic methodology was also employed for the preparation of a monophosphoryl lipid A (2) derivative that has the anomeric center of the proximal sugar modified as a methyl glycoside. Compound 1 was not able to induce cytokine production in mouse macrophages whereas methyl glycoside 2 displayed activity, however it has a lower potency and efficacy than lipid A obtained by controlled hydrolysis S. minnesota. This indicates compound 2 is an attractive candidate for adjuvant development and that 1 is not the active substance of MPLA obtained by controlled hydrolysis of LPS.
Collapse
Affiliation(s)
- Kaustabh K Maiti
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
11
|
Zhang Y, Gaekwad J, Wolfert MA, Boons GJ. Synthetic tetra-acylated derivatives of lipid A from Porphyromonas gingivalis are antagonists of human TLR4. Org Biomol Chem 2008; 6:3371-81. [PMID: 18802645 PMCID: PMC2793594 DOI: 10.1039/b809090d] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tetra-acylated lipid As derived from Porphyromonas gingivalis LPS have been synthesized using a key disaccharide intermediate functionalized with levulinate (Lev), allyloxycarbonate (Alloc) and anomeric dimethylthexylsilyl (TDS) as orthogonal protecting groups and 9-fluorenylmethoxycarbamate (Fmoc) and azido as amino protecting groups. Furthermore, an efficient cross-metathesis has been employed for the preparation of the unusual branched R-(3)-hydroxy-13-methyltetradecanic acid and (R)-3-hexadecanoyloxy-15-methylhexadecanoic acid of P. gingivalis lipid A. Biological studies have shown that the synthetic lipid As cannot activate human and mouse TLR2 and TLR4 to produce cytokines. However, it has been found that the compounds are potent antagonist of cytokine secretion by human monocytic cells induced by enteric LPS.
Collapse
Affiliation(s)
- Yanghui Zhang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Jidnyasa Gaekwad
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Margreet A. Wolfert
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
12
|
Vasan M, Wolfert MA, Boons GJ. Agonistic and antagonistic properties of a Rhizobium sin-1 lipid A modified by an ether-linked lipid. Org Biomol Chem 2007; 5:2087-97. [PMID: 17581652 PMCID: PMC2830616 DOI: 10.1039/b704427e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LPS from Rhizobium sin-1 (R. sin-1) can antagonize the production of tumor necrosis factor alpha (TNF-alpha) by E. coli LPS in human monocytic cells. Therefore these compounds provide interesting leads for the development of therapeutics for the prevention or treatment of septic shock. Detailed structure activity relationship studies have, however, been hampered by the propensity of these compounds to undergo beta-elimination to give biological inactive enone derivatives. To address this problem, we have chemically synthesized in a convergent manner a R. sin-1 lipid A derivative in which the beta-hydroxy ester at C-3 of the proximal sugar unit has been replaced by an ether linked moiety. As expected, this derivative exhibited a much-improved chemical stability. Furthermore, its ability to antagonize TNF-alpha production induced by enteric LPS was only slightly smaller than that of the parent ester modified derivative demonstrating that the ether-linked lipids affect biological activities only marginally. Furthermore, it has been shown for the first time that R. sin-1 LPS and the ether modified lipid A are also able to antagonize the production of the cytokine interferon-inducible protein 10, which arises from the TRIF-dependent pathway. The latter pathway was somewhat more potently inhibited than the MyD88-dependent pathway. Furthermore, it was observed that the natural LPS possesses much greater activity than the synthetic and isolated lipid As, which indicates that di-KDO moiety is important for optimal biological activity. It has also been found that isolated R. sin-1 LPS and lipid A agonize a mouse macrophage cell line to induce the production of TNF-alpha and interferon beta in a Toll-like receptor 4-dependent manner demonstrating species specific properties.
Collapse
Affiliation(s)
- Mahalakshmi Vasan
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602 Fax (+)706-542-4412
| | - Margreet A. Wolfert
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602 Fax (+)706-542-4412
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602 Fax (+)706-542-4412
| |
Collapse
|
13
|
Zhang Y, Gaekwad J, Wolfert MA, Boons GJ. Modulation of innate immune responses with synthetic lipid A derivatives. J Am Chem Soc 2007; 129:5200-16. [PMID: 17391035 PMCID: PMC2529018 DOI: 10.1021/ja068922a] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The lipid A moiety of lipopolysaccharides (LPS) initiates innate immune responses by interacting with Toll-like receptor 4 (TLR4), which results in the production of a wide range of cytokines. Derivatives of lipid A show potential for use as immuno-modulators for the treatment of a wide range of diseases and as adjuvants for vaccinations. Development to these ends requires a detailed knowledge of patterns of cytokines induced by a wide range of derivatives. This information is difficult to obtain by using isolated compounds due to structural heterogeneity and possible contaminations with other inflammatory components. To address this problem, we have developed a synthetic approach that provides easy access to a wide range of lipid A's by employing a common disaccharide building block functionalized with a versatile set of protecting groups. The strategy was employed for the preparation of lipid A's derived from E. coli and S. typhimurium. Mouse macrophages were exposed to the synthetic compounds and E. coli 055:B5 LPS, and the resulting supernatants were examined for tumor necrosis factor alpha (TNF-alpha), interferon beta (IFN-beta), interleukin 6 (IL-6), interferon-inducible protein 10 (IP-10), RANTES, and IL-1beta. It was found that for each compound, the potencies (EC50 values) for the various cytokines differed by as much as 100-fold. These differences did not follow a bias toward a MyD88- or TRIF-dependent response. Instead, it was established that the observed differences in potencies of secreted TNF-alpha and IL-1beta were due to differences in the processing of respective pro-proteins. Examination of the efficacies (maximum responses) of the various cytokines showed that each synthetic compound and E. coli 055:B5 LPS induced similar efficacies for the production of IFN-beta and IP-10. However, lipid A's 1-4 gave lower efficacies for the production of RANTES and IL-6 as compared to LPS. Collectively, the presented results demonstrate that cytokine secretion induced by LPS and lipid A is complex, which can be exploited for the development of immuno-modulating therapies.
Collapse
Affiliation(s)
- Yanghui Zhang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
14
|
Bazin HG, Bess LS, Livesay MT, Ryter KT, Johnson CL, Arnold JS, Johnson DA. New synthesis of glycolipid immunostimulants RC-529 and CRX-524. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.01.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Zamyatina A, Sekljic H, Brade H, Kosma P. Synthesis and purity assessment of tetra- and pentaacyl lipid A of Chlamydia containing (R)-3-hydroxyicosanoic acid. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Demchenko AV, Wolfert MA, Santhanam B, Moore JN, Boons GJ. Synthesis and biological evaluation of Rhizobium sin-1 lipid A derivatives. J Am Chem Soc 2003; 125:6103-12. [PMID: 12785841 DOI: 10.1021/ja029316s] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly convergent strategy for the synthesis of several derivatives of the lipid A of Rhizobium sin-1 has been developed. The approach employed the advanced intermediate 3-O-acetyl-6-O-(3-O-acetyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-beta-d-glucopyrano-syl)-2-azido-4-O-benzyl-2-deoxy-1-thio-alpha-d-glucopyranoside (5), which is protected in such a way that the anomeric center, the C-2 and C-2' amino groups, and the C-3 and C-3' hydroxyls can be selectively functionalized. The synthetic strategy was used for the preparation of 2-deoxy-6-O-[2-deoxy-3-O-[(R)-3-hydroxy-hexadecanoyl]-2-[(R)-3-octacosanoyloxy-hexadecan]amido-beta-d-glucopyranosyl]-2-[(R)-3-hydroxy-hexadecan]amido-3-O-[(R)-3-hydroxy-hexadecanoyl]-alpha-d-glucopyranose (11) and 2-deoxy-6-O-[2-deoxy-3-O-[(R)-3-hydroxy-hexadecanoyl]-2-[(R)-3-octacosanoyloxy-hexadecan]amido-beta-d-glucopyranosyl]-2-[(R)-3-hydroxy-hexadecan]amido-3-O-[(R)-3-hydroxy-hexadecanoyl]-d-glucono-1,5-lactone (13), which contain an unusual octacosanoic acid moiety and differ in the oxidation state of the anomeric center. The results of biological studies indicate that 11 and 13 lack the proinflammatory effects of Escherichia coli lipopolysaccharides (LPS). Furthermore, 13 emulated the ability of heterogeneous R. sin-1 LPS to antagonize enteric LPS, providing evidence for the critical role of the gluconolactone moiety of R. sin-1 LPS in mediating this antagonistic effect. Compound 13 is the first example of a lipid A derivative that is devoid of phosphate but possesses antagonistic properties, making it an attractive lead compound for development of a drug to use in the treatment of Gram-negative septicemia.
Collapse
Affiliation(s)
- Alexei V Demchenko
- Complex Carbohydrate Research Center, The University of Georgia, 220 Riverbend Road, Athens 30602, USA
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Johnson DA, Sowell CG, Johnson CL, Livesay MT, Keegan DS, Rhodes MJ, Ulrich JT, Ward JR, Cantrell JL, Brookshire VG. Synthesis and biological evaluation of a new class of vaccine adjuvants: aminoalkyl glucosaminide 4-phosphates (AGPs). Bioorg Med Chem Lett 1999; 9:2273-8. [PMID: 10465560 DOI: 10.1016/s0960-894x(99)00374-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel series of acylated omega-aminoalkyl 2-amino-2-deoxy-4-phosphono-beta-D-glucopyranosides (aminoalkyl glucosaminide 4-phosphates) was synthesized and screened for immunostimulant activity. Several of these compounds enhance the production of tetanus toxoid-specific antibodies in mice and augment vaccine-induced cytotoxic T cells against EG.7-ova target cells.
Collapse
Affiliation(s)
- D A Johnson
- Pharmaceutical Discovery Division, Ribi ImmunoChem Research, Inc., Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Matsuyama K, Ikunaka M. A practical enantioselective synthesis of (S)-3-hydroxytetradecanoic acid. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0957-4166(99)00290-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Johnson DA, Sowell CG, Keegan DS, Livesay MT. Chemical Synthesis of the Major Constituents ofSalmonella MinnesotaMonophosphoryl Lipid A. J Carbohydr Chem 1998. [DOI: 10.1080/07328309808002363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|