1
|
de Almeida Santos G, Englund ANB, Dalleywater EL, Røhr ÅK. Characterization of two bacterial tyrosinases from the halophilic bacterium Hahella sp. CCB MM4 relevant for phenolic compounds oxidation in wetlands. FEBS Open Bio 2024. [PMID: 39382070 DOI: 10.1002/2211-5463.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Tyrosinases (TYRs) are type-3 copper proteins that are widely distributed in nature. They can hydroxylate and oxidize phenolic molecules and are mostly known for producing melanins that confer protection against photo induced damage. TYRs are also thought to play an important role in the 'latch mechanism', where high concentrations of phenolic compounds inhibit oxidative decomposition of organic biomass and subsequent CO2 release, especially relevant in wetland environments. In the present study, we describe two TYRs, HcTyr1 and HcTyr2, from halophilic bacterium Hahella sp. CCB MM4 previously isolated at Matang mangrove forest in Perak, Malaysia. The structure of HcTyr1 was determined by X-ray crystallography at a resolution of 1.9 Å and represents an uncharacterized group of prokaryotic TYRs as demonstrated by a sequence similarity network analysis. The genes encoding the enzymes were cloned, expressed, purified and thoroughly characterized by biochemical methods. HcTyr1 was able to self-cleave its lid-domain (LID) in a protease independent manner, whereas the LID of HcTyr2 was essential for activity and stability. Both enzymes showed variable activity in the presence of different metals, surfactants and NaCl, and were able to oxidize lignin constituents. The high salinity tolerance of HcTyr1 indicates that the enzyme can be an efficient catalyst in the habitat of the host.
Collapse
Affiliation(s)
- Gustavo de Almeida Santos
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Andrea N B Englund
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Eirin L Dalleywater
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Åsmund Kjendseth Røhr
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
2
|
Tan LT. Impact of Marine Chemical Ecology Research on the Discovery and Development of New Pharmaceuticals. Mar Drugs 2023; 21:174. [PMID: 36976223 PMCID: PMC10055925 DOI: 10.3390/md21030174] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Diverse ecologically important metabolites, such as allelochemicals, infochemicals and volatile organic chemicals, are involved in marine organismal interactions. Chemically mediated interactions between intra- and interspecific organisms can have a significant impact on community organization, population structure and ecosystem functioning. Advances in analytical techniques, microscopy and genomics are providing insights on the chemistry and functional roles of the metabolites involved in such interactions. This review highlights the targeted translational value of several marine chemical ecology-driven research studies and their impact on the sustainable discovery of novel therapeutic agents. These chemical ecology-based approaches include activated defense, allelochemicals arising from organismal interactions, spatio-temporal variations of allelochemicals and phylogeny-based approaches. In addition, innovative analytical techniques used in the mapping of surface metabolites as well as in metabolite translocation within marine holobionts are summarized. Chemical information related to the maintenance of the marine symbioses and biosyntheses of specialized compounds can be harnessed for biomedical applications, particularly in microbial fermentation and compound production. Furthermore, the impact of climate change on the chemical ecology of marine organisms-especially on the production, functionality and perception of allelochemicals-and its implications on drug discovery efforts will be presented.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| |
Collapse
|
3
|
Varello R, Wetzel MA, Cima F. Two facets of geotextiles in coastal ecosystems: Anti- or profouling effects? MARINE ENVIRONMENTAL RESEARCH 2021; 170:105414. [PMID: 34273865 DOI: 10.1016/j.marenvres.2021.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Nonwoven geotextile fabrics have physical, mechanical and hydraulic properties useful in coastal protection as an alternative to natural stone, slag, and concrete. In a 10-month experiment, the colonisation of macrofouling organisms on different substrata based on polypropylene (PP), polyester (PET) or high density polyethylene (HDPE) fibres was investigated in the Lagoon of Venice, Italy - an environment with temperate transitional waters with high biodiversity - and compared with the colonisation on wood as a reference substratum, because of its occurrence in artificial structures at the study location, until a stable stage was reached in the development of the macrofouling community. Geotextile fabrics showed implications for community development. They affected both ecological succession in different ways by disturbing biofouling settlement and growth (HDPE fabrics) or favouring species which become dominant (PP fabrics). For these two-faceted aspects that potentially cause different long-term impacts on the biodiversity of resident communities, the use of geotextile fabrics as antifouling or as profouling systems for restoration of degraded ecosystems is discussed. In all cases, the communities displayed unique properties, such as differences in the settlement of pioneer species, an initial disturbance to serpulid settlement, absence of barnacles, selection of dominant taxa (ascidians), and changes in the percentages of various taxa forming the community structure. Given the increasing interest in geotextile materials for employment in various marine developments and industries, these results could represent first lines of evidence to inform decision-making to minimise/modify biofouling, and/or predict the use of artificial substrata as habitats by marine organisms.
Collapse
Affiliation(s)
- Roberta Varello
- Laboratory of Ascidian Biology, Department of Biology (DiBio), University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Markus A Wetzel
- Department of Animal Ecology, German Federal Institute of Hydrology - BfG, Am Mainzer Tor 1, 56068, Koblenz, Germany; Institute for Integrated Natural Sciences, University of Koblenz - Landau, Universitätsstrasse 1, 56070, Koblenz, Germany
| | - Francesca Cima
- Laboratory of Ascidian Biology, Department of Biology (DiBio), University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
4
|
Rao NRH, Tamburic B, Doan YTT, Nguyen BD, Henderson RK. Algal biotechnology in Australia and Vietnam: Opportunities and challenges. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Levert A, Foulon V, Fauchon M, Tapissier-Bontemps N, Banaigs B, Hellio C. Antifouling Activity of Meroterpenes Isolated from the Ascidian Aplidium aff. densum. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:51-61. [PMID: 33094389 DOI: 10.1007/s10126-020-10000-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The settlement and growth of fouling organisms on man-made surfaces can be prevented by the application of antifouling paints containing active compounds (biocides, heavy metals), most of which are toxic to non-target organisms. As part of our research program in chemical ecology and blue biotechnology, we are conducting studies to investigate the natural defence mechanisms of marine organisms that are free from epibionts, with the aim of isolating molecules involved in surface defence that could be good candidates as antifouling agents. Ascidians were selected for our investigation because previous studies have shown that they contain abundant and diverse secondary metabolites, which play a defensive role and have been applied to drug discovery. It is therefore relevant to study the role of such secondary metabolites in surface protection. In this study, 5 meroterpenoids (cordiachromene A, didehydroconicol, epiconicol, methoxyconidiol, conidione) from Aplidium aff. densum (ascidian) were investigated as potential antifoulants towards the inhibition of bacterial growth and settlement inhibition of barnacles. Cardiochromene A (IC50 barnacle settlement = 6.04 μg/mL; MIC Gram positive = 125 μg/mL; MIC Gram negative = 32 μg/mL) and epiconicol (IC50 barnacle settlement = 8.05 μg/mL; MIC Bacillus = 63 μg/mL; MIC other strains = 32 μg/mL) were the most promising compounds among those tested in this study.
Collapse
Affiliation(s)
- Annabel Levert
- Université de Perpignan, USR CNRS-EPHE-UPVD 3278, CRIOBE, 66860, Perpignan Cedex, France
- AkiNaO SAS, 58 avenue Paul Alduy, 66000, Perpignan, France
| | - Valentin Foulon
- Laboratoire des Sciences de l'Environnement Marin (LEMAR) CNRS, IRD, Ifremer, Univ Brest, Plouzané, F-29280, France
| | - Marilyne Fauchon
- Laboratoire des Sciences de l'Environnement Marin (LEMAR) CNRS, IRD, Ifremer, Univ Brest, Plouzané, F-29280, France
| | - Nathalie Tapissier-Bontemps
- Université de Perpignan, USR CNRS-EPHE-UPVD 3278, CRIOBE, 66860, Perpignan Cedex, France
- Laboratoire d'Excellence "CORAIL", Perpignan, France
| | - Bernard Banaigs
- Université de Perpignan, USR CNRS-EPHE-UPVD 3278, CRIOBE, 66860, Perpignan Cedex, France
- Laboratoire d'Excellence "CORAIL", Perpignan, France
| | - Claire Hellio
- Laboratoire des Sciences de l'Environnement Marin (LEMAR) CNRS, IRD, Ifremer, Univ Brest, Plouzané, F-29280, France.
| |
Collapse
|
6
|
Geraldes V, de Medeiros LS, Jacinavicius FR, Long PF, Pinto E. Development and validation of a rapid LC-MS/MS method for the quantification of mycosporines and mycosporine-like amino acids (MAAs) from cyanobacteria. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101796] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Biofilm formation in marine bacteria and biocidal sensitivity: interplay between a potent antibiofilm compound (AS162) and quorum-sensing autoinducers. 3 Biotech 2019; 9:338. [PMID: 31467830 DOI: 10.1007/s13205-019-1866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022] Open
Abstract
The capacity of two homoserine lactones to stimulate the marine bacteria Pseudoalteromonas ulvae (TC14 strain) for its capacity to form a biofilm when exposed to a potent antibiofilm compound AS162 is reported. Effective concentrations (EC50) of AS162 at 24 h, 48 h, and 72 h were, respectively, of 4.3, 4.4, and 6.0 µM. When tested in combination with HSLs, results showed that quorum-sensing signal molecules 3-oxo-C6 and 3-oxo-C8 homoserine lactones do not act directly on the biofilm formation, but are able to interfere positively with AS162 to promote biofilm growth with EC50 ranging from 30 to 50 µM. The same results were obtained with two other marine bacterial strains: Pseudoalteromonas lipolytica TC8 and Paracoccus sp. 4M6. These findings suggest that HSLs can significantly affect the biocidal sensitivity of marine bacteria to antifouling agents.
Collapse
|
8
|
MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci U S A 2018; 115:E5213-E5222. [PMID: 29686086 PMCID: PMC5984513 DOI: 10.1073/pnas.1722335115] [Citation(s) in RCA: 433] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plant roots nurture a large diversity of soil microbes via exudation of chemical compounds into the rhizosphere. In turn, beneficial root microbiota promote plant growth and immunity. The root-specific transcription factor MYB72 has emerged as a central regulator in this process. Here, we show that MYB72 regulates the excretion of the coumarin scopoletin, an iron-mobilizing phenolic compound with selective antimicrobial activity that shapes the root-associated microbial community. Selected soil-borne fungal pathogens appeared to be highly sensitive to the antimicrobial activity of scopoletin, while two MYB72-inducing beneficial rhizobacteria were tolerant. Our results suggest that probiotic root-associated microbes that activate the iron-deficiency response during colonization stimulate MYB72-dependent excretion of scopoletin, thereby potentially improving their niche establishment and enhancing plant growth and protection. Plant roots nurture a tremendous diversity of microbes via exudation of photosynthetically fixed carbon sources. In turn, probiotic members of the root microbiome promote plant growth and protect the host plant against pathogens and pests. In the Arabidopsis thaliana–Pseudomonas simiae WCS417 model system the root-specific transcription factor MYB72 and the MYB72-controlled β-glucosidase BGLU42 emerged as important regulators of beneficial rhizobacteria-induced systemic resistance (ISR) and iron-uptake responses. MYB72 regulates the biosynthesis of iron-mobilizing fluorescent phenolic compounds, after which BGLU42 activity is required for their excretion into the rhizosphere. Metabolite fingerprinting revealed the antimicrobial coumarin scopoletin as a dominant metabolite that is produced in the roots and excreted into the rhizosphere in a MYB72- and BGLU42-dependent manner. Shotgun-metagenome sequencing of root-associated microbiota of Col-0, myb72, and the scopoletin biosynthesis mutant f6′h1 showed that scopoletin selectively impacts the assembly of the microbial community in the rhizosphere. We show that scopoletin selectively inhibits the soil-borne fungal pathogens Fusarium oxysporum and Verticillium dahliae, while the growth-promoting and ISR-inducing rhizobacteria P. simiae WCS417 and Pseudomonas capeferrum WCS358 are highly tolerant of the antimicrobial effect of scopoletin. Collectively, our results demonstrate a role for coumarins in microbiome assembly and point to a scenario in which plants and probiotic rhizobacteria join forces to trigger MYB72/BGLU42-dependent scopolin production and scopoletin excretion, resulting in improved niche establishment for the microbial partner and growth and immunity benefits for the host plant.
Collapse
|
9
|
Abstract
Biomass derived from marine microalgae and macroalgae is globally recognized as a source of valuable chemical constituents with applications in the agri-horticultural sector (including animal feeds and health and plant stimulants), as human food and food ingredients as well as in the nutraceutical, cosmeceutical, and pharmaceutical industries. Algal biomass supply of sufficient quality and quantity however remains a concern with increasing environmental pressures conflicting with the growing demand. Recent attempts in supplying consistent, safe and environmentally acceptable biomass through cultivation of (macro- and micro-) algal biomass have concentrated on characterizing natural variability in bioactives, and optimizing cultivated materials through strain selection and hybridization, as well as breeding and, more recently, genetic improvements of biomass. Biotechnological tools including metabolomics, transcriptomics, and genomics have recently been extended to algae but, in comparison to microbial or plant biomass, still remain underdeveloped. Current progress in algal biotechnology is driven by an increased demand for new sources of biomass due to several global challenges, new discoveries and technologies available as well as an increased global awareness of the many applications of algae. Algal diversity and complexity provides significant potential provided that shortages in suitable and safe biomass can be met, and consumer demands are matched by commercial investment in product development.
Collapse
Affiliation(s)
- Dagmar B Stengel
- Botany and Plant Science, School of Natural Science, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland Galway, University Road, Galway, Ireland,
| | | |
Collapse
|
10
|
Yick S, Mai-Prochnow A, Levchenko I, Fang J, Bull MK, Bradbury M, Murphy AB, (Ken) Ostrikov K. The effects of plasma treatment on bacterial biofilm formation on vertically-aligned carbon nanotube arrays. RSC Adv 2015. [DOI: 10.1039/c4ra08187k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vertically-aligned carbon nanotube arrays treated with inductively-coupled plasmas demonstrate selective support of biofilms of Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Samuel Yick
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
- Complex Systems
| | - Anne Mai-Prochnow
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
| | - Igor Levchenko
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
- Complex Systems
| | - Jinghua Fang
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
- School of Physics
| | - Michelle K. Bull
- Food and Nutrition Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- North Ryde
- Australia
| | - Mark Bradbury
- Food and Nutrition Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- North Ryde
- Australia
| | - Anthony B. Murphy
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
| | - Kostya (Ken) Ostrikov
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
- Complex Systems
| |
Collapse
|
11
|
Hanssen KO, Cervin G, Trepos R, Petitbois J, Haug T, Hansen E, Andersen JH, Pavia H, Hellio C, Svenson J. The bromotyrosine derivative ianthelline isolated from the arctic marine sponge Stryphnus fortis inhibits marine micro- and macrobiofouling. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:684-694. [PMID: 25051957 DOI: 10.1007/s10126-014-9583-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
The inhibition of marine biofouling by the bromotyrosine derivative ianthelline, isolated from the Arctic marine sponge Stryphnus fortis, is described. All major stages of the fouling process are investigated. The effect of ianthelline on adhesion and growth of marine bacteria and microalgae is tested to investigate its influence on the initial microfouling process comparing with the known marine antifoulant barettin as a reference. Macrofouling is studied via barnacle (Balanus improvisus) settlement assays and blue mussel (Mytilus edulis) phenoloxidase inhibition. Ianthelline is shown to inhibit both marine micro- and macrofoulers with a pronounced effect on marine bacteria (minimum inhibitory concentration (MIC) values 0.1-10 μg/mL) and barnacle larval settlement (IC50 = 3.0 μg/mL). Moderate effects are recorded on M. edulis (IC50 = 45.2 μg/mL) and microalgae, where growth is more affected than surface adhesion. The effect of ianthelline is also investigated against human pathogenic bacteria. Ianthelline displayed low micromolar MIC values against several bacterial strains, both Gram positive and Gram negative, down to 2.5 μg/mL. In summary, the effect of ianthelline on 20 different representative marine antifouling organisms and seven human pathogenic bacterial strains is presented.
Collapse
Affiliation(s)
- Kine O Hanssen
- Centre for Research-based Innovation on Marine Bioactivities and Drug Discovery (MabCent), UiT The Arctic University of Norway, Breivika, Tromsø, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rizzello L, Cingolani R, Pompa PP. Nanotechnology tools for antibacterial materials. Nanomedicine (Lond) 2013; 8:807-21. [DOI: 10.2217/nnm.13.63] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The understanding of the interactions between biological systems and nanoengineered devices is crucial in several research fields, including tissue engineering, biomechanics, synthetic biology and biomedical devices. This review discusses the current knowledge of the interactions between bacteria and abiotic nanostructured substrates. First, the effects of randomly organized nanoscale topography on bacterial adhesion and persistence are described. Second, the interactions between microorganisms and highly organized/ordered micro- and nano-patterns are discussed. Finally, we survey the most promising approaches for the fabrication of silver polymeric nanocomposites, which have important applications as antimicrobial materials. The advantages, drawbacks and limitations of such nanotechnologies are critically discussed in view of potential future applications.
Collapse
Affiliation(s)
- Loris Rizzello
- Center for Bio-Molecular Nanotechnology, Istituto Italiano di Tecnologia, Via Barsanti, 1-73010 Arnesano (Lecce), Italy
| | - Roberto Cingolani
- Istituto Italiano di Tecnologia, Central Research Laboratories, Via Morego, 30-16136 Genova, Italy
| | - Pier Paolo Pompa
- Center for Bio-Molecular Nanotechnology, Istituto Italiano di Tecnologia, Via Barsanti, 1-73010 Arnesano (Lecce), Italy.
| |
Collapse
|
13
|
Wan F, Ye Q, Yu B, Pei X, Zhou F. Multiscale hairy surfaces for nearly perfect marine antibiofouling. J Mater Chem B 2013; 1:3599-3606. [DOI: 10.1039/c3tb20545b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP. Surface topographical factors influencing bacterial attachment. Adv Colloid Interface Sci 2012; 179-182:142-9. [PMID: 22841530 DOI: 10.1016/j.cis.2012.06.015] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/13/2012] [Accepted: 06/28/2012] [Indexed: 12/17/2022]
Abstract
Substratum surface roughness is known to be one of the key factors in determining the extent of bacterial colonization. Understanding the way by which the substratum topography, especially at the nanoscale, mediates bacterial attachment remains ambiguous at best, despite the volume of work available on the topic. This is because the vast majority of bacterial attachment studies do not perform comprehensive topographical characterization analyses, and typically consider roughness parameters that describe only one aspect of the surface topography. The most commonly reported surface roughness parameters are average and root mean square (RMS) roughness (R(a) and R(q) respectively), which are both measures of the typical height variation of the surface. They offer no insights into the spatial distribution or shape of the surface features. Here, a brief overview of the current state of research on topography-mediated bacterial adhesion is presented, as well as an outline of the suite of roughness characterization parameters that are available for the comprehensive description of the surface architecture of a substratum. Finally, a set of topographical parameters is proposed as a new standard for surface roughness characterization in bacterial adhesion studies to improve the likelihood of identifying direct relationships between substratum topography and the extent of bacterial adhesion.
Collapse
Affiliation(s)
- Russell J Crawford
- Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | | | | | | | | |
Collapse
|
15
|
Wan F, Pei X, Yu B, Ye Q, Zhou F, Xue Q. Grafting polymer brushes on biomimetic structural surfaces for anti-algae fouling and foul release. ACS APPLIED MATERIALS & INTERFACES 2012; 4:4557-65. [PMID: 22931043 DOI: 10.1021/am300912w] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Sylgard-184 silicone elastomer negative replica and resorcinol-formaldehyde (RF) positive replica were made by biomimicking the patterns of natural Trifolium and three other kinds of leaves using the micromolding lithography. An effective antifouling (AF) polymer, poly(3-sulfopropyl methacrylate) (PSPMA), was then grafted on these replica surfaces via the surface-initiated atom transfer radical polymerization (SI-ATRP). The AF property of the modified biomimetic surfaces was tested via the settlement assay with two microalgae in different sizes, and their fouling-release (FR) property was evaluated by the removal assay. The results indicate that the structure of microspines on Trifolium leaf can inhibit settlement of microalgae and facilitate the cell release. The AF property was improved by modification with PSPMA brushes.
Collapse
Affiliation(s)
- Fei Wan
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Bixler GD, Bhushan B. Biofouling: lessons from nature. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:2381-417. [PMID: 22509063 DOI: 10.1098/rsta.2011.0502] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Biofouling is generally undesirable for many applications. An overview of the medical, marine and industrial fields susceptible to fouling is presented. Two types of fouling include biofouling from organism colonization and inorganic fouling from non-living particles. Nature offers many solutions to control fouling through various physical and chemical control mechanisms. Examples include low drag, low adhesion, wettability (water repellency and attraction), microtexture, grooming, sloughing, various miscellaneous behaviours and chemical secretions. A survey of nature's flora and fauna was taken in order to discover new antifouling methods that could be mimicked for engineering applications. Antifouling methods currently employed, ranging from coatings to cleaning techniques, are described. New antifouling methods will presumably incorporate a combination of physical and chemical controls.
Collapse
Affiliation(s)
- Gregory D Bixler
- Nanoprobe Laboratory for Bio and Nanotechnology and Biomimetics, Ohio State University, Columbus, 43210-1142, USA
| | | |
Collapse
|
17
|
Bazaka K, Crawford RJ, Ivanova EP. Do bacteria differentiate between degrees of nanoscale surface roughness? Biotechnol J 2011; 6:1103-14. [PMID: 21910258 DOI: 10.1002/biot.201100027] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/13/2011] [Accepted: 07/22/2011] [Indexed: 11/08/2022]
Abstract
Whereas the employment of nanotechnology in electronics and optics engineering is relatively well established, the use of nanostructured materials in medicine and biology is undoubtedly novel. Certain nanoscale surface phenomena are being exploited to promote or prevent the attachment of living cells. However, as yet, it has not been possible to develop methods that completely prevent cells from attaching to solid surfaces, since the mechanisms by which living cells interact with the nanoscale surface characteristics of these substrates are still poorly understood. Recently, novel and advanced surface characterisation techniques have been developed that allow the precise molecular and atomic scale characterisation of both living cells and the solid surfaces to which they attach. Given this additional capability, it may now be possible to define boundaries, or minimum dimensions, at which a surface feature can exert influence over an attaching living organism.This review explores the current research on the interaction of living cells with both native and nanostructured surfaces, and the role that these surface properties play in the different stages of cell attachment.
Collapse
Affiliation(s)
- Kateryna Bazaka
- Electronic Materials Research Lab, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland, Australia
| | | | | |
Collapse
|
18
|
Piazza V, Roussis V, Garaventa F, Greco G, Smyrniotopoulos V, Vagias C, Faimali M. Terpenes from the red alga Sphaerococcus coronopifolius inhibit the settlement of barnacles. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:764-772. [PMID: 21181424 DOI: 10.1007/s10126-010-9337-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 11/30/2010] [Indexed: 05/30/2023]
Abstract
In this study, we screened eight terpenes isolated from the organic extract of Sphaerococcus coronopifolius for their antifouling activity in order to find possible new sources of non-toxic or less toxic bioactive antifoulants. The anti-settlement activity (EC₅₀) and the degree of toxicity (LC₅₀) of S. coronopifolius metabolites was evaluated using larvae of the cirriped crustacean Amphibalanus (Balanus) amphitrite (cyprids and nauplii) as model organism. For five of eight tested metabolites EC₅₀ was lower than 5 mg/L. The most promising results were observed for bromosphaerol (3), which expressed an EC₅₀ value of 0.23 mg/L, in combination with low toxicity levels (LC₅₀ > 100 mg/L). The therapeutic ratio--an index used to estimate whether settlement inhibition is due to toxicity or other mechanisms--is also calculated and discussed.
Collapse
Affiliation(s)
- Veronica Piazza
- Institute of Marine Science (ISMAR) CNR, via De Marini 6, 16149 Genoa, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Camps M, Briand JF, Guentas-Dombrowsky L, Culioli G, Bazire A, Blache Y. Antifouling activity of commercial biocides vs. natural and natural-derived products assessed by marine bacteria adhesion bioassay. MARINE POLLUTION BULLETIN 2011; 62:1032-1040. [PMID: 21414639 DOI: 10.1016/j.marpolbul.2011.02.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 05/30/2023]
Abstract
Biofilm formation is a key step during marine biofouling, the natural colonization of immersed substrata, leading to major economic and ecological consequences. Consequently, bacteria have been used for the screening of new non-toxic antifoulants: the adhesion of five strains isolated on three French locations was monitored using a fluorescence-based assay and toxicity was also evaluated. Nine biocides including commercial, natural and natural-derived products were tested. The commercial antifoulants, TBTO and Sea Nine showed low EC(50) but high toxicity. The non-commercial products TFA-Z showed significant anti-adhesion activities and appeared to be non-toxic, suggesting a specific anti-adhesion mechanism. In addition, the strains could be classified depending on their sensitivity to the molecules used even if strain sensitivity also depended on the molecules tested. In conclusion, TFA-Z would be a promising candidate as non-toxic antifoulant and our results strengthen the need to perform antifouling bioassays with a panel of strains showing different response profiles.
Collapse
Affiliation(s)
- Mercedes Camps
- Laboratoire MAPIEM, EA 4323, Biofouling et Substances Naturelles Marines, Université du Sud Toulon-Var, 83162 La Valette-du-Var, France
| | | | | | | | | | | |
Collapse
|
20
|
Hu HM, Watson JA, Cribb BW, Watson GS. Fouling of nanostructured insect cuticle: adhesion of natural and artificial contaminants. BIOFOULING 2011; 27:1125-1137. [PMID: 22081886 DOI: 10.1080/08927014.2011.637187] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The adhesional properties of contaminating particles of scales of various lengths were investigated for a wide range of micro- and nanostructured insect wing cuticles. The contaminating particles consisted of artificial hydrophilic (silica) and spherical hydrophobic (C(18)) particles, and natural pollen grains. Insect wing cuticle architectures with an open micro-/nanostructure framework demonstrated topographies for minimising solid-solid and solid-liquid contact areas. Such structuring of the wing membranes allows for a variety of removal mechanisms to contend with particle contact, such as wind and self-cleaning droplet interactions. Cuticles exhibiting high contact angles showed considerably lower particle adhesional forces than more hydrophilic insect surfaces. Values as low as 3 nN were recorded in air for silica of ~28 nm in diameter and <25 nN for silica particles 30 μm in diameter. A similar adhesional trend was also observed for contact with pollen particles.
Collapse
Affiliation(s)
- Hsuan-Ming Hu
- School of Pharmacy and Molecular Sciences, James Cook University, Townsville, QLD 4811, Australia
| | | | | | | |
Collapse
|
21
|
Scardino AJ, de Nys R. Mini review: Biomimetic models and bioinspired surfaces for fouling control. BIOFOULING 2011; 27:73-86. [PMID: 21132577 DOI: 10.1080/08927014.2010.536837] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nature provides many examples of mechanisms to control fouling. These defences can be copied (biomimetic) or tailored (bioinspired) to solve problems of fouling on manmade structures. With increasing research in this area over the last two decades, it is timely to review this burgeoning subject, in particular as the biofouling field shifts focus towards novel, physical mechanisms to prevent and control fouling. This change is being promoted by advances in nano- and micro-scale patterning as well as in a variety of nano-biotechnologies, which are transforming the translation of natural surfaces into experimental materials. In this article, research on the defence of marine organisms against fouling and the technologies they are defining is reviewed.
Collapse
Affiliation(s)
- Andrew J Scardino
- Maritime Platforms Division, Defence Science and Technology Organisation, Melbourne, Victoria, Australia.
| | | |
Collapse
|
22
|
Beattie AJ, Hay M, Magnusson B, de Nys R, Smeathers J, Vincent JFV. Ecology and bioprospecting. AUSTRAL ECOL 2010; 36:341-356. [PMID: 22737038 DOI: 10.1111/j.1442-9993.2010.02170.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bioprospecting is the exploration of biodiversity for new resources of social and commercial value. It is carried out by a wide range of established industries such as pharmaceuticals, manufacturing and agriculture as well as a wide range of comparatively new ones such as aquaculture, bioremediation, biomining, biomimetic engineering and nanotechnology. The benefits of bioprospecting have emerged from such a wide range of organisms and environments worldwide that it is not possible to predict what species or habitats will be critical to society, or industry, in the future. The benefits include an unexpected variety of products that include chemicals, genes, metabolic pathways, structures, materials and behaviours. These may provide physical blueprints or inspiration for new designs. Criticism aimed at bioprospecting has been addressed, in part, by international treaties and legal agreements aimed at stopping biopiracy and many activities are now funded by agencies that require capacity-building and economic benefits in host countries. Thus, much contemporary bioprospecting has multiple goals, including the conservation of biodiversity, the sustainable management of natural resources and economic development. Ecologists are involved in three vital ways: first, applying ecological principles to the discovery of new resources. In this context, natural history becomes a vast economic database. Second, carrying out field studies, most of them demographic, to help regulate the harvest of wild species. Third, emphasizing the profound importance of millions of mostly microscopic species to the global economy.
Collapse
Affiliation(s)
- Andrew J Beattie
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109
| | | | | | | | | | | |
Collapse
|
23
|
Plouguerné E, Ioannou E, Georgantea P, Vagias C, Roussis V, Hellio C, Kraffe E, Stiger-Pouvreau V. Anti-microfouling activity of lipidic metabolites from the invasive brown alga Sargassum muticum (Yendo) Fensholt. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:52-61. [PMID: 19468792 DOI: 10.1007/s10126-009-9199-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 05/02/2009] [Indexed: 05/22/2023]
Abstract
The purification of the chloroform extract from the brown invasive macroalga Sargassum muticum, through a series of chromatographic separations, yielded 12 fractions that were tested against strains of bacteria, microalgae, and fungi involved in marine biofilm formation. The chemical composition of four (a, c, g, and k) out of the six fractions that exhibited anti-microfouling activity was investigated. Fraction a contained saturated and unsaturated linear hydrocarbons (C12-C27). Arachidonic acid was identified as the major metabolite in fraction c whereas fraction g contained mainly palmitic, linolenic, and palmitoleic acids. Fraction k was submitted to further purification yielding the fraction kAcaF1e that was composed of galactoglycerolipids, active against the growth of two of the four bacterial strains (Shewanella putrefaciens and Polaribacter irgensii) and all tested fungi. These promising results, in particular the isolation and the activity of galactoglycerolipids, attest the potential of the huge biomass of S. muticum as a source of new environmentally friendly antifouling compounds.
Collapse
Affiliation(s)
- Erwan Plouguerné
- Université Européenne de Bretagne, Université de Brest, EA LEBHAM 3877, European Institute for Marine Sciences (IUEM), Place N. Copernic, 29280 Plouzané, France.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Scardino AJ, Zhang H, Cookson DJ, Lamb RN, de Nys R. The role of nano-roughness in antifouling. BIOFOULING 2009; 25:757-67. [PMID: 20183134 DOI: 10.1080/08927010903165936] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nano-engineered superhydrophobic surfaces have been investigated for potential fouling resistance properties. Integrating hydrophobic materials with nanoscale roughness generates surfaces with superhydrophobicity that have water contact angles (theta) >150 degrees and concomitant low hysteresis (<10 degrees ). Three superhydrophobic coatings (SHCs) differing in their chemical composition and architecture were tested against major fouling species (Amphora sp., Ulva rigida, Polysiphonia sphaerocarpa, Bugula neritina, Amphibalanus amphitrite) in settlement assays. The SHC which had nanoscale roughness alone (SHC 3) deterred the settlement of all the tested fouling organisms, compared to selective settlement on the SHCs with nano- and micro-scale architectures. The presence of air incursions or nanobubbles at the interface of the SHCs when immersed was characterized using small angle X-ray scattering, a technique sensitive to local changes in electron density contrast resulting from partial or complete wetting of a rough interface. The coating with broad spectrum antifouling properties (SHC 3) had a noticeably larger amount of unwetted interface when immersed, likely due to the comparatively high work of adhesion (60.77 mJ m(-2) for SHC 3 compared to 5.78 mJ m(-2) for the other two SHCs) required for creating solid/liquid interface from the solid/vapour interface. This is the first example of a non-toxic, fouling resistant surface against a broad spectrum of fouling organisms ranging from plant cells and non-motile spores, to complex invertebrate larvae with highly selective sensory mechanisms. The only physical property differentiating the immersed surfaces is the nano-architectured roughness which supports longer standing air incursions providing a novel non-toxic broad spectrum mechanism for the prevention of biofouling.
Collapse
Affiliation(s)
- A J Scardino
- Maritime Platforms Division, Defence Science and Technology Organisation, Victoria, Australia.
| | | | | | | | | |
Collapse
|
25
|
Maréchal JP, Hellio C. Challenges for the development of new non-toxic antifouling solutions. Int J Mol Sci 2009; 10:4623-4637. [PMID: 20087457 PMCID: PMC2808003 DOI: 10.3390/ijms10114623] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 10/26/2009] [Indexed: 11/30/2022] Open
Abstract
Marine biofouling is of major economic concern to all marine industries. The shipping trade is particularly alert to the development of new antifouling (AF) strategies, especially green AF paint as international regulations regarding the environmental impact of the compounds actually incorporated into the formulations are becoming more and more strict. It is also recognised that vessels play an extensive role in invasive species propagation as ballast waters transport potentially threatening larvae. It is then crucial to develop new AF solutions combining advances in marine chemistry and topography, in addition to a knowledge of marine biofoulers, with respect to the marine environment. This review presents the recent research progress made in the field of new non-toxic AF solutions (new microtexturing of surfaces, foul-release coatings, and with a special emphasis on marine natural antifoulants) as well as the perspectives for future research directions.
Collapse
Affiliation(s)
- Jean-Philippe Maréchal
- Observatoire du Milieu Marin Martiniquais, 3 avenue Condorcet, 97 200 Fort de France, Martinique, FWI, France; E-Mail:
| | - Claire Hellio
- School of Biological Sciences, King Henry Building, Portsmouth University, Portsmouth PO1 2DY, UK
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: + 44-239-284-2073; Fax: +44-239-284-2070
| |
Collapse
|
26
|
Ralston E, Swain G. Bioinspiration--the solution for biofouling control? BIOINSPIRATION & BIOMIMETICS 2009; 4:015007. [PMID: 19258693 DOI: 10.1088/1748-3182/4/1/015007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Most surfaces in the marine environment, both biotic and abiotic, are subject to biofouling. This has significant consequences for the safe and efficient conduct of marine activities. There is a pressing need to develop environmentally and economically acceptable methods to control the problem. In nature most plants and animals have evolved techniques that prevent or limit the process of fouling. These include chemical, physical, mechanical and behavioral responses. This paper reviews the knowledge with respect to natural antifouling methods, discusses similarities between natural mechanisms and existing antifouling technology and identifies potential future bioinspired approaches for the prevention of hull fouling specifically as they apply to US Navy requirements.
Collapse
Affiliation(s)
- Emily Ralston
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL 32901, USA.
| | | |
Collapse
|
27
|
Rojas R, Miranda CD, Amaro AM. Pathogenicity of a highly exopolysaccharide-producing Halomonas strain causing epizootics in larval cultures of the Chilean scallop Argopecten purpuratus (Lamarck, 1819). MICROBIAL ECOLOGY 2009; 57:129-139. [PMID: 18548185 DOI: 10.1007/s00248-008-9401-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Revised: 04/26/2008] [Accepted: 05/08/2008] [Indexed: 05/26/2023]
Abstract
Mass mortalities of larval cultures of Chilean scallop Argopecten purpuratus have repeatedly occurred in northern Chile, characterized by larval agglutination and accumulation in the bottom of rearing tanks. The exopolysaccharide slime (EPS) producing CAM2 strain was isolated as the primary organism from moribund larvae in a pathogenic outbreak occurring in a commercial hatchery producing larvae of the Chilean scallop Argopecten purpuratus located in Bahía Inglesa, Chile. The CAM2 strain was characterized biochemically and was identified by polymerase chain reaction amplification of 16S rRNA as Halomonas sp. (Accession number DQ885389.1). Healthy 7-day-old scallop larvae cultures were experimentally infected for a 48-h period with an overnight culture of the CAM2 strain at a final concentration of ca. 10(5) cells per milliliter, and the mortality and vital condition of larvae were determined by optical and scanning electron microscopy (SEM) to describe the chronology of the disease. Pathogenic action of the CAM2 strain was clearly evidenced by SEM analysis, showing a high ability to adhere and detach larvae velum cells by using its "slimy" EPS, producing agglutination, loss of motility, and a posterior sinking of scallop larvae. After 48 h, a dense bacterial slime on the shell surface was observed, producing high percentages of larval agglutination (63.28 +/- 7.87%) and mortality (45.03 +/- 4.32%) that were significantly (P < 0.05) higher than those of the unchallenged control cultures, which exhibited only 3.20 +/- 1.40% dead larvae and no larval agglutination. Furthermore, the CAM2 strain exhibited a high ability to adhere to fiberglass pieces of tanks used for scallop larvae rearing (1.64 x 10(5) cells adhered per square millimeters at 24 h postinoculation), making it very difficult to eradicate it from the culture systems. This is the first report of a pathogenic activity on scallop larvae of Halomonas species, and it prompts the necessity of an appraisal on biofilm-producing bacteria in Chilean scallop hatcheries.
Collapse
Affiliation(s)
- Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | | | | |
Collapse
|
28
|
Briand JF. Marine antifouling laboratory bioassays: an overview of their diversity. BIOFOULING 2009; 25:297-311. [PMID: 19191083 DOI: 10.1080/08927010902745316] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In aquatic environments, biofouling is a natural process of colonization of submerged surfaces, either living or artificial, involving a wide range of organisms from bacteria to invertebrates. Antifouling can be defined as preventing the attachment of organisms onto surfaces. This article reviews the laboratory bioassays that have been developed for studying the control of algae and invertebrates by epibiosis (chemical ecology) and the screening of new active compounds (natural products and biocides) to inhibit settlement or adhesion, ie fouling-release coatings. The assays utilize a range of organisms (mainly marine bacteria, diatoms, algae, barnacles). The main attributes of assays for micro- and macroorganisms are described in terms of their main characteristics and depending on the biological process assessed (growth, adhesion, toxicity, behavior). The validation of bioassays is also discussed.
Collapse
Affiliation(s)
- Jean-Francois Briand
- MAPIEM, Biofouling et Substances Naturelles Marines, Universite du Sud Toulon-Var, La Valette-du-Var, France.
| |
Collapse
|
29
|
Murthy PS, Venugopalan VP, Nair KVK, Subramoniam T. Larval Settlement and Surfaces: Implications in Development of Antifouling Strategies. MARINE AND INDUSTRIAL BIOFOULING 2008. [DOI: 10.1007/978-3-540-69796-1_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Faÿ F, Linossier I, Legendre G, Vallée-Réhel K. Micro-Encapsulation and Antifouling Coatings: Development of Poly(lactic acid) Microspheres Containing Bioactive Molecules. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/masy.200851205] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Pattanaik B, Roleda MY, Schumann R, Karsten U. Isolate-specific effects of ultraviolet radiation on photosynthesis, growth and mycosporine-like amino acids in the microbial mat-forming cyanobacterium Microcoleus chthonoplastes. PLANTA 2008; 227:907-916. [PMID: 18026986 DOI: 10.1007/s00425-007-0666-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 10/31/2007] [Indexed: 05/25/2023]
Abstract
Microcoleus chthonoplastes constitutes one of the dominant microorganisms in intertidal microbial mat communities. In the laboratory, the effects of repeated daily exposure to ultraviolet radiation (16:8 light:dark cycle) was investigated in unicyanobacterial cultures isolated from three different localities (Baltic Sea = WW6; North Sea = STO and Brittany = BRE). Photosynthesis and growth were measured in time series (12-15 days) while UV-absorbing mycosporine-like amino acids (MAAs) and cellular integrity were determined after 12 and 3 days exposure to three radiation treatments [PAR (22 mumol photon m(-2) s(-1)) = P; PAR + UV-A (8 W m(-2)) = PA; PAR + UV-A + UV-B (0.4 W m(-2)) = PAB]. Isolate-specific responses to UVR were observed. The proximate response to radiation stress after 1-day treatment showed that isolate WW6 was the most sensitive to UVR. However, repeated exposure to radiation stress indicated that photosynthetic efficiency (F (v)/F (m)) of WW6 acclimated to UVR. Conversely, although photosynthesis in STO exhibited lower reduction in F (v)/F (m) during the first day, the values declined over time. The BRE isolate was the most tolerant to radiation stress with the lowest reduction in F (v)/F (m )sustained over time. While photosynthetic efficiencies of different isolates were able to acclimate to UVR, growth did not. The discrepancy seems to be due to the higher cell density used for photosynthesis compared to the growth measurement. Apparently, the cell density used for photosynthesis was not high enough to offer self-shading protection because cellular damage was also observed in those filaments under UVR. Most likely, the UVR acclimation of photosynthesis reflects predominantly the performance of the surviving cells within the filaments. Different strategies were observed in MAAs synthesis. Total MAAs content in WW6 was not significantly different between all the radiation treatments. In contrast, the additional fluence of UV-A and UV-B significantly increased MAAs synthesis and accumulation in STO while only UV-B fluence significantly increased MAAs content in BRE. Regardless of the dynamic photosynthetic recovery process and potential UV-protective functions of MAAs, cellular investigation showed that UV-B significantly contributed to an increased cell mortality in single filaments. In their natural mat habitat, M. chthonoplastes benefits from closely associated cyanobacteria which are highly UVR-tolerant due to the production of the extracellular UV-sunscreen scytonemin.
Collapse
Affiliation(s)
- Bagmi Pattanaik
- Institute of Biological Sciences, Applied Ecology, University of Rostock, Albert-Einstein-Str. 3, 18051 Rostock, Germany.
| | | | | | | |
Collapse
|
32
|
Cappitelli F, Principi P, Sorlini C. Biodeterioration of modern materials in contemporary collections: can biotechnology help? Trends Biotechnol 2006; 24:350-4. [PMID: 16782219 DOI: 10.1016/j.tibtech.2006.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 05/04/2006] [Accepted: 06/02/2006] [Indexed: 11/27/2022]
Abstract
Contemporary collections frequently contain man-made materials. Although synthetic materials are considered more resistant to chemical, physical and biological damage than natural materials, they can also undergo rapid deterioration. In this Opinion article, we claim that biotechnology can help to identify biodeteriogens and prevent colonisation of polymeric surfaces through the application of biological products that reduce cell adhesion. We report the study of 'Futuro', made in 1965 by the Finnish architect Matti Suuronne. This ski-cabin, constructed of glassfibre-reinforced polyester, polyester-polyurethane, and poly(methylmethacrylate), was significantly degraded by conspicuous growth of microorganisms, identified as Cyanobacteria and Archaea using fluorescent in situ hybridisation. Ultimately, if biodeteriogens are able to adhere to the polymer surfaces, molecules with enzymatic activity can help to prevent the formation of biofilms--a main cause of deterioration--and aid the work of the conservator.
Collapse
Affiliation(s)
- Francesca Cappitelli
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy.
| | | | | |
Collapse
|
33
|
Odling K, Albertsson C, Russell JT, Mårtensson LGE. An in vivo study of exocytosis of cement proteins from barnacle Balanus improvisus (D.) cyprid larva. J Exp Biol 2006; 209:956-64. [PMID: 16481584 DOI: 10.1242/jeb.02031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
SUMMARY
Barnacles, like many marine invertebrates, cause serious biofouling to marine industrial constructions and hulls of vessels as they attach themselves to such surfaces. Precise biochemical understanding of the underwater adhesion to surfaces requires a detailed characterization of the biology of the control of barnacle cement secretion and the proteins that make up the cement. In this study, we have investigated cement secretion by cyprid larvae of Balanus improvisus (D.) and the morphology of their cement glands. We studied the cement protein organization within cement granules and categorized the granules into four different types according to their size and morphology,before and after stimulation of secretion. In addition, we followed the exocytotic process of cement secretion in vivo and discovered that granules undergo a dramatic swelling during secretion. Such swelling might be due to an increased osmotic activity of granule contents, following a process of hydration. We hypothesize that this hydration is essential for exocytotic secretion and conclude that cement protein exocytosis is a more complex process than previously thought and is similar to exocytotic secretion in vertebrate systems, such as histamine secretion from mast cells and exocrine secretion in the salivary gland and the pancreas.
Collapse
Affiliation(s)
- Kristin Odling
- Göteborg University, Department of Zoology, Zoophysiology, Medicinaregatan 18 SE-413 90 Göteborg, Sweden
| | | | | | | |
Collapse
|
34
|
Greer SP, Iken K, McClintock JB, Amsler CD. Bioassay-guided fractionation of antifouling compounds using computer-assisted motion analysis of brown algal spore swimming. BIOFOULING 2006; 22:125-32. [PMID: 16581677 DOI: 10.1080/08927010600602082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Antifouling extracts from the sea stars Astropecten articulatus and Luidia clathrata and from the brittle star Astrocyclus caecilia were fractionated by solid phase extraction and high performance liquid chromatography. Bioactive fractions were identified with the use of computer-assisted motion analysis-based bioassays utilising previously described Hincksia irregularis spore swimming behaviour parameters. Quantified parameters of spore movement were rate of change of direction (RCD) and speed (SPEE). The methods used initially required only 10 microg equivalent amounts of total crude extract and each resultant resolving step (normalised to 1 mg ml(-1) of crude, unfractionated extract) required far less material. Statistical analyses of RCD and ratios of RCD:SPEE values in experiments comparing swimming in the presence of extract fractions to controls revealed that both parameters were useful individually and in combination for efficiently following compound bioactivity throughout the fractionation procedure. This technique was also able to detect synergistic or additive interactions between compounds.
Collapse
Affiliation(s)
- Stephen P Greer
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294-1170, USA
| | | | | | | |
Collapse
|
35
|
Hellio C, Tsoukatou M, Maréchal JP, Aldred N, Beaupoil C, Clare AS, Vagias C, Roussis V. Inhibitory effects of mediterranean sponge extracts and metabolites on larval settlement of the barnacle Balanus amphitrite. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:297-305. [PMID: 15971089 DOI: 10.1007/s10126-004-3150-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/14/2005] [Indexed: 05/03/2023]
Abstract
One of the most promising alternative technologies to antifouling paints based on heavy metals is the development of coatings whose active ingredients are compounds naturally occurring in marine organisms. This approach is based on the problem of epibiosis faced by all marine organisms and the fact that a great number of them cope with it successfully. The present study investigated the antifouling activity of a series of extracts and secondary metabolites from the epibiont-free Mediterranean sponges Ircinia oros, I. spinosula, Cacospongia scalaris, Dysidea sp., and Hippospongia communis. Antifouling efficacy was evaluated by the settlement inhibition of laboratory-reared Balanus amphitrite Darwin cyprids. The most promising activity was exhibited by the metabolites 2-[24-acetoxy]-octaprenyl-1-4-hydroquinone (8a), dihydrofurospongin II (10), and the alcoholic extract of Dysidea sp.
Collapse
Affiliation(s)
- Claire Hellio
- Newcastle University, School of Marine Science and Technology, Newcastle upon Tyne, NE1 7RU, U.K
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Rezanka T, Temina M, Tolstikov AG, Dembitsky VM. Natural microbial UV radiation filters--mycosporine-like amino acids. Folia Microbiol (Praha) 2004; 49:339-52. [PMID: 15530001 DOI: 10.1007/bf03354663] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ozone depletion by anthropogenic gases has increased the atmospheric transmission of solar ultraviolet-B radiation (UV-B, 280-315 nm). There is a logical link between the natural defenses of terrestrial and marine organisms against UV radiation and the prevention of UV-induced damage to human skin. UV light degrades organic molecules such as proteins and nucleic acids, giving rise to structural changes that directly affect their biological function. These compounds offer the potential for development of novel UV blockers for human use. The biological role of mycosporine-like amino acids (MAAs) and scytonemin as a defense against solar radiation in organisms, together with their structure, synthesis, distribution, regulation and effectiveness, are reviewed in this article. This review points to the role of MAAs as a natural defense against UV radiation.
Collapse
Affiliation(s)
- T Rezanka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.
| | | | | | | |
Collapse
|
37
|
Göransson U, Sjögren M, Svangård E, Claeson P, Bohlin L. Reversible antifouling effect of the cyclotide cycloviolacin O2 against barnacles. JOURNAL OF NATURAL PRODUCTS 2004; 67:1287-90. [PMID: 15332843 DOI: 10.1021/np0499719] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cycloviolacin O2, a plant peptide of the cyclotide family, is shown to have potent effects against fouling barnacles (Balanus improvisus), with complete inhibition of settlement at a concentration of 0.25 microM. The effect of cycloviolacin O2 against barnacles is reversible and nontoxic in the bioassay employed in these studies. Cycloviolacin O2 was isolated from the terrestrial plant Viola odorata by strong cation exchange and reversed-phase HPLC and identified by mass spectrometry following aminoethylation and enzymatic cleavage.
Collapse
Affiliation(s)
- Ulf Göransson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, PO Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
38
|
Torres A, Hochberg M, Pergament I, Smoum R, Niddam V, Dembitsky VM, Temina M, Dor I, Lev O, Srebnik M, Enk CD. A new UV-B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum. ACTA ACUST UNITED AC 2004; 271:780-4. [PMID: 14764094 DOI: 10.1111/j.1432-1033.2004.03981.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A novel photo protective mycosporine was isolated from the lichenized ascomycete Collema cristatum. Biological activity was measured in terms of protection against UV-B induced membrane destruction and pyrimidine dimer formation in cultured human keratinocytes, and prevention of UV-B induced erythema. It was found that the pure isolated compound prevented UV-B induced cell destruction in a dose-dependent manner, that the compound partially prevented pyrimidine dimer formation and completely prevented UV-B induced erythema when applied to the skin prior to irradiation.
Collapse
Affiliation(s)
- Avital Torres
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University of Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|