1
|
Kruk M, Widstrom N, Jena S, Wolter NL, Blankenhorn JF, Abdalla I, Yang TY, Parker LL. Assays for tyrosine phosphorylation in human cells. Methods Enzymol 2019; 626:375-406. [PMID: 31606083 DOI: 10.1016/bs.mie.2019.06.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tyrosine kinases are important for many cellular processes and disruption of their regulation is a factor in diseases like cancer, therefore they are a major target of anticancer drugs. There are many ways to measure tyrosine kinase activity in cells by monitoring endogenous substrate phosphorylation, or by using peptide substrates and incubating them with cell lysates containing active kinases. However, most of these strategies rely on antibodies and/or are limited in how accurately they model the intracellular environment. In cases in which activity needs to be measured in cells, but endogenous substrates are not known and/or suitable phosphospecific antibodies are not available, cell-deliverable peptide substrates can be an alternative and can provide information on activation and inhibition of kinases in intact, live cells. In this chapter, we review this methodology and provide a protocol for measuring Abl kinase activity in human cells using enzyme-linked immunosorbent assay (ELISA) with a generic antiphosphotyrosine antibody for detection.
Collapse
Affiliation(s)
- Monica Kruk
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Naomi Widstrom
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Sampreeti Jena
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Nicole L Wolter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - John F Blankenhorn
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Ibrahim Abdalla
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Tzu-Yi Yang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Laurie L Parker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
2
|
Microfluidic Platform for Parallel Single Cell Analysis for Diagnostic Applications. Methods Mol Biol 2017. [PMID: 28044297 DOI: 10.1007/978-1-4939-6734-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cell populations are heterogeneous: they can comprise different cell types or even cells at different stages of the cell cycle and/or of biological processes. Furthermore, molecular processes taking place in cells are stochastic in nature. Therefore, cellular analysis must be brought down to the single cell level to get useful insight into biological processes, and to access essential molecular information that would be lost when using a cell population analysis approach. Furthermore, to fully characterize a cell population, ideally, information both at the single cell level and on the whole cell population is required, which calls for analyzing each individual cell in a population in a parallel manner. This single cell level analysis approach is particularly important for diagnostic applications to unravel molecular perturbations at the onset of a disease, to identify biomarkers, and for personalized medicine, not only because of the heterogeneity of the cell sample, but also due to the availability of a reduced amount of cells, or even unique cells. This chapter presents a versatile platform meant for the parallel analysis of individual cells, with a particular focus on diagnostic applications and the analysis of cancer cells. We first describe one essential step of this parallel single cell analysis protocol, which is the trapping of individual cells in dedicated structures. Following this, we report different steps of a whole analytical process, including on-chip cell staining and imaging, cell membrane permeabilization and/or lysis using either chemical or physical means, and retrieval of the cell molecular content in dedicated channels for further analysis. This series of experiments illustrates the versatility of the herein-presented platform and its suitability for various analysis schemes and different analytical purposes.
Collapse
|
3
|
Fukuda N, Honda S. Rapid evaluation of tyrosine kinase activity of membrane-integrated human epidermal growth factor receptor using the yeast Gγ recruitment system. ACS Synth Biol 2015; 4:421-9. [PMID: 25006755 DOI: 10.1021/sb500083t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family and plays key roles in the regulation of fundamental cellular processes, including cell proliferation, migration, differentiation, and survival. Deregulation of EGFR tyrosine kinase activity is involved in the development and progression of human cancers. In the present study, we attempted to develop a method to evaluate the tyrosine kinase activity of human EGFR using the yeast Gγ recruitment system. Autophosphorylation of tyrosine residues on the cytoplasmic tail of EGFR induces recruitment of Grb2-fused Gγ subunits to the inner leaflet of the plasma membrane in yeast cells, which leads to G-protein signal transduction and activation of downstream signaling events, including mating and diploid cell growth. We demonstrate that our system is applicable for the evaluation of tyrosine kinase inhibitors, which are regarded as promising drug candidates to prevent the growth of tumor cells. This approach provides a rapid and easy-to-use tool to select EGFR-targeting tyrosine kinase inhibitors that are able to permeate eukaryotic membranes and function in intracellular environments.
Collapse
Affiliation(s)
- Nobuo Fukuda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi,
Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi,
Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
4
|
Mannello F, Ligi D, Magnani M. Deciphering the single-cell omic: innovative application for translational medicine. Expert Rev Proteomics 2013; 9:635-48. [PMID: 23256674 DOI: 10.1586/epr.12.61] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Traditional technologies to investigate system biology are limited by the detection of parameters resulting from the averages of large populations of cells, missing cells produced in small numbers, and attempting to uniform the heterogeneity. The advent of proteomics and genomics at a single-cell level has set the basis for an outstanding improvement in analytical technology and data acquisition. It has been well demonstrated that cellular heterogeneity is closely related to numerous stochastic transcriptional events leading to variations in patterns of expression among single genetically identical cells. The new-generation technology of single-cell analysis is able to better characterize a cell's population, identifying and differentiating outlier cells, in order to provide both a single-cell experiment and a corresponding bulk measurement, through the identification, quantification and characterization of all system biology aspects (genomics, transcriptomics, proteomics, metabolomics, degradomics and fluxomics). The movement of omics into single-cell analysis represents a significant and outstanding shift.
Collapse
Affiliation(s)
- Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology, University Carlo Bo, Via O Ubaldini 7, 61029 Urbino (PU), Italy.
| | | | | |
Collapse
|
5
|
Lipchik AM, Parker LL. Time-resolved luminescence detection of spleen tyrosine kinase activity through terbium sensitization. Anal Chem 2013; 85:2582-8. [PMID: 23414415 DOI: 10.1021/ac3023422] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Disruption of regulatory protein phosphorylation can lead to disease and is particularly prevalent in cancers. Inhibitors that target deregulated kinases are therefore a major focus of chemotherapeutic development. Achieving sensitivity and specificity in high-throughput compatible kinase assays is key to successful inhibitor development. Here, we describe the application of time-resolved luminescence detection to the direct sensing of spleen tyrosine kinase (Syk) activity and inhibition using a novel peptide substrate. Chelation and luminescence sensitization of Tb(3+) allowed the direct detection of peptide phosphorylation without any antibodies or other labeling reagents. Characterizing the Tb(3+) coordination properties of the phosphorylated vs unphosphorylated form of the peptide revealed that an inner-sphere water was displaced upon phosphorylation, which likely was responsible for both enhancing the luminescence intensity and also extending the lifetime, which enabled gating of the luminescence signal to improve the dynamic range. Furthermore, a shift in the optimal absorbance maximum for excitation was observed, from 275 nm (for the unphosphorylated tyrosine peptide) to 266 nm (for the phosphorylated tyrosine peptide). Accordingly, time-resolved measurements with excitation at 266 nm via a monochromator enabled a 16-fold improvement in base signal-to-noise for distinguishing phosphopeptide from unphosphorylated peptide. This led to a high degree of sensitivity and quantitative reproducibility, demonstrating the amenability of this method to both research laboratory and high-throughput applications.
Collapse
Affiliation(s)
- Andrew M Lipchik
- Department of Medicinal Chemistry and Molecular Pharmacology and Purdue Center for Cancer Research, Purdue University, 201 S. University Street, West Lafayette, Indiana 47907, United States
| | | |
Collapse
|
6
|
Xu W, Allbritton N, Lawrence DS. SRC kinase regulation in progressively invasive cancer. PLoS One 2012; 7:e48867. [PMID: 23145001 PMCID: PMC3492248 DOI: 10.1371/journal.pone.0048867] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/01/2012] [Indexed: 11/18/2022] Open
Abstract
Metastatic progression is a multistep process that involves tumor growth and survival, motility and invasion, and subsequent proliferation in an inappropriate environment. The Src protein tyrosine kinase has been implicated in many of the biochemical pathways that drive these behaviors. Although Src itself is only rarely mutated in human tumors, its aberrant activity has been noted in various cancers and suggested to serve as a barometer of metastatic potential. With these features in mind, we examined Src kinase regulation at the structural, enzymatic, and expression levels as a function of progressively invasive prostate cancer cell lines. Surprisingly, both total Src content and kinase activity decrease with increasing cell line aggressiveness, an observation that appears to be inconsistent with the well-documented role of Src in the signaling pathways that drive growth and invasion. However, we do observe a direct correlation between Src kinase specific activity (total Src kinase activity/total Src content) and metastatic aggressiveness, possibly suggesting that in highly aggressive cell lines, key signaling enzymes are globally recruited to drive the cancerous phenotype. In addition, although the expected enhanced phosphorylation of Src at Tyr-416 (activation site) is present in the most aggressive prostate cancer cell lines, unexpectedly high phosphorylation levels at the Tyr-527 inhibitory site are observed as well. The latter, rather than representative of inhibited enzyme, is more indicative of primed Src responsive to local phosphorylated binding partners.
Collapse
Affiliation(s)
- Weichen Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nancy Allbritton
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David S. Lawrence
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
7
|
Proctor A, Wang Q, Lawrence DS, Allbritton NL. Metabolism of peptide reporters in cell lysates and single cells. Analyst 2012; 137:3028-38. [PMID: 22314840 PMCID: PMC3697743 DOI: 10.1039/c2an16162a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The stability of an Abl kinase substrate peptide in a cytosolic lysate and in single cells was characterized. In the cytosolic lysate, the starting peptide was metabolized at an average initial rate of 1.7 ± 0.3 zmol pg(-1) s(-1) with a t(1/2) of 1.3 min. Five different fragments formed over time; however, a dominant cleavage site was identified. Multiple rational design cycles were utilized to develop a lead peptide with a phenylalanine and alanine replaced by an (N-methyl)phenylalanine and isoleucine, respectively, to attain cytosolic peptidase resistance while maintaining Abl substrate efficacy. This lead peptide possessed a 15-fold greater lifetime in the cytosolic lysate while attaining a 7-fold improvement in k(cat) as an Abl kinase substrate compared to the starting peptide. However, when loaded into single cells, the starting peptide and lead peptide possessed nearly identical degradation rates and an altered pattern of fragmentation relative to that in cell lysates. Preferential accumulation of a fragment with cleavage at an Ala-Ala bond in single cells suggested that dissimilar peptidases act on the peptides in the lysate versus single cells. A design strategy for peptide stabilization, analogous to that demonstrated for the lysate, should be effective for stabilization in single cells.
Collapse
Affiliation(s)
- Angela Proctor
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
8
|
González-Vera JA. Probing the kinome in real time with fluorescent peptides. Chem Soc Rev 2012; 41:1652-64. [DOI: 10.1039/c1cs15198c] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Brown RB, Hewel JA, Emili A, Audet J. Single amino acid resolution of proteolytic fragments generated in individual cells. Cytometry A 2010; 77:347-55. [DOI: 10.1002/cyto.a.20880] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Le Gac S, van den Berg A. Single cells as experimentation units in lab-on-a-chip devices. Trends Biotechnol 2009; 28:55-62. [PMID: 19914725 DOI: 10.1016/j.tibtech.2009.10.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/12/2009] [Accepted: 10/22/2009] [Indexed: 12/12/2022]
Abstract
'Lab-on-a-chip' technology (LOC) has now reached a mature state and is employed commonly in research in the life sciences. LOC devices make novel experimentation possible while providing a sophisticated environment for cellular investigation. As a next step, we introduce here the concept of a 'lab-in-a-cell': the use of a single cell as a minimal and highly confined experimental unit, or experimentation in the simple, but still unequalled, platform provided by nature itself. LOC provides the appropriate format and set of tools for LIC experimentation, and we discuss here three types of LIC investigation: the elucidation of signaling pathways; the creation of novel production units; and the use of microfluidics for assisted reproduction techniques.
Collapse
Affiliation(s)
- Séverine Le Gac
- BIOS The Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | | |
Collapse
|
11
|
Abstract
The explosion of scientific interest in protein kinase-mediated signaling networks has led to the infusion of new chemical methods and their applications related to the analysis of phosphorylation pathways. We highlight some of these chemical biology approaches across three areas. First, we discuss the development of chemical tools to modulate the activity of protein kinases to explore kinase mechanisms and their contributions to phosphorylation events and cellular processes. Second, we describe chemical techniques developed in the past few years to dissect the structural and functional effects of phosphate modifications at specific sites in proteins. Third, we cover newly developed molecular imaging approaches to elucidate the spatiotemporal aspects of phosphorylation cascades in live cells. Exciting advances in our understanding of protein phosphorylation have been obtained with these chemical biology approaches, but continuing opportunities for technological innovation remain.
Collapse
Affiliation(s)
- Mary Katherine Tarrant
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
12
|
Bao N, Wang J, Lu C. Microfluidic electroporation for selective release of intracellular molecules at the single-cell level. Electrophoresis 2008; 29:2939-44. [PMID: 18551712 DOI: 10.1002/elps.200700856] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Analysis of intracellular materials at the single-cell level presents opportunities for probing the heterogeneity of a cell population. Lysis by electroporation has been gaining popularity as a rapid method for disruption of the cell membrane and release of intracellular contents. In this report, we selectively released specific intracellular molecules for interrogation at the single-cell level by tuning the parameters of electroporation. We examined the release of a small molecule, calcein (MW approximately 600), and a 72-kDa protein kinase, Syk, tagged by enhanced green fluorescent protein (EGFP) from chicken B cells during electroporation at the single-cell level. We studied the effects of the field intensity and the field duration on the release of the two molecules. We found that calcein in general was released at lower field intensities and shorter durations than did SykEGFP. By tuning the electrical parameters, we were able to deplete calcein from the cells before SykEGFP started to release. This approach potentially provides a high-throughput alternative for probing different intracellular molecules at the single-cell level compared to chemical cytometry by eliminating complete disruption of the cell membrane.
Collapse
Affiliation(s)
- Ning Bao
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
13
|
Lee KJ, Mwongela SM, Kottegoda S, Borland L, Nelson AR, Sims CE, Allbritton NL. Determination of sphingosine kinase activity for cellular signaling studies. Anal Chem 2008; 80:1620-7. [PMID: 18197698 DOI: 10.1021/ac702305q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regulation of sphingosine and sphingosine-1-phosphate concentrations is of growing interest due to their importance in cellular signal transduction. Furthermore, new pharmaceutical agents moderating the intracellular and extracellular levels of sphingosine metabolites are showing promise in preclinical and clinical trials. In the present work, a quantitative assay relying on capillary electrophoresis with laser-induced fluorescence detection was developed to measure the interconversion of sphingosine and sphingosine-1-phosphate. The assay was demonstrated to be capable of determining the in vitro activity of both kinase and phosphatase using purified enzymes. The KM of sphingosine kinase for its fluorescently labeled substrate was 38 +/- 18 microM with a Vmax of 0.4 +/- 0.2 microM/min and a kcat of 3900 s-1. Pharmacologic inhibition of sphingosine kinase in a concentration-dependent manner was also demonstrated. Moreover, the fluorescent substrate was shown to be readily taken up by mammalian cells making it possible to study the endogenous activity of sphingosine kinase activity in living cells. The method was readily adaptable to the use of either bulk cell lysates or very small numbers of intact cells. This new methodology provides enhancements over standard methods in sensitivity, quantification, and manpower for both in vitro and cell-based assays.
Collapse
Affiliation(s)
- Katherine J Lee
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Cohen D, Dickerson JA, Whitmore CD, Turner EH, Palcic MM, Hindsgaul O, Dovichi NJ. Chemical cytometry: fluorescence-based single-cell analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:165-190. [PMID: 20636078 DOI: 10.1146/annurev.anchem.1.031207.113104] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cytometry deals with the analysis of the composition of single cells. Flow and image cytometry employ antibody-based stains to characterize a handful of components in single cells. Chemical cytometry, in contrast, employs a suite of powerful analytical tools to characterize a large number of components. Tools have been developed to characterize nucleic acids, proteins, and metabolites in single cells. Whereas nucleic acid analysis employs powerful polymerase chain reaction-based amplification techniques, protein and metabolite analysis tends to employ capillary electrophoresis separation and ultrasensitive laser-induced fluorescence detection. It is now possible to detect yoctomole amounts of many analytes in single cells.
Collapse
Affiliation(s)
- Daniella Cohen
- Department of Chemistry, University of Washington, Seattle, 98195, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Sobhani K, Fink SL, Cookson BT, Dovichi NJ. Repeatability of chemical cytometry: 2-DE analysis of single RAW 264.7 macrophage cells. Electrophoresis 2007; 28:2308-13. [PMID: 17557367 DOI: 10.1002/elps.200700017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This report presents the use of 2-DE with ultrasensitive fluorescence detection as a chemical cytometry tool to characterize the protein and biogenic amine content of single cells from the RAW 264.7 murine macrophage cell line. Cells were sorted by cell cycle prior to 2-DE analysis. Cells in the G2/M phase of the cell cycle were aspirated into the first-dimensional capillary and lysed. The cellular contents were fluorescently labeled and first separated by capillary sieving electrophoresis (CSE). Over 380 fractions were transferred from the first-dimensional capillary to the second-dimensional capillary, where components were further separated by MEKC and detected by laser-induced fluorescence. Twenty-five spots common to the four electropherograms were fit with a 2-D Gaussian surface to determine spot position, width, and amplitude. The RSD in CSE mobility was 1.0 +/- 0.6%. The mean uncertainty in spot position was 1.3 times larger than the mean spot width in the CSE dimension. The average SD in MEKC migration time was 0.37 +/- 0.13 s, which is smaller than the average spot size in this dimension. Spot capacity was 200. The RSD in spot amplitude was 50%, reflecting a large cell-to-cell variation in component expression.
Collapse
Affiliation(s)
- Kimia Sobhani
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | | | | | |
Collapse
|
16
|
Babu SCV, Song EJ, Babar SME, Yoo YS. Capillary electrophoresis of signaling molecules. Biomed Chromatogr 2007; 21:890-7. [PMID: 17583878 DOI: 10.1002/bmc.867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The emerging field of quantitative systems biology uses high-throughput bioanalytical measurements to gain a deeper understanding of biological phenomena. With the advent of instrumentation platforms, capillary electrophoresis spans a very wide range of biological applications. This short article focuses on the exploitation of capillary electrophoresis for the systems-level analysis of cell signaling molecules.
Collapse
Affiliation(s)
- Suresh C V Babu
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Korea
| | | | | | | |
Collapse
|
17
|
Rau KR, Quinto-Su PA, Hellman AN, Venugopalan V. Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects. Biophys J 2006; 91:317-29. [PMID: 16617076 PMCID: PMC1479069 DOI: 10.1529/biophysj.105.079921] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 03/29/2006] [Indexed: 11/18/2022] Open
Abstract
Time-resolved imaging was used to examine the use of pulsed laser microbeam irradiation to produce cell lysis. Lysis was accomplished through the delivery of 6 ns, lambda=532 nm laser pulses via a 40x, 0.8 NA objective to a location 10 microm above confluent monolayers of PtK2 cells. The process dynamics were examined at cell surface densities of 600 and 1000 cells/mm2 and pulse energies corresponding to 0.7x, 1x, 2x, and 3x the threshold for plasma formation. The cell lysis process was imaged at times of 0.5 ns to 50 micros after laser pulse delivery and revealed the processes of plasma formation, pressure wave propagation, and cavitation bubble dynamics. Cavitation bubble expansion was the primary agent of cell lysis with the zone of lysed cells fully established within 600 ns of laser pulse delivery. The spatial extent of cell lysis increased with pulse energy but decreased with cell surface density. Hydrodynamic analysis indicated that cells subject to transient shear stresses in excess of a critical value were lysed while cells exposed to lower shear stresses remained adherent and viable. This critical shear stress is independent of laser pulse energy and varied from approximately 60-85 kPa for cell monolayers cultured at a density of 600 cells/mm2 to approximately 180-220 kPa for a surface density of 1000 cells/mm2. The implications for single cell lysis and microsurgery are discussed.
Collapse
Affiliation(s)
- Kaustubh R Rau
- Laser Microbeam and Medical Program, Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, California, USA
| | | | | | | |
Collapse
|
18
|
Shults MD, Carrico-Moniz D, Imperiali B. Optimal Sox-based fluorescent chemosensor design for serine/threonine protein kinases. Anal Biochem 2006; 352:198-207. [PMID: 16600168 DOI: 10.1016/j.ab.2006.03.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/28/2006] [Accepted: 03/02/2006] [Indexed: 01/23/2023]
Abstract
Fluorescent chemosensors of protein kinase activity provide a continuous, high-throughput sensing format for the study of the roles of these enzymes, which are crucial for regulating cellular function. Specifically, chemosensors using the nonnatural amino acid, Sox, and physiological Mg(2+) levels report phosphorylation with dramatic fluorescence changes that are amenable to real-time and high-throughput analysis. In this article, we report 15 probes for a total of six distinct serine/threonine kinases with large fluorescence increases and good reactivity toward the target kinase. The sensing mechanism is detailed, and the optimal sensing motif is determined. These versatile and powerful sensors provide tools for researchers studying the roles of the targeted kinases in signal transduction, and the design principles provide guidelines for the generation of future fluorescent chemosensors for any serine/threonine kinase.
Collapse
Affiliation(s)
- Melissa D Shults
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | |
Collapse
|
19
|
Kobe B, Kampmann T, Forwood JK, Listwan P, Brinkworth RI. Substrate specificity of protein kinases and computational prediction of substrates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:200-9. [PMID: 16172032 DOI: 10.1016/j.bbapap.2005.07.036] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/13/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
To ensure signalling fidelity, kinases must act only on a defined subset of cellular targets. Appreciating the basis for this substrate specificity is essential for understanding the role of an individual protein kinase in a particular cellular process. The specificity in the cell is determined by a combination of "peptide specificity" of the kinase (the molecular recognition of the sequence surrounding the phosphorylation site), substrate recruitment and phosphatase activity. Peptide specificity plays a crucial role and depends on the complementarity between the kinase and the substrate and therefore on their three-dimensional structures. Methods for experimental identification of kinase substrates and characterization of specificity are expensive and laborious, therefore, computational approaches are being developed to reduce the amount of experimental work required in substrate identification. We discuss the structural basis of substrate specificity of protein kinases and review the experimental and computational methods used to obtain specificity information.
Collapse
Affiliation(s)
- Bostjan Kobe
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
20
|
Gunde T, Barberis A. Yeast growth selection system for detecting activity and inhibition of dimerization-dependent receptor tyrosine kinase. Biotechniques 2005; 39:541-9. [PMID: 16235566 DOI: 10.2144/000112011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) play an important role in the control of fundamental cellular processes, including cell proliferation, migration, differentiation, and survival. Deregulated RTK signaling is critically involved in the development and progression of human cancer. Here, we present an assay for monitoring RTK activities in yeast, which provides an ideal heterologous cellular system to study these mammalian proteins in a null background environment. With our system, we have reconstituted aspects of the epidermal growth factor receptor (EGFR) signaling pathway as a model. Our approach is based on the Ras-recruitment system, in which membrane localization of a constitutively active human Ras achieved through protein-protein interactions can rescue growth of a temperature-sensitive yeast strain (cdc25-2). We show that co-expression of a dimerizing membrane-bound EGFR variant with specific adaptor proteins fused to the active Ras rescues growth of the cdc25-2 mutant yeast strain at the nonpermissive temperature. Using kinase-defective RTK mutants and selective EGFR kinase inhibitors, we demonstrate that growth rate of this yeast strain correlates with kinase activity of the EGFR derivatives. The RTK cellular assay presented here can be applied in high-throughput screens for selecting RTK-specific inhibitors that must be able to permeate the membrane and to function in an eukaryotic intrecellular environment.
Collapse
Affiliation(s)
- Tea Gunde
- ESBATech AG, Zürich-Schlieren, Switzerland
| | | |
Collapse
|
21
|
Suresh Babu CV, Cho SG, Yoo YS. Method development and measurements of endogenous serine/threonine Akt phosphorylation using capillary electrophoresis for systems biology. Electrophoresis 2005; 26:3765-72. [PMID: 16152671 DOI: 10.1002/elps.200500007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Signal transduction studies have indicated that Akt is essential for transducing the signals originating from extracellular stimuli. An exploration of the Akt signal transduction mechanism depends on the ability to assay its activation states by determining the ability of Akt to phosphorylate various substrates. This paper describes a CE-based kinase assay for Akt using a UV detection method. The RPRAATF peptide was used as the specific substrate to determine the Akt activity. Under the CE separation conditions used, the phosphorylated and nonphosphorylated forms of the RPRAATF peptide were rapidly resolved in the Akt reaction mixture within 20 min. Using this method for measuring the Akt activity, the incubation time for the Akt reactions as well as the kinetic parameters (KM) were examined. Furthermore, the developed method was applied to a PC12 cell system to assess the dynamics of the Akt activity by examining the effectiveness of the RPRAATF peptide substrate under various cytokine-stimulated environments. These results highlight the feasibility of the CE method, which is a simple and reliable technique for determining and characterizing various enzyme reactions particularly kinase enzymes.
Collapse
Affiliation(s)
- C V Suresh Babu
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
| | | | | |
Collapse
|
22
|
Abstract
Phosphorylation by protein kinases is the most widespread and well-studied signaling mechanism in eukaryotic cells. Phosphorylation can regulate almost every property of a protein and is involved in all fundamental cellular processes. Cataloging and understanding protein phosphorylation is no easy task: many kinases may be expressed in a cell, and one-third of all intracellular proteins may be phosphorylated, representing as many as 20,000 distinct phosphoprotein states. Defining the kinase complement of the human genome, the kinome, has provided an excellent starting point for understanding the scale of the problem. The kinome consists of 518 kinases, and every active protein kinase phosphorylates a distinct set of substrates in a regulated manner. Deciphering the complex network of phosphorylation-based signaling is necessary for a thorough and therapeutically applicable understanding of the functioning of a cell in physiological and pathological states. We review contemporary techniques for identifying physiological substrates of the protein kinases and studying phosphorylation in living cells.
Collapse
Affiliation(s)
- Sam A Johnson
- Molecular and Cell Biology Laboratory, Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
23
|
|
24
|
Ramm P, Thomas N. Image-based screening of signal transduction assays. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:PE14. [PMID: 12684527 DOI: 10.1126/stke.2003.177.pe14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Imaging techniques have played a vital role in signal transduction research over several decades. Recently, industrialized macro- and micro-imaging systems have found application in drug discovery laboratories, where they increase the throughput and efficiency of drug screening. Macro-imagers are used for primary screening, where they favor compound conservation (through assay miniaturization), and achieve unprecedented rates of throughput. Micro-imaging systems achieve relatively high throughput, at the same time providing sub-cellular resolution with fixed or living cells. These micro-imaging analyses were previously conducted at very low throughput and, typically, were the sole domain of the academic researcher. Although both macro and micro forms of image-based screening remain technologies in development, they have already made substantial contributions to screening programs and will continue to do so.
Collapse
Affiliation(s)
- Peter Ramm
- Imaging Research, Brock University, 500 Glenridge Avenue, St. Catharine's, Ontario L2S 3A1, Canada.
| | | |
Collapse
|