1
|
Wakisaka M, Tanaka SI, Takano K. Utilization of low-stability variants in protein evolutionary engineering. Int J Biol Macromol 2024; 272:132946. [PMID: 38848839 DOI: 10.1016/j.ijbiomac.2024.132946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Evolutionary engineering involves repeated mutations and screening and is widely used to modify protein functions. However, it is important to diversify evolutionary pathways to eliminate the bias and limitations of the variants by using traditionally unselected variants. In this study, we focused on low-stability variants that are commonly excluded from evolutionary processes and tested a method that included an additional restabilization step. The esterase from the thermophilic bacterium Alicyclobacillus acidocaldarius was used as a model protein, and its activity at its optimum temperature of 65 °C was improved by evolutionary experiments using random mutations by error-prone PCR. After restabilization using low-stability variants with low-temperature (37 °C) activity, several re-stabilizing variants were obtained from a large number of variant libraries. Some of the restabilized variants achieved by removing the destabilizing mutations showed higher activity than that of the wild-type protein. This implies that low-stability variants with low-temperature activity can be re-evolved for future use. This method will enable further diversification of evolutionary pathways.
Collapse
Affiliation(s)
- Mitsutoshi Wakisaka
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Shun-Ichi Tanaka
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan.
| |
Collapse
|
2
|
Riziotis IG, Ribeiro AJM, Borkakoti N, Thornton JM. The 3D Modules of Enzyme Catalysis: Deconstructing Active Sites into Distinct Functional Entities. J Mol Biol 2023; 435:168254. [PMID: 37652131 DOI: 10.1016/j.jmb.2023.168254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Enzyme catalysis is governed by a limited toolkit of residues and organic or inorganic co-factors. Therefore, it is expected that recurring residue arrangements will be found across the enzyme space, which perform a defined catalytic function, are structurally similar and occur in unrelated enzymes. Leveraging the integrated information in the Mechanism and Catalytic Site Atlas (M-CSA) (enzyme structure, sequence, catalytic residue annotations, catalysed reaction, detailed mechanism description), 3D templates were derived to represent compact groups of catalytic residues. A fuzzy template-template search, allowed us to identify those recurring motifs, which are conserved or convergent, that we define as the "modules of enzyme catalysis". We show that a large fraction of these modules facilitate binding of metal ions, co-factors and substrates, and are frequently the result of convergent evolution. A smaller number of convergent modules perform a well-defined catalytic role, such as the variants of the catalytic triad (i.e. Ser-His-Asp/Cys-His-Asp) and the saccharide-cleaving Asp/Glu triad. It is also shown that enzymes whose functions have diverged during evolution preserve regions of their active site unaltered, as shown by modules performing similar or identical steps of the catalytic mechanism. We have compiled a comprehensive library of catalytic modules, that characterise a broad spectrum of enzymes. These modules can be used as templates in enzyme design and for better understanding catalysis in 3D.
Collapse
Affiliation(s)
- Ioannis G Riziotis
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK.
| | - António J M Ribeiro
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK
| | - Neera Borkakoti
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK
| | - Janet M Thornton
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK
| |
Collapse
|
3
|
Morris MA, Mills CE, Paloni JM, Miller EA, Sikes HD, Olsen BD. High-Throughput Screening of Streptavidin-Binding Proteins in Self-Assembled Solid Films for Directed Evolution of Materials. NANO LETTERS 2023; 23:7303-7310. [PMID: 37566825 DOI: 10.1021/acs.nanolett.3c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Evolution has shaped the development of proteins with an incredible diversity of properties. Incorporating proteins into materials is desirable for applications including biosensing; however, high-throughput selection techniques for screening protein libraries in materials contexts is lacking. In this work, a high-throughput platform to assess the binding affinity for ordered sensing proteins was established. A library of fusion proteins, consisting of an elastin-like polypeptide block, one of 22 variants of rcSso7d, and a coiled-coil order-directing sequence, was generated. All selected variants had high binding in films, likely due to the similarity of the assay to magnetic bead sorting used for initial selection, while solution binding was more variable. From these results, both the assembly of the fusion proteins in their operating state and the functionality of the binding protein are key factors in the biosensing performance. Thus, the integration of directed evolution with assembled systems is necessary to the design of better materials.
Collapse
Affiliation(s)
- Melody A Morris
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Carolyn E Mills
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Justin M Paloni
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eric A Miller
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Zhang L, Ritter T. A Perspective on Late-Stage Aromatic C-H Bond Functionalization. J Am Chem Soc 2022; 144:2399-2414. [PMID: 35084173 PMCID: PMC8855345 DOI: 10.1021/jacs.1c10783] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 12/18/2022]
Abstract
Late-stage functionalization of C-H bonds (C-H LSF) can provide a straightforward approach to the efficient synthesis of functionalized complex molecules. However, C-H LSF is challenging because the C-H bond must be functionalized in the presence of various other functional groups. In this Perspective, we evaluate aromatic C-H LSF on the basis of four criteria─reactivity, chemoselectivity, site-selectivity, and substrate scope─and provide our own views on current challenges as well as promising strategies and areas of growth going forward.
Collapse
Affiliation(s)
- Li Zhang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| |
Collapse
|
5
|
Saini R, Patel AK, Saini JK, Chen CW, Varjani S, Singhania RR, Di Dong C. Recent advancements in prebiotic oligomers synthesis via enzymatic hydrolysis of lignocellulosic biomass. Bioengineered 2022; 13:2139-2172. [PMID: 35034543 PMCID: PMC8973729 DOI: 10.1080/21655979.2021.2023801] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Interest in functional food, such as non-digestible prebiotic oligosaccharides is increasing day by day and their production is shifting toward sustainable manufacturing. Due to the presence of high carbohydrate content, lignocellulosic biomass (LCB) is the most-potential, cost-effective and sustainable substrate for production of many useful products, including lignocellulose-derived prebiotic oligosaccharides (LDOs). These have the same worthwhile properties as other common oligosaccharides, such as short chain carbohydrates digestible to the gut flora but not to humans mainly due to their resistance to the low pH and high temperature and their demand is constantly increasing mainly due to increased awareness about their potential health benefits. Despite several advantages over the thermo-chemical route of synthesis, comprehensive and updated information on the conversion of lignocellulosic biomass to prebiotic oligomers via controlled enzymatic saccharification is not available in the literature. Thus, the main objective of this review is to highlight recent advancements in enzymatic synthesis of LDOs, current challenges, and future prospects of sustainably producing prebiotic oligomers via enzymatic hydrolysis of LCB substrates. Enzyme reaction engineering practices, custom-made enzyme preparations, controlled enzymatic hydrolysis, and protein engineering approaches have been discussed with regard to their applications in sustainable synthesis of lignocellulose-derived oligosaccharide prebiotics. An overview of scale-up aspects and market potential of LDOs has also been provided.
Collapse
Affiliation(s)
- Reetu Saini
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|
6
|
Current and emerging tools of computational biology to improve the detoxification of mycotoxins. Appl Environ Microbiol 2021; 88:e0210221. [PMID: 34878810 DOI: 10.1128/aem.02102-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Biological organisms carry a rich potential for removing toxins from our environment, but identifying suitable candidates and improving them remain challenging. We explore the use of computational tools to discover strains and enzymes that detoxify harmful compounds. In particular, we will focus on mycotoxins-fungi-produced toxins that contaminate food and feed-and biological enzymes that are capable of rendering them less harmful. We discuss the use of established and novel computational tools to complement existing empirical data in three directions: discovering the prospect of detoxification among underexplored organisms, finding important cellular processes that contribute to detoxification, and improving the performance of detoxifying enzymes. We hope to create a synergistic conversation between researchers in computational biology and those in the bioremediation field. We showcase open bioremediation questions where computational researchers can contribute and highlight relevant existing and emerging computational tools that could benefit bioremediation researchers.
Collapse
|
7
|
Lee SH, Yeom SJ, Kim SE, Oh DK. Development of aldolase-based catalysts for the synthesis of organic chemicals. Trends Biotechnol 2021; 40:306-319. [PMID: 34462144 DOI: 10.1016/j.tibtech.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
Aldol chemicals are synthesized by condensation reactions between the carbon units of ketones and aldehydes using aldolases. The efficient synthesis of diverse organic chemicals requires intrinsic modification of aldolases via engineering and design, as well as extrinsic modification through immobilization or combination with other catalysts. This review describes the development of aldolases, including their engineering and design, and the selection of desired aldolases using high-throughput screening, to enhance their catalytic properties and perform novel reactions. Aldolase-containing catalysts, which catalyze the aldol reaction combined with other enzymatic and/or chemical reactions, can efficiently synthesize diverse complex organic chemicals using inexpensive and simple materials as substrates. We also discuss the current challenges and emerging solutions for aldolase-based catalysts.
Collapse
Affiliation(s)
- Seon-Hwa Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
8
|
Scherer M, Fleishman SJ, Jones PR, Dandekar T, Bencurova E. Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals. Front Bioeng Biotechnol 2021; 9:673005. [PMID: 34211966 PMCID: PMC8239229 DOI: 10.3389/fbioe.2021.673005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
To enable a sustainable supply of chemicals, novel biotechnological solutions are required that replace the reliance on fossil resources. One potential solution is to utilize tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize biotechnological processes for renewable chemical biomanufacturing because of a lack of highly active and specific biocatalysts. As experimental methods to engineer biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable computational tools that can speed up the identification or optimization of selective, highly active, and stable enzyme variants for utilization in the biotechnological industry. Here, we review and suggest combinations of effective state-of-the-art software and online tools available for computational enzyme engineering pipelines to optimize metabolic pathways for the biosynthesis of renewable chemicals. Using examples relevant for biotechnology, we explain the underlying principles of enzyme engineering and design and illuminate future directions for automated optimization of biocatalysts for the assembly of synthetic metabolic pathways.
Collapse
Affiliation(s)
- Marc Scherer
- Department of Bioinformatics, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Thomas Dandekar
- Department of Bioinformatics, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Elena Bencurova
- Department of Bioinformatics, Julius-Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Ochoa R, Magnitov M, Laskowski RA, Cossio P, Thornton JM. An automated protocol for modelling peptide substrates to proteases. BMC Bioinformatics 2020; 21:586. [PMID: 33375946 PMCID: PMC7771086 DOI: 10.1186/s12859-020-03931-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Proteases are key drivers in many biological processes, in part due to their specificity towards their substrates. However, depending on the family and molecular function, they can also display substrate promiscuity which can also be essential. Databases compiling specificity matrices derived from experimental assays have provided valuable insights into protease substrate recognition. Despite this, there are still gaps in our knowledge of the structural determinants. Here, we compile a set of protease crystal structures with bound peptide-like ligands to create a protocol for modelling substrates bound to protease structures, and for studying observables associated to the binding recognition. RESULTS As an application, we modelled a subset of protease-peptide complexes for which experimental cleavage data are available to compare with informational entropies obtained from protease-specificity matrices. The modelled complexes were subjected to conformational sampling using the Backrub method in Rosetta, and multiple observables from the simulations were calculated and compared per peptide position. We found that some of the calculated structural observables, such as the relative accessible surface area and the interaction energy, can help characterize a protease's substrate recognition, giving insights for the potential prediction of novel substrates by combining additional approaches. CONCLUSION Overall, our approach provides a repository of protease structures with annotated data, and an open source computational protocol to reproduce the modelling and dynamic analysis of the protease-peptide complexes.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, 050010, Medellín, Colombia.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Mikhail Magnitov
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia, 141701
| | - Roman A Laskowski
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, 050010, Medellín, Colombia
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438, Frankfurt am Main, Germany
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| |
Collapse
|
10
|
Booth RL, Grogan G, Wilson KS, Duhme-Klair AK. Artificial imine reductases: developments and future directions. RSC Chem Biol 2020; 1:369-378. [PMID: 34458768 PMCID: PMC8341917 DOI: 10.1039/d0cb00113a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Biocatalytic imine reduction has been a topic of intense research by the artificial metalloenzyme community in recent years. Artificial constructs, together with natural enzymes, have been engineered to produce chiral amines with high enantioselectivity. This review examines the design of the main classes of artificial imine reductases reported thus far and summarises approaches to enhancing their catalytic performance using complementary methods. Examples of utilising these biocatalysts in vivo or in multi-enzyme cascades have demonstrated the potential that artIREDs can offer, however, at this time their use in biocatalysis remains limited. This review explores the current scope of artIREDs and the strategies used for catalyst improvement, and examines the potential for artIREDs in the future.
Collapse
Affiliation(s)
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York UK
| | - Keith S Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York UK
| | | |
Collapse
|
11
|
Govil T, Saxena P, Samanta D, Singh SS, Kumar S, Salem DR, Sani RK. Adaptive Enrichment of a Thermophilic Bacterial Isolate for Enhanced Enzymatic Activity. Microorganisms 2020; 8:E871. [PMID: 32526936 PMCID: PMC7355623 DOI: 10.3390/microorganisms8060871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022] Open
Abstract
The mimicking of evolution on a laboratory timescale to enhance biocatalyst specificity, substrate utilization activity, and/or product formation, is an effective and well-established approach that does not involve genetic engineering or regulatory details of the microorganism. The present work employed an evolutionary adaptive approach to improve the lignocellulose deconstruction capabilities of the strain by inducing the expression of laccase, a multicopper oxidase, in Geobacillus sp. strain WSUCF1. This bacterium is highly efficient in depolymerizing unprocessed lignocellulose, needing no preprocessing/pretreatment of the biomasses. However, it natively produces low levels of laccase. After 15 rounds of serially adapting this thermophilic strain in the presence of unprocessed corn stover as the selective pressure, we recorded a 20-fold increase in catalytic laccase activity, at 9.23 ± 0.6 U/mL, in an adapted yet stable strain of Geobacillus sp. WSUCF1, compared with the initial laccase production (0.46 ± 0.04 U/mL) obtained with the unadapted strain grown on unprocessed corn stover before optimization. Chemical composition analysis demonstrated that lignin removal by the adapted strain was 22 wt.% compared with 6 wt.% removal by the unadapted strain. These results signify a favorable prospect for fast, cost competitive bulk production of this thermostable enzyme. Also, this work has practical importance, as this fast adaptation of the Geobacillus sp. strain WSUCF1 suggests the possibility of growing industrial quantities of Geobacillus sp. strain WSUCF1 cells as biocatalysts on reasonably inexpensive carbon sources for commercial use. This work is the first application of the adaptive laboratory evolution approach for developing the desired phenotype of enhanced ligninolytic capability in any microbial strain.
Collapse
Affiliation(s)
- Tanvi Govil
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (T.G.); (D.S.)
- Composite and Nanocomposite Advanced Manufacturing—Biomaterials Center, Rapid City, SD 57701, USA
| | - Priya Saxena
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh 173215, India; (P.S.); (S.K.)
| | - Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (T.G.); (D.S.)
| | - Sindhu Suresh Singh
- Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| | - Sudhir Kumar
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh 173215, India; (P.S.); (S.K.)
| | - David R. Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (T.G.); (D.S.)
- Composite and Nanocomposite Advanced Manufacturing—Biomaterials Center, Rapid City, SD 57701, USA
- Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
- Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh K. Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (T.G.); (D.S.)
- Composite and Nanocomposite Advanced Manufacturing—Biomaterials Center, Rapid City, SD 57701, USA
- BuG ReMeDEE consortium, Rapid City, SD 57701, USA
| |
Collapse
|
12
|
Jana K, Mehra R, Dehury B, Blundell TL, Kepp KP. Common mechanism of thermostability in small α- and β-proteins studied by molecular dynamics. Proteins 2020; 88:1233-1250. [PMID: 32368818 DOI: 10.1002/prot.25897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/01/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Protein thermostability is important to evolution, diseases, and industrial applications. Proteins use diverse molecular strategies to achieve stability at high temperature, yet reducing the entropy of unfolding seems required. We investigated five small α-proteins and five β-proteins with known, distinct structures and thermostability (Tm ) using multi-seed molecular dynamics simulations at 300, 350, and 400 K. The proteins displayed diverse changes in hydrogen bonding, solvent exposure, and secondary structure with no simple relationship to Tm . Our dynamics were in good agreement with experimental B-factors at 300 K and insensitive to force-field choice. Despite the very distinct structures, the native-state (300 + 350 K) free-energy landscapes (FELs) were significantly broader for the two most thermostable proteins and smallest for the three least stable proteins in both the α- and β-group and with both force fields studied independently (tailed t-test, 95% confidence level). Our results suggest that entropic ensembles stabilize proteins at high temperature due to reduced entropy of unfolding, viz., ΔG = ΔH - TΔS. Supporting this mechanism, the most thermostable proteins were also the least kinetically stable, consistent with broader FELs, typified by villin headpiece and confirmed by specific comparison to a mesophilic ortholog of Thermus thermophilus apo-pyrophosphate phosphohydrolase. We propose that molecular strategies of protein thermostabilization, although diverse, tend to converge toward highest possible entropy in the native state consistent with the functional requirements. We speculate that this tendency may explain why many proteins are not optimally structured and why molten-globule states resemble native proteins so much.
Collapse
Affiliation(s)
| | | | - Budheswar Dehury
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
13
|
Martínez R, Bernal C, Álvarez R, Concha C, Araya F, Cabrera R, Dhoke GV, Davari MD. Deletion and Randomization of Structurally Variable Regions in B. subtilis Lipase A (BSLA) Alter Its Stability and Hydrolytic Performance Against Long Chain Fatty Acid Esters. Int J Mol Sci 2020; 21:ijms21061990. [PMID: 32183336 PMCID: PMC7139672 DOI: 10.3390/ijms21061990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
The continuous search for novel enzyme backbones and the engineering of already well studied enzymes for biotechnological applications has become an increasing challenge, especially by the increasing potential diversity space provided by directed enzyme evolution approaches and the demands of experimental data generated by rational design of enzymes. In this work, we propose a semi-rational mutational strategy focused on introducing diversity in structurally variable regions in enzymes. The identified sequences are subjected to a progressive deletion of two amino acids and the joining residues are subjected to saturation mutagenesis using NNK degenerate codons. This strategy offers a novel library diversity approach while simultaneously decreasing enzyme size in the variable regions. In this way, we intend to identify and reduce variable regions found in enzymes, probably resulting from neutral drift evolution, and simultaneously studying the functional effect of said regions. This strategy was applied to Bacillus. subtilis lipase A (BSLA), by selecting and deleting six variable enzyme regions (named regions 1 to 6) by the deletion of two amino acids and additionally randomizing the joining amino acid residues. After screening, no active variants were found in libraries 1% and 4%, 15% active variants were found in libraries 2% and 3%, and 25% for libraries 5 and 6 (n = 3000 per library, activity detected using tributyrin agar plates). Active variants were assessed for activity in microtiter plate assay (pNP-butyrate), thermal stability, substrate preference (pNP-butyrate, -palmitate), and compared to wildtype BSLA. From these analyses, variant P5F3 (F41L-ΔW42-ΔD43-K44P), from library 3 was identified, showing increased activity towards longer chain p-nitrophenyl fatty acid esters, when compared to BSLA. This study allowed to propose the targeted region 3 (positions 40-46) as a potential modulator for substrate specificity (fatty acid chain length) in BSLA, which can be further studied to increase its substrate spectrum and selectivity. Additionally, this variant showed a decreased thermal resistance but interestingly, higher isopropanol and Triton X-100 resistance. This deletion-randomization strategy could help to expand and explore sequence diversity, even in already well studied and characterized enzyme backbones such as BSLA. In addition, this strategy can contribute to investigate and identify important non-conserved regions in classic and novel enzymes, as well as generating novel biocatalysts with increased performance in specific processes, such as enzyme immobilization.
Collapse
Affiliation(s)
- Ronny Martínez
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
- Correspondence: ; Tel.: +56-51-2334661; Fax: +56-51-2204446
| | - Claudia Bernal
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
| | - Rodrigo Álvarez
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
- Escuela de Tecnología Médica, Facultad de Salud, Sede La Serena, Universidad Santo Tomás, La Serena 1710172, Chile
| | - Christopher Concha
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
| | - Fernando Araya
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (F.A.); (R.C.)
| | - Ricardo Cabrera
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (F.A.); (R.C.)
| | - Gaurao V. Dhoke
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (G.V.D.); (M.D.D.)
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (G.V.D.); (M.D.D.)
| |
Collapse
|
14
|
Schäfer L, Karande R, Bühler B. Maximizing Biocatalytic Cyclohexane Hydroxylation by Modulating Cytochrome P450 Monooxygenase Expression in P. taiwanensis VLB120. Front Bioeng Biotechnol 2020; 8:140. [PMID: 32175317 PMCID: PMC7056670 DOI: 10.3389/fbioe.2020.00140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/11/2020] [Indexed: 01/31/2023] Open
Abstract
Cytochrome P450 monooxygenases (Cyps) effectively catalyze the regiospecific oxyfunctionalization of inert C-H bonds under mild conditions. Due to their cofactor dependency and instability in isolated form, oxygenases are preferably applied in living microbial cells with Pseudomonas strains constituting potent host organisms for Cyps. This study presents a holistic genetic engineering approach, considering gene dosage, transcriptional, and translational levels, to engineer an effective Cyp-based whole-cell biocatalyst, building on recombinant Pseudomonas taiwanensis VLB120 for cyclohexane hydroxylation. A lac-based regulation system turned out to be favorable in terms of orthogonality to the host regulatory network and enabled a remarkable specific whole-cell activity of 34 U gCDW -1. The evaluation of different ribosomal binding sites (RBSs) revealed that a moderate translation rate was favorable in terms of the specific activity. An increase in gene dosage did only slightly elevate the hydroxylation activity, but severely impaired growth and resulted in a large fraction of inactive Cyp. Finally, the introduction of a terminator reduced leakiness. The optimized strain P. taiwanensis VLB120 pSEVA_Cyp allowed for a hydroxylation activity of 55 U gCDW -1. Applying 5 mM cyclohexane, molar conversion and biomass-specific yields of 82.5% and 2.46 mmolcyclohexanol gbiomass -1 were achieved, respectively. The strain now serves as a platform to design in vivo cascades and bioprocesses for the production of polymer building blocks such as ε-caprolactone.
Collapse
Affiliation(s)
- Lisa Schäfer
- Department of Solar Materials, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Rohan Karande
- Department of Solar Materials, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
15
|
Holland-Moritz DA, Wismer MK, Mann BF, Farasat I, Devine P, Guetschow ED, Mangion I, Welch CJ, Moore JC, Sun S, Kennedy RT. Mass Activated Droplet Sorting (MADS) Enables High-Throughput Screening of Enzymatic Reactions at Nanoliter Scale. Angew Chem Int Ed Engl 2020; 59:4470-4477. [PMID: 31868984 DOI: 10.1002/anie.201913203] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/21/2019] [Indexed: 01/02/2023]
Abstract
Microfluidic droplet sorting enables the high-throughput screening and selection of water-in-oil microreactors at speeds and volumes unparalleled by traditional well-plate approaches. Most such systems sort using fluorescent reporters on modified substrates or reactions that are rarely industrially relevant. We describe a microfluidic system for high-throughput sorting of nanoliter droplets based on direct detection using electrospray ionization mass spectrometry (ESI-MS). Droplets are split, one portion is analyzed by ESI-MS, and the second portion is sorted based on the MS result. Throughput of 0.7 samples s-1 is achieved with 98 % accuracy using a self-correcting and adaptive sorting algorithm. We use the system to screen ≈15 000 samples in 6 h and demonstrate its utility by sorting 25 nL droplets containing transaminase expressed in vitro. Label-free ESI-MS droplet screening expands the toolbox for droplet detection and recovery, improving the applicability of droplet sorting to protein engineering, drug discovery, and diagnostic workflows.
Collapse
Affiliation(s)
| | - Michael K Wismer
- Scientific Engineering and Design, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Benjamin F Mann
- Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Iman Farasat
- Janssen R&D, 1400 McKean Rd., Spring House, PA, 19477, USA
| | - Paul Devine
- Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Erik D Guetschow
- Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Ian Mangion
- Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | | | - Jeffrey C Moore
- Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Shuwen Sun
- Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Robert T Kennedy
- Dept. of Chemistry, University of Michigan, 930 N University, Ann Abor, MI, 48109, USA
| |
Collapse
|
16
|
Holland‐Moritz DA, Wismer MK, Mann BF, Farasat I, Devine P, Guetschow ED, Mangion I, Welch CJ, Moore JC, Sun S, Kennedy RT. Mass Activated Droplet Sorting (MADS) Enables High‐Throughput Screening of Enzymatic Reactions at Nanoliter Scale. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Michael K. Wismer
- Scientific Engineering and Design Merck & Co., Inc. 2000 Galloping Hill Road Kenilworth NJ 07033 USA
| | - Benjamin F. Mann
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | - Iman Farasat
- Janssen R&D 1400 McKean Rd. Spring House PA 19477 USA
| | - Paul Devine
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | - Erik D. Guetschow
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | - Ian Mangion
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | | | - Jeffrey C. Moore
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | - Shuwen Sun
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | - Robert T. Kennedy
- Dept. of Chemistry University of Michigan 930 N University Ann Abor MI 48109 USA
| |
Collapse
|
17
|
Spielmann A, Brack Y, van Beek H, Flachbart L, Sundermeyer L, Baumgart M, Bott M. NADPH biosensor-based identification of an alcohol dehydrogenase variant with improved catalytic properties caused by a single charge reversal at the protein surface. AMB Express 2020; 10:14. [PMID: 31955268 PMCID: PMC6969876 DOI: 10.1186/s13568-020-0946-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/06/2020] [Indexed: 01/29/2023] Open
Abstract
Alcohol dehydrogenases (ADHs) are used in reductive biotransformations for the production of valuable chiral alcohols. In this study, we used a high-throughput screening approach based on the NADPH biosensor pSenSox and fluorescence-activated cell sorting (FACS) to search for variants of the NADPH-dependent ADH of Lactobacillus brevis (LbADH) with improved activity for the reduction of 2,5-hexanedione to (2R,5R)-hexanediol. In a library of approx. 1.4 × 106 clones created by random mutagenesis we identified the variant LbADHK71E. Kinetic analysis of the purified enzyme revealed that LbADHK71E had a ~ 16% lowered KM value and a 17% higher Vmax for 2,5-hexanedione compared to the wild-type LbADH. Higher activities were also observed for the alternative substrates acetophenone, acetylpyridine, 2-hexanone, 4-hydroxy-2-butanone, and methyl acetoacetate. K71 is solvent-exposed on the surface of LbADH and not located within or close to the active site. Therefore, K71 is not an obvious target for rational protein engineering. The study demonstrates that high-throughput screening using the NADPH biosensor pSenSox represents a powerful method to find unexpected beneficial mutations in NADPH-dependent alcohol dehydrogenases that can be favorable in industrial biotransformations.
Collapse
|
18
|
Liu MQ, Li JY, Rehman AU, Xu X, Gu ZJ, Wu RC. Laboratory Evolution of GH11 Endoxylanase Through DNA Shuffling: Effects of Distal Residue Substitution on Catalytic Activity and Active Site Architecture. Front Bioeng Biotechnol 2019; 7:350. [PMID: 31824938 PMCID: PMC6883096 DOI: 10.3389/fbioe.2019.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 11/15/2022] Open
Abstract
Endoxylanase with high specific activity, thermostability, and broad pH adaptability is in huge demand. The mutant library of GH11 endoxylanase was constructed via DNA shuffling by using the catalytic domain of Bacillus amyloliquefaciens xylanase A (BaxA) and Thermomonospora fusca TF xylanase A (TfxA) as parents. A total of 2,250 colonies were collected and 756 of them were sequenced. Three novel mutants (DS153: N29S, DS241: S31R and DS428: I51V) were identified and characterized in detail. For these mutants, three residues of BaxA were substituted by the corresponding one of TfxA_CD. The specific activity of DS153, DS241, and DS428 in the optimal condition was 4.54, 4.35, and 3.9 times compared with the recombinant BaxA (reBaxA), respectively. The optimum temperature of the three mutants was 50°C. The optimum pH for DS153, DS241, and DS428 was 6.0, 7.0, and 6.0, respectively. The catalytic efficiency of DS153, DS241, and DS428 enhanced as well, while their sensitivity to recombinant rice xylanase inhibitor (RIXI) was lower than that of reBaxA. Three mutants have identical hydrolytic function as reBaxA, which released xylobiose–xylopentaose from oat spelt, birchwood, and beechwood xylan. Furthermore, molecular dynamics simulations were performed on BaxA and three mutants to explore the precise impact of gain-of-function on xylanase activity. The tertiary structure of BaxA was not altered under the substitution of distal residues (N29S, S31R, and I51V); it induced slightly changes in active site architecture. The distal impact rescued the BaxA from native conformation (“closed state”) through weakening interactions between “gate” residues (R112, N35 in DS241 and DS428; W9, P116 in DS153) and active site residues (E78, E172, Y69, and Y80), favoring conformations with an “open state” and providing improved activity. The current findings would provide a better and more in-depth understanding of how distal single residue substitution improved the catalytic activity of xylanase at the atomic level.
Collapse
Affiliation(s)
- Ming-Qi Liu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jia-Yi Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ashfaq Ur Rehman
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Xu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zhu-Jun Gu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ruo-Chen Wu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
19
|
Chowdhury R, Maranas CD. From directed evolution to computational enzyme engineering—A review. AIChE J 2019. [DOI: 10.1002/aic.16847] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ratul Chowdhury
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania
| | - Costas D. Maranas
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania
| |
Collapse
|
20
|
Gionfriddo M, De Gara L, Loreto F. Directed Evolution of Plant Processes: Towards a Green (r)Evolution? TRENDS IN PLANT SCIENCE 2019; 24:999-1007. [PMID: 31604600 DOI: 10.1016/j.tplants.2019.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 05/13/2023]
Abstract
Directed evolution (DE) is a powerful approach for generating proteins with new chemical and physical properties. It mimics the principles of Darwinian evolution by imposing selective pressure on a large population of molecules harboring random genetic variation in DNA, such that sequences with specific desirable properties are generated and selected. We propose that combining DE and genome-editing (DE-GE) technologies represents a powerful tool to discover and integrate new traits into plants for agronomic and biotechnological gain. DE-GE has the potential to deliver a new green (r)evolution research platform that can provide novel solutions to major trait delivery aspirations for sustainable agriculture, climate-resilient crops, and improved food security and nutritional quality.
Collapse
Affiliation(s)
- Matteo Gionfriddo
- Unit of Food Science and Human Nutrition, Campus Bio-Medico, University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico, University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Francesco Loreto
- Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy; Department of Biology, University Federico II, Via Cinthia, 80126 Naples, Italy.
| |
Collapse
|
21
|
Abstract
Through the application of the engineering paradigm of ‘design–build–test–learn’ allied to recent advances in DNA sequencing, bioinformatics and, critically, the falling cost of DNA synthesis, Synthetic Biology promises to make existing therapies more accessible and be at the centre of the development of new types of advanced therapies. As existing pharmaceutical companies integrate Synthetic Biology tools into their normal ways of working, existing products are being produced by cheaper and more sustainable methods. Vaccine design and production is becoming driven by the molecular design allied to rapidly scalable production methods to combat the threat of pandemics and the ability of pathogens to escape the immune system by mutation. Advanced therapies, such as chimeric antigen receptor T cell therapy, are able to capitalise on the tools of Synthetic Biology to design new proteins and molecular ‘kill switches’ as well as design scalable and effective vectors for cellular transduction. This review highlights how Synthetic Biology is having an impact across the various therapeutic modalities from existing products to new therapies.
Collapse
|
22
|
Hot CoFi Blot: A High-Throughput Colony-Based Screen for Identifying More Thermally Stable Protein Variants. Methods Mol Biol 2019. [PMID: 31267459 DOI: 10.1007/978-1-4939-9624-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Highly soluble and stable proteins are desirable for many different applications, from basic science to reaching a cancer patient in the form of a biological drug. For X-ray crystallography-where production of a protein crystal might take weeks and even months-a stable protein sample of high purity and concentration can greatly increase the chances of producing a well-diffracting crystal. For a patient receiving a specific protein drug, its safety, efficacy, and even cost are factors affected by its solubility and stability. Increased protein expression and protein stability can be achieved by randomly altering the coding sequence. As the number of mutants generated might be overwhelming, a powerful protein expression and stability screen is required. In this chapter, we describe a colony filtration technology, which allows us to screen random mutagenesis libraries for increased thermal stability-the Hot CoFi blot. We share how to create the random mutagenesis library, how to perform the Hot CoFi blot, and how to identify more thermally stable clones. We use the Tobacco Etch Virus protease as a target to exemplify the procedure.
Collapse
|
23
|
Edwardson TGW, Hilvert D. Virus-Inspired Function in Engineered Protein Cages. J Am Chem Soc 2019; 141:9432-9443. [PMID: 31117660 DOI: 10.1021/jacs.9b03705] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The structural and functional diversity of proteins combined with their genetic programmability has made them indispensable modern materials. Well-defined, hollow protein capsules have proven to be particularly useful due to their ability to compartmentalize macromolecules and chemical processes. To this end, viral capsids are common scaffolds and have been successfully repurposed to produce a suite of practical protein-based nanotechnologies. Recently, the recapitulation of viromimetic function in protein cages of nonviral origin has emerged as a strategy to both complement physical studies of natural viruses and produce useful scaffolds for diverse applications. In this perspective, we review recent progress toward generation of virus-like behavior in nonviral protein cages through rational engineering and directed evolution. These artificial systems can aid our understanding of the emergence of viruses from existing cellular components, as well as provide alternative approaches to tackle current problems, and open up new opportunities, in medicine and biotechnology.
Collapse
Affiliation(s)
| | - Donald Hilvert
- Laboratory of Organic Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
24
|
Positive Selection of Squalene Synthase in Cucurbitaceae Plants. Int J Genomics 2019; 2019:5913491. [PMID: 31211131 PMCID: PMC6532303 DOI: 10.1155/2019/5913491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/08/2019] [Indexed: 11/30/2022] Open
Abstract
Triterpenoid saponins are secondary metabolites synthesized through isoprenoid pathways in plants. Cucurbitaceae represent an important plant family in which many species contain cucurbitacins as secondary metabolites synthesized through isoprenoid and triterpenoid pathways. Squalene synthase (SQS) is required for the biosynthesis of isoprenoids, but the forces driving the evolution of SQS remain undetermined. In this study, 10 SQS cDNA sequences cloned from 10 species of Cucurbitaceae and 49 sequences of SQS downloaded from GenBank and UniProt databases were analyzed in a phylogenetic framework to identify the evolutionary forces for functional divergence. Through phylogenetic construction and positive selection analysis, we found that SQS sequences are under positive selection. The sites of positive selection map to functional and transmembrane domains. 180L, 189S, 194S, 196S, 265I, 289P, 389P, 390T, 407S, 408A, 410R, and 414N were identified as sites of positive selection that are important during terpenoid synthesis and map to transmembrane domains. 196S and 407S are phosphorylated and influence SQS catalysis and triterpenoid accumulation. These results reveal that positive selection is an important evolutionary force for SQS in plants. This provides new information into the molecular evolution of SQS within the Cucurbitaceae family.
Collapse
|
25
|
Vats S, Shanker A. Groups of coevolving positions provide drug resistance to Mycobacterium tuberculosis: A study using targets of first-line antituberculosis drugs. Int J Antimicrob Agents 2019; 53:197-202. [DOI: 10.1016/j.ijantimicag.2018.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/13/2018] [Accepted: 10/20/2018] [Indexed: 01/19/2023]
|
26
|
Ramos JL, Duque E. Twenty-first-century chemical odyssey: fuels versus commodities and cell factories versus chemical plants. Microb Biotechnol 2019; 12:200-209. [PMID: 30793487 PMCID: PMC6389845 DOI: 10.1111/1751-7915.13379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/23/2019] [Accepted: 02/01/2019] [Indexed: 12/31/2022] Open
Abstract
The harmful effects of pollution from the massive and widespread use of fossil fuels have led various organizations and governments to search for alternative energy sources. To address this, a new energy bioprocess is being developed that utilizes non-edible lignocellulose - the only sustainable source of organic carbon in nature. In this mini-review, we consider the potential use of synthetic biology to develop new-to-nature pathways for the biosynthesis of chemicals that are currently synthesized using classical industrial approaches. The number of industrial processes based on starch or lignocellulose is still very modest. Advances in the area require the development of more efficient approaches to deconstruct plant materials, better exploitation of the catalytic potential of prokaryotes and lower eukaryotes and the identification of new and useful genes for product synthesis. Further research and progress is urgently needed in order for government and industry to achieve the major milestone of transitioning 30% of the total industry to renewable sources by 2050.
Collapse
Affiliation(s)
- Juan L. Ramos
- CSIC – Estación Experimental del Zaidínc/Profesor Albareda 118008GranadaSpain
| | - Estrella Duque
- CSIC – Estación Experimental del Zaidínc/Profesor Albareda 118008GranadaSpain
| |
Collapse
|
27
|
Schultz EE, Braffman NR, Luescher MU, Hager HH, Balskus EP. Biocatalytic Friedel–Crafts Alkylation Using a Promiscuous Biosynthetic Enzyme. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Erica E. Schultz
- Department of Chemistry Lake Forest College 555 Sheridan Rd Lake Forest IL 60045 USA
| | - Nathaniel R. Braffman
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Michael U. Luescher
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Harry H. Hager
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| |
Collapse
|
28
|
Schultz EE, Braffman NR, Luescher MU, Hager HH, Balskus EP. Biocatalytic Friedel–Crafts Alkylation Using a Promiscuous Biosynthetic Enzyme. Angew Chem Int Ed Engl 2019; 58:3151-3155. [DOI: 10.1002/anie.201814016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Erica E. Schultz
- Department of Chemistry Lake Forest College 555 Sheridan Rd Lake Forest IL 60045 USA
| | - Nathaniel R. Braffman
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Michael U. Luescher
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Harry H. Hager
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| |
Collapse
|
29
|
Integrating enzyme immobilization and protein engineering: An alternative path for the development of novel and improved industrial biocatalysts. Biotechnol Adv 2018; 36:1470-1480. [DOI: 10.1016/j.biotechadv.2018.06.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/02/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
|
30
|
Hestericová M, Heinisch T, Alonso-Cotchico L, Maréchal JD, Vidossich P, Ward TR. Directed Evolution of an Artificial Imine Reductase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martina Hestericová
- Department Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 Basel 4002 Switzerland
| | - Tillman Heinisch
- Department Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 Basel 4002 Switzerland
| | - Lur Alonso-Cotchico
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193 Cerdonyola del Vallès Barcelona Spain
| | - Jean-Didier Maréchal
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193 Cerdonyola del Vallès Barcelona Spain
| | - Pietro Vidossich
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193 Cerdonyola del Vallès Barcelona Spain
| | - Thomas R. Ward
- Department Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 Basel 4002 Switzerland
| |
Collapse
|
31
|
Hestericová M, Heinisch T, Alonso-Cotchico L, Maréchal JD, Vidossich P, Ward TR. Directed Evolution of an Artificial Imine Reductase. Angew Chem Int Ed Engl 2018; 57:1863-1868. [PMID: 29265726 DOI: 10.1002/anie.201711016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/14/2017] [Indexed: 11/06/2022]
Abstract
Artificial metalloenzymes, resulting from incorporation of a metal cofactor within a host protein, have received increasing attention in the last decade. The directed evolution is presented of an artificial transfer hydrogenase (ATHase) based on the biotin-streptavidin technology using a straightforward procedure allowing screening in cell-free extracts. Two streptavidin isoforms were yielded with improved catalytic activity and selectivity for the reduction of cyclic imines. The evolved ATHases were stable under biphasic catalytic conditions. The X-ray structure analysis reveals that introducing bulky residues within the active site results in flexibility changes of the cofactor, thus increasing exposure of the metal to the protein surface and leading to a reversal of enantioselectivity. This hypothesis was confirmed by a multiscale approach based mostly on molecular dynamics and protein-ligand dockings.
Collapse
Affiliation(s)
- Martina Hestericová
- Department Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4002, Switzerland
| | - Tillman Heinisch
- Department Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4002, Switzerland
| | - Lur Alonso-Cotchico
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193, Cerdonyola del Vallès, Barcelona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193, Cerdonyola del Vallès, Barcelona, Spain
| | - Pietro Vidossich
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193, Cerdonyola del Vallès, Barcelona, Spain
| | - Thomas R Ward
- Department Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4002, Switzerland
| |
Collapse
|
32
|
Bertrand B, Martínez-Morales F, Trejo-Hernández MR. Upgrading Laccase Production and Biochemical Properties: Strategies and Challenges. Biotechnol Prog 2017; 33:1015-1034. [PMID: 28393483 DOI: 10.1002/btpr.2482] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/31/2017] [Indexed: 12/22/2022]
Abstract
Improving laccases continues to be crucial in novel biotechnological developments and industrial applications, where they are concerned. This review breaks down and explores the potential of the strategies (conventional and modern) that can be used for laccase enhancement (increased production and upgraded biochemical properties such as stability and catalytic efficiency). The challenges faced with these approaches are briefly discussed. We also shed light on how these strategies merge and give rise to new options and advances in this field of work. Additionally, this article seeks to serve as a guide for students and academic researchers interested in laccases. This document not only gives basic information on laccases, but also provides updated information on the state of the art of various technologies that are used in this line of investigation. It also gives the readers an idea of the areas extensively studied and the areas where there is still much left to be done. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1015-1034, 2017.
Collapse
Affiliation(s)
- Brandt Bertrand
- Department of Environmental Biotechnology, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, Morelos, CP 62209, México
| | - Fernando Martínez-Morales
- Department of Environmental Biotechnology, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, Morelos, CP 62209, México
| | - María R Trejo-Hernández
- Department of Environmental Biotechnology, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, Morelos, CP 62209, México
| |
Collapse
|
33
|
Wang X, Rong L, Wang M, Pan Y, Zhao Y, Tao F. Improving the activity of endoglucanase I (EGI) from Saccharomyces cerevisiae by DNA shuffling. RSC Adv 2017. [DOI: 10.1039/c6ra26508a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To enhance the endo-β-1,4-glucanase activity of three mixedTrichodermasp. (Trichoderma reesei, Trichoderma longibrachiatum, andTrichoderma pseudokoningii), we optimized the efficiency of the encoding gene using DNA shuffling andSaccharomyces cerevisiaeINVSc1 as a host.
Collapse
Affiliation(s)
- Xu Wang
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
- School of Life Sciences
| | - Liang Rong
- USC School of Pharmacy
- University of Southern California
- Los Angeles
- USA
| | - Mingfu Wang
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
| | - Yingjie Pan
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
| | - Yong Zhao
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
| | - Fang Tao
- School of Life Sciences
- Anhui Agricultural University
- China
| |
Collapse
|
34
|
Tong X, Barberi TT, Botting CH, Sharma SV, Simmons MJH, Overton TW, Goss RJM. Rapid enzyme regeneration results in the striking catalytic longevity of an engineered, single species, biocatalytic biofilm. Microb Cell Fact 2016; 15:180. [PMID: 27769259 PMCID: PMC5073922 DOI: 10.1186/s12934-016-0579-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Engineering of single-species biofilms for enzymatic generation of fine chemicals is attractive. We have recently demonstrated the utility of an engineered Escherichia coli biofilm as a platform for synthesis of 5-halotryptophan. E. coli PHL644, expressing a recombinant tryptophan synthase, was employed to generate a biofilm. Its rapid deposition, and instigation of biofilm formation, was enforced by employing a spin-down method. The biofilm presents a large three-dimensional surface area, excellent for biocatalysis. The catalytic longevity of the engineered biofilm is striking, and we had postulated that this was likely to largely result from protection conferred to recombinant enzymes by biofilm's extracellular matrix. SILAC (stable isotopic labelled amino acids in cell cultures), and in particular dynamic SILAC, in which pulses of different isotopically labelled amino acids are administered to cells over a time course, has been used to follow the fate of proteins. To explore within our spin coated biofilm, whether the recombinant enzyme's longevity might be in part due to its regeneration, we introduced pulses of isotopically labelled lysine and phenylalanine into medium overlaying the biofilm and followed their incorporation over the course of biofilm development. RESULTS Through SILAC analysis, we reveal that constant and complete regeneration of recombinant enzymes occurs within spin coated biofilms. The striking catalytic longevity within the biofilm results from more than just simple protection of active enzyme by the biofilm and its associated extracellular matrix. The replenishment of recombinant enzyme is likely to contribute significantly to the catalytic longevity observed for the engineered biofilm system. CONCLUSIONS Here we provide the first evidence of a recombinant enzyme's regeneration in an engineered biofilm. The recombinant enzyme was constantly replenished over time as evidenced by dynamic SILAC, which suggests that the engineered E. coli biofilms are highly metabolically active, having a not inconsiderable energetic demand. The constant renewal of recombinant enzyme highlights the attractive possibility of utilising this biofilm system as a dynamic platform into which enzymes of interest can be introduced in a "plug-and-play" fashion and potentially be controlled through promoter switching for production of a series of desired fine chemicals.
Collapse
Affiliation(s)
- Xiaoxue Tong
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK.,Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Tania Triscari Barberi
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK.,Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Catherine H Botting
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Sunil V Sharma
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK.,Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Mark J H Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Rebecca J M Goss
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK. .,Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK.
| |
Collapse
|
35
|
Buchholz F, Hauber J. Antiviral therapy of persistent viral infection using genome editing. Curr Opin Virol 2016; 20:85-91. [PMID: 27723558 DOI: 10.1016/j.coviro.2016.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023]
Abstract
Chronic viral infections are often incurable because current antiviral strategies do not target chromosomally integrated or non-replicating episomal viral genomes. The rapid development of technologies for genome editing may possibly soon allow for therapeutic targeting of viral genomes and, hence, for development of curative strategies for persistent viral infection. However, detailed investigation of different antiviral genome editing approaches recently revealed various undesired effects. In particular, the problem of frequent and swift development of resistant viruses has to be thoroughly analysed before genome editing approaches become an established option for antiviral treatment.
Collapse
Affiliation(s)
- Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Am Tatzberg 47/49, D-01307 Dresden, Germany
| | - Joachim Hauber
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg, Germany.
| |
Collapse
|
36
|
Westley C, Xu Y, Carnell AJ, Turner NJ, Goodacre R. Label-Free Surface Enhanced Raman Scattering Approach for High-Throughput Screening of Biocatalysts. Anal Chem 2016; 88:5898-903. [DOI: 10.1021/acs.analchem.6b00813] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chloe Westley
- School of Chemistry and Manchester
Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Yun Xu
- School of Chemistry and Manchester
Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Andrew J. Carnell
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Nicholas J. Turner
- School of Chemistry and Manchester
Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Royston Goodacre
- School of Chemistry and Manchester
Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
37
|
Genetic regulation and manipulation for natural product discovery. Appl Microbiol Biotechnol 2016; 100:2953-65. [PMID: 26860941 DOI: 10.1007/s00253-016-7357-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 12/13/2022]
Abstract
Natural products are an important source of modern medical development, e.g., antibiotics, anticancers, immune modulators, etc. and will continue to be a powerful driving force for the discovery of novel potential drugs. In the heterologous hosts, natural products are biosynthesized using dedicated metabolic networks. By gene engineering, pathway reconstructing, and enzyme engineering, metabolic networks can be modified to synthesize novel compounds containing enhanced structural feature or produce a large quantity of known valuable bioactive compounds. The review introduces some important technical platforms and relevant examples of genetic regulation and manipulation to improve natural product titers or drive novel secondary metabolite discoveries.
Collapse
|
38
|
Wu N, Kamioka T, Kuroda Y. A novel screening system based on VanX-mediated autolysis-Application to Gaussia luciferase. Biotechnol Bioeng 2016; 113:1413-20. [PMID: 26694096 DOI: 10.1002/bit.25910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 11/08/2022]
Abstract
We report a novel bacterial screening protocol based on co-expressing the target protein with VanX, an enzyme which mediates Escherichia coli's autolysis and the release of the target protein into the culture medium, thereby facilitating activity measurement and screening from crude medium. This protocol as assessed with 19 Gaussia luciferase (GLuc) expressing colonies, was able to detect bioluminescence wavelength shift as small as 1.5 nm. We demonstrate the performance and versatility of this protocol by applying it to a semi-rational search for GLuc variants with red-shifted bioluminescence. Six GLuc's sites, F113, I114, W143, L144, A149, and F151, were randomly mutated, and for each site, 50 colonies were cultivated in 3 mL samples, from which bioluminescence was measured without purification. We identified two GLuc single mutation red-shifted variants: W143V and L144A. Their red shifted bioluminescence and biophysical/biochemical properties were confirmed using HPLC purified variants. Biotechnol. Bioeng. 2016;113: 1413-1420. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nan Wu
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan
| | - Tetsuya Kamioka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan.
| |
Collapse
|
39
|
Neta NS, Teixeira JA, Rodrigues LR. Sugar ester surfactants: enzymatic synthesis and applications in food industry. Crit Rev Food Sci Nutr 2016; 55:595-610. [PMID: 24915370 DOI: 10.1080/10408398.2012.667461] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sugar esters are non-ionic surfactants that can be synthesized in a single enzymatic reaction step using lipases. The stability and efficiency of lipases under unusual conditions and using non-conventional media can be significantly improved through immobilization and protein engineering. Also, the development of de novo enzymes has seen a significant increase lately under the scope of the new field of synthetic biology. Depending on the esterification degree and the nature of fatty acid and/or sugar, a range of sugar esters can be synthesized. Due to their surface activity and emulsifying capacity, sugar esters are promising for applications in food industry.
Collapse
Affiliation(s)
- Nair S Neta
- a Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 Braga , Portugal
| | | | | |
Collapse
|
40
|
Larue K, Melgar M, Martin VJJ. Directed evolution of a fungal β-glucosidase in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:52. [PMID: 26949413 PMCID: PMC4778352 DOI: 10.1186/s13068-016-0470-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/22/2016] [Indexed: 05/13/2023]
Abstract
BACKGROUND β-glucosidases (BGLs) catalyze the hydrolysis of soluble cellodextrins to glucose and are a critical component of cellulase systems. In order to engineer Saccharomyces cerevisiae for the production of ethanol from cellulosic biomass, a BGL tailored to industrial bioconversions is needed. RESULTS We applied a directed evolution strategy to a glycosyl hydrolase family 3 (GH3) BGL from Aspergillus niger (BGL1) by expressing a library of mutated bgl1 genes in S. cerevisiae and used a two-step functional screen to identify improved enzymes. Twelve BGL variants that supported growth of S. cerevisiae on cellobiose and showed increased activity on the synthetic substrate p-nitrophenyl-β-D-glucopyranoside were identified and characterized. By performing kinetic experiments, we found that a Tyr → Cys substitution at position 305 of BGL1 dramatically reduced transglycosidation activity that causes inhibition of the hydrolytic reaction at high substrate concentrations. Targeted mutagenesis demonstrated that the position 305 residue is critical in GH3 BGLs and likely determines the extent to which transglycosidation reactions occur. We also found that a substitution at Gln(140) reduced the inhibitory effect of glucose and could be combined with the Y305C substitution to produce a BGL with decreased sensitivity to both the product and substrate. Using the crystal structure of a GH3 BGL from A. aculeatus, we mapped a group of beneficial mutations to the β/α domain of the molecule and postulate that this region modulates activity through subunit interactions. Six BGL variants were identified with substitutions in the MFα pre-sequence that was used to mediate secretion of the protein. Substitutions at Pro(21) or Val(22) of the MFα pre-sequence could produce up to a twofold increase in supernatant hydrolase activity and provides evidence that expression and/or secretion was an additional factor limiting hydrolytic activity. CONCLUSIONS Using directed evolution on BGL1, we identified a key residue that controls hydrolytic and transglycosidation reactions in GH3 BGLs. We also found that several beneficial mutations could be combined and increased the hydrolytic activity for both synthetic and natural substrates.
Collapse
Affiliation(s)
- Kane Larue
- Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke West, Montreal, QC H4B 1R6 Canada
| | - Mindy Melgar
- Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke West, Montreal, QC H4B 1R6 Canada
| | - Vincent J. J. Martin
- Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke West, Montreal, QC H4B 1R6 Canada
| |
Collapse
|
41
|
Porter JL, Rusli RA, Ollis DL. Directed Evolution of Enzymes for Industrial Biocatalysis. Chembiochem 2015; 17:197-203. [DOI: 10.1002/cbic.201500280] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Joanne L. Porter
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| | - Rukhairul A. Rusli
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| | - David L. Ollis
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| |
Collapse
|
42
|
Kenny R, Liu F. Trifunctional Organocatalysts: Catalytic Proficiency by Cooperative Activation. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Bull JJ, Crandall C, Rodriguez A, Krone SM. Models for the directed evolution of bacterial allelopathy: bacteriophage lysins. PeerJ 2015; 3:e879. [PMID: 25870772 PMCID: PMC4393818 DOI: 10.7717/peerj.879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/16/2015] [Indexed: 11/20/2022] Open
Abstract
Microbes produce a variety of compounds that are used to kill or suppress other species. Traditional antibiotics have their origins in these natural products, as do many types of compounds being pursued today in the quest for new antibacterial drugs. When a potential toxin can be encoded by and exported from a species that is not harmed, the opportunity exists to use directed evolution to improve the toxin's ability to kill other species-allelopathy. In contrast to the typical application of directed evolution, this case requires the co-culture of at least two species or strains, a host that is unharmed by the toxin plus the intended target of the toxin. We develop mathematical and computational models of this directed evolution process. Two contexts are considered, one with the toxin encoded on a plasmid and the other with the toxin encoded in a phage. The plasmid system appears to be more promising than the phage system. Crucial to both designs is the ability to co-culture two species/strains (host and target) such that the host is greatly outgrown by the target species except when the target species is killed. The results suggest that, if these initial conditions can be satisfied, directed evolution is feasible for the plasmid-based system. Screening with a plasmid-based system may also enable rapid improvement of a toxin.
Collapse
Affiliation(s)
- James J Bull
- The Institute for Cellular and Molecular Biology, University of Texas , Austin, TX , USA ; Department of Integrative Biology, University of Texas , Austin, TX , USA ; Center for Computational Biology and Bioinformatics, University of Texas , Austin, TX , USA
| | - Cameron Crandall
- Department of Biological Sciences, University of Idaho , Moscow, ID , USA
| | - Anna Rodriguez
- Department of Biological Sciences, University of Idaho , Moscow, ID , USA
| | - Stephen M Krone
- Department of Mathematics, University of Idaho , Moscow, ID , USA ; Institute for Bioinformatics and Evolutionary Studies, University of Idaho , Moscow, ID , USA
| |
Collapse
|
44
|
Wikmark Y, Svedendahl Humble M, Bäckvall JE. Combinatorial library based engineering of Candida antarctica lipase A for enantioselective transacylation of sec-alcohols in organic solvent. Angew Chem Int Ed Engl 2015; 54:4284-8. [PMID: 25676632 PMCID: PMC4471580 DOI: 10.1002/anie.201410675] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/16/2014] [Indexed: 12/02/2022]
Abstract
A method for determining lipase enantioselectivity in the transacylation of sec-alcohols in organic solvent was developed. The method was applied to a model library of Candida antarctica lipase A (CalA) variants for improved enantioselectivity (E values) in the kinetic resolution of 1-phenylethanol in isooctane. A focused combinatorial gene library simultaneously targeting seven positions in the enzyme active site was designed. Enzyme variants were immobilized on nickel-coated 96-well microtiter plates through a histidine tag (His6-tag), screened for transacylation of 1-phenylethanol in isooctane, and analyzed by GC. The highest enantioselectivity was shown by the double mutant Y93L/L367I. This enzyme variant gave an E value of 100 (R), which is a dramatic improvement on the wild-type CalA (E=3). This variant also showed high to excellent enantioselectivity for other secondary alcohols tested.
Collapse
Affiliation(s)
- Ylva Wikmark
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University10691 Stockholm (Sweden)
| | - Maria Svedendahl Humble
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University10691 Stockholm (Sweden)
- Industrial Biotechnology, School of Biotechnology, Albanova University CenterRoyal Institute of Technology (KTH), 10691 Stockholm (Sweden)
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University10691 Stockholm (Sweden)
| |
Collapse
|
45
|
Wikmark Y, Svedendahl Humble M, Bäckvall JE. Combinatorial Library Based Engineering ofCandida antarcticaLipase A for Enantioselective Transacylation ofsec-Alcohols in Organic Solvent. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Chong S. Overview of cell-free protein synthesis: historic landmarks, commercial systems, and expanding applications. ACTA ACUST UNITED AC 2014; 108:16.30.1-16.30.11. [PMID: 25271714 DOI: 10.1002/0471142727.mb1630s108] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During the early days of molecular biology, cell-free protein synthesis played an essential role in deciphering the genetic code and contributed to our understanding of translation of protein from messenger RNA. Owing to several decades of major and incremental improvements, modern cell-free systems have achieved higher protein synthesis yields at lower production costs. Commercial cell-free systems are now available from a variety of material sources, ranging from "traditional" E. coli, rabbit reticulocyte lysate, and wheat germ extracts, to recent insect and human cell extracts, to defined systems reconstituted from purified recombinant components. Although each cell-free system has certain advantages and disadvantages, the diversity of the cell-free systems allows in vitro synthesis of a wide range of proteins for a variety of downstream applications. In the post-genomic era, cell-free protein synthesis has rapidly become the preferred approach for high-throughput functional and structural studies of proteins and a versatile tool for in vitro protein evolution and synthetic biology. This unit provides a brief history of cell-free protein synthesis and describes key advances in modern cell-free systems, practical differences between widely used commercial cell-free systems, and applications of this important technology.
Collapse
|
47
|
Affiliation(s)
- Bettina M. Nestl
- Institute
of Technical Biochemistry, University of Stuttgart, Allmandring
31, 70569 Stuttgart, Germany
| | - Bernhard Hauer
- Institute
of Technical Biochemistry, University of Stuttgart, Allmandring
31, 70569 Stuttgart, Germany
| |
Collapse
|
48
|
|
49
|
Fujii R, Kitaoka M, Hayashi K. Random insertional-deletional strand exchange mutagenesis (RAISE): a simple method for generating random insertion and deletion mutations. Methods Mol Biol 2014; 1179:151-158. [PMID: 25055776 DOI: 10.1007/978-1-4939-1053-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Although proteins can be artificially improved by random insertion and deletion mutagenesis methods, these procedures are technically difficult. Here we describe a simple method called random insertional-deletional strand exchange mutagenesis (RAISE). This method is based on gene shuffling and can be used to introduce a wide variety of insertions, deletions, and substitutions. RAISE involves three steps: DNA fragmentation, attachment of a random short sequence, and reconstruction. This yields unique mutants and can be a powerful technique for protein engineering.
Collapse
Affiliation(s)
- Ryota Fujii
- Synthetic Chemicals Laboratory, Mitsui Chemicals, Inc., 580-32 Nagaura, Sodegaura, Chiba, 299-0265, Japan
| | | | | |
Collapse
|
50
|
Nguyen HB, Hung LW, Yeates TO, Terwilliger TC, Waldo GS. Split green fluorescent protein as a modular binding partner for protein crystallization. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2513-23. [PMID: 24311592 PMCID: PMC3852656 DOI: 10.1107/s0907444913024608] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/03/2013] [Indexed: 02/08/2023]
Abstract
A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10-11) hairpin in complex with GFP(1-9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10-11) hairpin with a variety of GFP(1-9) mutants engineered for favorable crystallization.
Collapse
Affiliation(s)
- Hau B. Nguyen
- Bioscience Division, Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545, USA
| | - Li-Wei Hung
- Physics Division, Los Alamos National Laboratory, MS D454, Los Alamos, NM 87545, USA
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California, PO Box 951569, Los Angeles, CA 90095, USA
| | - Thomas C. Terwilliger
- Bioscience Division, Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545, USA
| | - Geoffrey S. Waldo
- Bioscience Division, Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545, USA
| |
Collapse
|