1
|
Shinoda S, Itakura A, Sasano H, Miyake R, Kawabata H, Asano Y. Rational Design of the Soluble Variant of l-Pipecolic Acid Hydroxylase using the α-Helix Rule and the Hydropathy Contradiction Rule. ACS OMEGA 2022; 7:29508-29516. [PMID: 36033675 PMCID: PMC9404520 DOI: 10.1021/acsomega.2c04247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The production of recombinant proteins in Escherichia coli is an important application of biotechnology. 2-Oxoglutarate-dependent l-pipecolic acid hydroxylase derived from Xenorhabdus doucetiae (XdPH) is an excellent biocatalyst that catalyzes the hydroxylation of l-pipecolic acid to produce cis-5-hydroxy-l-pipecolic acid. However, the enzyme tends to form aggregates in the E. coli expression system. Our group established two rules, namely, the "α-helix rule" and the "hydropathy contradiction rule," to select residues to be altered for improving the heterologous recombinant production of proteins, by analyzing their primary structure. We rationally designed XdPH variants that are expressed in highly soluble and active forms in the E. coli expression system using these hotspot prediction methods, and the L142R variant showed a remarkably high soluble expression level compared to the wild-type XdPH. Further mutations were introduced into the L142R gene by site-directed mutagenesis. Moreover, the I28P/L142R and C76Y/L142R double variants displayed improved soluble expression levels compared to the single variants. These variants were also more thermostable than the wild-type XdPH. To analyze the effect of the alteration on one of the hotspots, L142 was replaced with various hydrophilic and positively charged residues. The remarkable increase in soluble protein expression caused by the alterations suggests that the decrease in the hydrophobicity of the protein surface and the enhancement of the interaction between nearby residues are important factors determining the solubility of the protein. Overall, this study demonstrated the effectiveness of our protocol in identifying aggregation hotspots for recombinant protein production and in basic biochemical research.
Collapse
Affiliation(s)
- Suguru Shinoda
- Biotechnology
Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan
| | - Aoi Itakura
- Biotechnology
Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan
| | - Haruka Sasano
- Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan
| | - Ryoma Miyake
- Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan
| | - Hiroshi Kawabata
- Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan
- API
Corporation, 13-4 Uchikanda
1-chome, Chiyoda-ku, Tokyo 101-0047, Japan
| | - Yasuhisa Asano
- Biotechnology
Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan
| |
Collapse
|
2
|
ZHAO H, ZHENG Z, ZHANG M, WANG Y, ZHANG M, YANG Z. Fermentation optimization of rennet-producing Bacillus amyloliquefaciens GSBa-1 for high-density culture and its kinetic model. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.40122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Hua ZHAO
- Beijing Technology and Business University, P. R. China
| | - Zhe ZHENG
- Beijing Technology and Business University, P. R. China
| | - Man ZHANG
- Beijing Technology and Business University, P. R. China
| | - Yihui WANG
- Beijing Technology and Business University, P. R. China
| | - Min ZHANG
- Beijing Technology and Business University, P. R. China
| | - Zhennai YANG
- Beijing Technology and Business University, P. R. China
| |
Collapse
|
3
|
Yin FW, Zhu SY, Guo DS, Ren LJ, Ji XJ, Huang H, Gao Z. Development of a strategy for the production of docosahexaenoic acid by Schizochytrium sp. from cane molasses and algae-residue. BIORESOURCE TECHNOLOGY 2019; 271:118-124. [PMID: 30265951 DOI: 10.1016/j.biortech.2018.09.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
The aim of this work was to reduce the algae-residue emission and make use of cane molasses as fermentation materials for docosahexaenoic acid (DHA) fermentaion by Schizochytrium sp., which further could cut the cost of DHA production. Algae-residue and cane molasses were respectively used as nitrogen and carbon sources to replace yeast extract and glucose. A significant DHA yield of 18.58 g/L was obtained using algae-residue, while cane molasses could not be used well as sole carbon source due to the presence of undesirable substance. A two-stage culture strategy with glucose followed by pretreated cane molasses as carbon source was developed, resulting in a final DHA yield of 15.22 g/L. This study therefore offers an economical and green strategy for DHA production by Schizochytrium sp.
Collapse
Affiliation(s)
- Feng-Wei Yin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Si-Yu Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Dong-Sheng Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
4
|
Hemmerich J, Moch M, Jurischka S, Wiechert W, Freudl R, Oldiges M. Combinatorial impact of Sec signal peptides fromBacillus subtilisand bioprocess conditions on heterologous cutinase secretion byCorynebacterium glutamicum. Biotechnol Bioeng 2018; 116:644-655. [DOI: 10.1002/bit.26873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/11/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Johannes Hemmerich
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
| | - Matthias Moch
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
| | - Sarah Jurischka
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
| | - Wolfgang Wiechert
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
- Computational Systems Biotechnology (AVT.CSB)RWTH Aachen UniversityAachen Germany
| | - Roland Freudl
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
| | - Marco Oldiges
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen Germany
| |
Collapse
|
5
|
Hemmerich J, Freier L, Wiechert W, von Lieres E, Oldiges M. Generic Protocol for Optimization of Heterologous Protein Production Using Automated Microbioreactor Technology. J Vis Exp 2017. [PMID: 29286407 PMCID: PMC5755569 DOI: 10.3791/56234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A core business in industrial biotechnology using microbial production cell factories is the iterative process of strain engineering and optimization of bioprocess conditions. One important aspect is the improvement of cultivation medium to provide an optimal environment for microbial formation of the product of interest. It is well accepted that the media composition can dramatically influence overall bioprocess performance. Nutrition medium optimization is known to improve recombinant protein production with microbial systems and thus, this is a rewarding step in bioprocess development. However, very often standard media recipes are taken from literature, since tailor-made design of the cultivation medium is a tedious task that demands microbioreactor technology for sufficient cultivation throughput, fast product analytics, as well as support by lab robotics to enable reliability in liquid handling steps. Furthermore, advanced mathematical methods are required for rationally analyzing measurement data and efficiently designing parallel experiments such as to achieve optimal information content. The generic nature of the presented protocol allows for easy adaption to different lab equipment, other expression hosts, and target proteins of interest, as well as further bioprocess parameters. Moreover, other optimization objectives like protein production rate, specific yield, or product quality can be chosen to fit the scope of other optimization studies. The applied Kriging Toolbox (KriKit) is a general tool for Design of Experiments (DOE) that contributes to improved holistic bioprocess optimization. It also supports multi-objective optimization which can be important in optimizing both upstream and downstream processes.
Collapse
Affiliation(s)
- Johannes Hemmerich
- IBG-1: Biotechnology, Forschungszentrum Jülich; Research Center Jülich, Bioeconomy Science Center (BioSC)
| | - Lars Freier
- IBG-1: Biotechnology, Forschungszentrum Jülich; Research Center Jülich, Bioeconomy Science Center (BioSC)
| | - Wolfgang Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich; Research Center Jülich, Bioeconomy Science Center (BioSC); Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University
| | - Eric von Lieres
- IBG-1: Biotechnology, Forschungszentrum Jülich; Research Center Jülich, Bioeconomy Science Center (BioSC);
| | - Marco Oldiges
- IBG-1: Biotechnology, Forschungszentrum Jülich; Research Center Jülich, Bioeconomy Science Center (BioSC); Institute for Biotechnology, RWTH Aachen University;
| |
Collapse
|
6
|
Newton JM, Schofield D, Vlahopoulou J, Zhou Y. Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss. Biotechnol Prog 2016; 32:1069-76. [PMID: 27111912 PMCID: PMC4999026 DOI: 10.1002/btpr.2292] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/14/2016] [Indexed: 11/10/2022]
Abstract
Monitoring the physical or chemical properties of cell broths to infer cell status is often challenging due to the complex nature of the broth. Key factors indicative of cell status include cell density, cell viability, product leakage, and DNA release to the fermentation broth. The rapid and accurate prediction of cell status for hosts with intracellular protein products can minimise product loss due to leakage at the onset of cell lysis in fermentation. This article reports the rheological examination of an industrially relevant E. coli fermentation producing antibody fragments (Fab'). Viscosity monitoring showed an increase in viscosity during the exponential phase in relation to the cell density increase, a relatively flat profile in the stationary phase, followed by a rapid increase which correlated well with product loss, DNA release and loss of cell viability. This phenomenon was observed over several fermentations that a 25% increase in broth viscosity (using induction-point viscosity as a reference) indicated 10% product loss. Our results suggest that viscosity can accurately detect cell lysis and product leakage in postinduction cell cultures, and can identify cell lysis earlier than several other common fermentation monitoring techniques. This work demonstrates the utility of rapidly monitoring the physical properties of fermentation broths, and that viscosity monitoring has the potential to be a tool for process development to determine the optimal harvest time and minimise product loss. © 2016 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers, 32:1069-1076, 2016.
Collapse
Affiliation(s)
- Joseph M Newton
- Dept. of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Desmond Schofield
- Dept. of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Joanna Vlahopoulou
- Research & Development, Procellia Ltd, Netpark Incubator, Thomas Wright Way, Sedgefield, County Durham, TS21 3FD, U.K
| | - Yuhong Zhou
- Dept. of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, U.K
| |
Collapse
|
7
|
Babaeipour V, Khanchezar S, Mofid MR, Pesaran Hagi Abbas M. Efficient process development of recombinant human granulocyte colony-stimulating factor (rh-GCSF) production in Escherichia coli. IRANIAN BIOMEDICAL JOURNAL 2016; 19:102-10. [PMID: 25864815 PMCID: PMC4412921 DOI: 10.6091/ibj.1338.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: The protein hormone granulocyte colony-stimulating factor (GCSF) stimulates the production of white blood cells and plays an important role in medical treatment of cancer patients. Methods: An efficient process was developed for heterologous expression of the human GCSF in E. coli BL21 (DE3). The feeding rate was adjusted to achieve the maximum attainable specific growth rate under critical value. In this method, specific growth rate was maintained at the maximum value of 0.55 h-1 at the beginning of feeding to 0.4 h-1 at the induction time. Recombinant human GCSF (rh-GCSF) was produced as inclusion body. At first, inclusion bodies were released by cell disruption and then washed, solubilized and refolded. Finally, the rh-GCSF was purified by cation exchange chromatography. Results: Obviouly, higher specific growth rate decreases process time and consequently increases productivity. The final concentration of biomass and GCSF was achieved 126 g DCW.l-1 and 32.1 g.l-1. Also, the final specific yield (YP/X) and total productivity of rh-GCSF were obtained 254 mg.g-1 DCW and 1.83 g.l-1.h-1, respectively. According to the available data, this is one of the highest YP/X and productivity that has been reported for any human protein which is expressed in E. coli. Recovery yield of purification process was %40 and purity of recombinant protein was over than 99%. The circular dichroism spectra of purified rh-GCSF, Neupogen® and PD-Grastim showed that all proteins have a similar secondary structure. Conclusion: Modified exponential feeding strategy for fed-batch cultivation of recombinant E. coli, results in minimum fed-batch duration and maximum productivity.
Collapse
Affiliation(s)
- Valiollah Babaeipour
- Dept. of Bioscience and Biotechnology, Malek Ashtar University of Technology, P.O. Box 14395-1561, Tehran, Iran
| | - Sirwan Khanchezar
- Dept. of Biotechnology, Chemical Engineering Faculty, Tarbiat Modarres University, Tehran, Iran
| | - Mohammad Reza Mofid
- Dept. of Biochemistry and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Pesaran Hagi Abbas
- Dept. of Life Science Engineering, Faculty of New
Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Production of sophorolipids with enhanced volumetric productivity by means of high cell density fermentation. Appl Microbiol Biotechnol 2012; 97:1103-11. [DOI: 10.1007/s00253-012-4399-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
|
9
|
Xu J, Qian Y, Skonezny PM, You L, Xing Z, Meyers DS, Stankavage RJ, Pan SH, Li ZJ. Reduction of N-terminal methionylation while increasing titer by lowering metabolic and protein production rates in E. coli auto-induced fed-batch fermentation. ACTA ACUST UNITED AC 2012; 39:1199-208. [DOI: 10.1007/s10295-012-1127-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/30/2012] [Indexed: 11/29/2022]
Abstract
Abstract
A standard fed-batch fermentation process using 1 mM isopropyl-β-d-thiogalactopyranoside (IPTG) induction at 37 °C in complex batch and feed media had been developed for manufacturing of a therapeutic protein (TP) expressed in inclusion bodies (IBs) by E. coli BL21 (DE3) driven by T7 promoter. Six unauthentic TP N-terminal variants were identified, of which methionylated TP (Met-TP) ratio was predominant. We hypothesized that lowering metabolic and protein production rates would reduce the Met-TP ratio while improving TP titer. The standard process was surprisingly auto-induced without added IPTG due to galactose in the complex media. Without changing either the clone or the batch medium, a new process was developed using lower feed rates and auto-induction at 29 °C after glucose depletion while increasing induction duration. In comparison to the standard process, the new process reduced the unauthentic Met-TP ratio from 23.6 to 9.6 %, increased the TP titer by 85 %, and the specific production yield from 210 to 330 mg TP per gram of dry cell weight. Furthermore, the TP recovery yield in the purified IBs was improved by ~20 %. Adding together, ~105 % more TP recovered in the purified IBs from per liter of fermentation broth for the new process than the standard process. The basic principles of lowering metabolic and production rates should be applicable to other recombinant protein production in IBs by fed-batch fermentations.
Collapse
Affiliation(s)
- Jianlin Xu
- grid.419971.3 Biologics Process Science, Global Manufacturing and Supply Bristol-Myers Squibb 6000 Thompson Road 13057 Syracuse NY USA
| | - Yueming Qian
- grid.419971.3 Biologics Process Science, Global Manufacturing and Supply Bristol-Myers Squibb 6000 Thompson Road 13057 Syracuse NY USA
| | - Paul M Skonezny
- grid.419971.3 Biologics Process Science, Global Manufacturing and Supply Bristol-Myers Squibb 6000 Thompson Road 13057 Syracuse NY USA
| | - Li You
- grid.419971.3 Biologics Process Science, Global Manufacturing and Supply Bristol-Myers Squibb 6000 Thompson Road 13057 Syracuse NY USA
| | - Zizhuo Xing
- grid.419971.3 Biologics Process Science, Global Manufacturing and Supply Bristol-Myers Squibb 6000 Thompson Road 13057 Syracuse NY USA
| | - David S Meyers
- grid.419971.3 Biologics Process Science, Global Manufacturing and Supply Bristol-Myers Squibb 6000 Thompson Road 13057 Syracuse NY USA
| | - Robert J Stankavage
- grid.419971.3 Biologics Process Science, Global Manufacturing and Supply Bristol-Myers Squibb 6000 Thompson Road 13057 Syracuse NY USA
| | - Shih-Hsie Pan
- grid.419971.3 Biologics Process Science, Global Manufacturing and Supply Bristol-Myers Squibb 6000 Thompson Road 13057 Syracuse NY USA
| | - Zheng Jian Li
- grid.419971.3 Biologics Process Science, Global Manufacturing and Supply Bristol-Myers Squibb 6000 Thompson Road 13057 Syracuse NY USA
| |
Collapse
|
10
|
Enhanced production of periplasmic interferon alpha-2b by Escherichia coli using ion-exchange resin for in situ removal of acetate in the culture. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Factors affecting endotoxin removal from recombinant therapeutic proteins by anion exchange chromatography. Protein Expr Purif 2009; 64:76-81. [DOI: 10.1016/j.pep.2008.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 11/21/2022]
|
12
|
Xia XX, Han MJ, Lee SY, Yoo JS. Comparison of the extracellular proteomes of Escherichia coli B and K-12 strains during high cell density cultivation. Proteomics 2008; 8:2089-103. [PMID: 18425732 DOI: 10.1002/pmic.200700826] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Escherichia coli BL21 (DE3) and W3110 strains, belonging to the family B and K-12, respectively, have been most widely employed for recombinant protein production. During the excretory production of recombinant proteins by high cell density cultivation (HCDC) of these strains, other native E. coli proteins were also released. Thus, we analyzed the extracellular proteomes of E. coli BL21 (DE3) and W3110 during HCDC. E. coli BL21 (DE3) released more than twice the amount of protein compared with W3110 during HCDC. A total of 204 protein spots including 83 nonredundant proteins were unambiguously identified by 2-DE and MS. Of these, 32 proteins were conserved in the two strains, while 20 and 33 strain-specific proteins were identified for E. coli BL21 (DE3) and W3110, respectively. More than 70% of identified proteins were found to be of periplasmic origin. The outer membrane proteins, OmpA and OmpF, were most abundant. Two strains showed much different patterns in their released proteins. Also, cell density-dependent variations in the released proteins were observed in both strains. These findings summarized as reference proteome maps will be useful for studying protein release in further detail, and provide new strategies for enhanced excretory production of recombinant proteins.
Collapse
Affiliation(s)
- Xiao-Xia Xia
- Department of Chemical & Biomolecular Engineering, BioProcess Engineering Research Center, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, Republic of Korea
| | | | | | | |
Collapse
|
13
|
Process development for production of human granulocyte-colony stimulating factor by high cell density cultivation of recombinant Escherichia coli. J Ind Microbiol Biotechnol 2008; 35:1643-50. [DOI: 10.1007/s10295-008-0408-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
|
14
|
Jiang S, Li C, Zhang W, Cai Y, Yang Y, Yang S, Jiang W. Directed evolution and structural analysis of N-carbamoyl-D-amino acid amidohydrolase provide insights into recombinant protein solubility in Escherichia coli. Biochem J 2007; 402:429-37. [PMID: 17121498 PMCID: PMC1863561 DOI: 10.1042/bj20061457] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
One of the greatest bottlenecks in producing recombinant proteins in Escherichia coli is that over-expressed target proteins are mostly present in an insoluble form without any biological activity. DCase (N-carbamoyl-D-amino acid amidohydrolase) is an important enzyme involved in semi-synthesis of beta-lactam antibiotics in industry. In the present study, in order to determine the amino acid sites responsible for solubility of DCase, error-prone PCR and DNA shuffling techniques were applied to randomly mutate its coding sequence, followed by an efficient screening based on structural complementation. Several mutants of DCase with reduced aggregation were isolated. Solubility tests of these and several other mutants generated by site-directed mutagenesis indicated that three amino acid residues of DCase (Ala18, Tyr30 and Lys34) are involved in its protein solubility. In silico structural modelling analyses suggest further that hydrophilicity and/or negative charge at these three residues may be responsible for the increased solubility of DCase proteins in E. coli. Based on this information, multiple engineering designated mutants were constructed by site-directed mutagenesis, among them a triple mutant A18T/Y30N/K34E (named DCase-M3) could be overexpressed in E. coli and up to 80% of it was soluble. DCase-M3 was purified to homogeneity and a comparative analysis with wild-type DCase demonstrated that DCase-M3 enzyme was similar to the native DCase in terms of its kinetic and thermodynamic properties. The present study provides new insights into recombinant protein solubility in E. coli.
Collapse
Affiliation(s)
- Shimin Jiang
- *Laboratory of Molecular Microbiology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Chunhong Li
- *Laboratory of Molecular Microbiology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Weiwen Zhang
- †Microbiology Department, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, U.S.A
| | - Yuanheng Cai
- *Laboratory of Molecular Microbiology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Yunliu Yang
- *Laboratory of Molecular Microbiology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Sheng Yang
- *Laboratory of Molecular Microbiology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Weihong Jiang
- *Laboratory of Molecular Microbiology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- ‡Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China
- To whom correspondence should be addressed (email )
| |
Collapse
|
15
|
Babaeipour V, Shojaosadati S, Robatjazi S, Khalilzadeh R, Maghsoudi N. Over-production of human interferon-γ by HCDC of recombinant Escherichia coli. Process Biochem 2007. [DOI: 10.1016/j.procbio.2006.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Luo Q, Shen YL, Wei DZ, Cao W. Optimization of culture on the overproduction of TRAIL in high-cell-density culture by recombinant Escherichia coli. Appl Microbiol Biotechnol 2006; 71:184-91. [PMID: 16215715 DOI: 10.1007/s00253-005-0131-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 07/31/2005] [Accepted: 08/02/2005] [Indexed: 11/28/2022]
Abstract
Different nutrient-feeding cultures were carried out in producing recombinant protein of truncated tumor necrosis factor related apoptosis-inducing ligand (TRAIL) (114-281 amino acids of TRAIL) in Escherichia coli strain C600/pBV-TRAIL. The effects of preinduction specific growth rate, postinduction carbon source (glucose and glycerol), and feeding strategies were investigated. The higher preinduction specific growth rate (mu = 0.22 h(-1)) contributed to the increase in the TRAIL production, at which TRAIL was accumulated in bacterial cells as 7.2% of total cellular protein, corresponding to 1.99 g l(-1) in contrast with 5.1% (1.29 g l(-1)) at preinduction specific growth rate (mu = 0.1 h(-1)) during high-cell-density culture. Glycerol was superior to glucose as the postinduction carbon source for TRAIL production. Under similar culture conditions, the final concentration of TRAIL was produced 1.59-fold more when glycerol was used as postinduction carbon source than when glucose was used. At the same time, the results showed that it is efficient to adopt the pH-stat feeding strategy at postinduction for the overproduction of TRAIL. The TRAIL production was increased up to 4.51 g l(-1), approximately 16.1% of total cellular protein. The mechanisms behind the preinduction specific growth rate effect on the expression level may be ascribed to the leakage secretion of acetate.
Collapse
Affiliation(s)
- Qingping Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Panda AK. Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 85:43-93. [PMID: 12930093 DOI: 10.1007/3-540-36466-8_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli has been most extensively used for the large-scale production of therapeutic proteins, which do not require complex glycosylation for bioactivity. In recent years tremendous progress has been made on the molecular biology, fermentation process development and protein refolding from inclusion bodies for efficient production of therapeutic proteins using E. coli. High cell density fermentation and high throughput purification of the recombinant protein from inclusion bodies of E. coli are the two major bottle necks for the cost effective production of therapeutic proteins. The aim of this review is to summarize the developments both in high cell density, high productive fermentation and inclusion body protein refolding processes using E. coli as an expression system. The first section deals with the problems of high cell density fermentation with an aim to high volumetric productivity of recombinant protein. Process engineering parameters during the expression of ovine growth hormone as inclusion body in E. coli were analyzed. Ovine growth hormone yield was improved from 60 mg L(-1) to 3.2 g L(-1) using fed-batch culture. Similar high volumetric yields were also achieved for human growth hormone and for recombinant bonnet monkey zona pellucida glycoprotein expressed as inclusion bodies in E. coli. The second section deals with purification and refolding of recombinant proteins from the inclusion bodies of E. coli. The nature of inclusion body protein, its characterization and isolation from E. coli has been discussed in detail. Different solubilization and refolding methods, which have been used to recover bioactive protein from inclusion bodies of E. coli have also been discussed. A novel inclusion body protein solubilization method, while retaining the existing native-like secondary structure of the protein and its subsequent refolding in to bioactive form, has been discussed. This inclusion body solubilization and refolding method has been applied to recover bioactive recombinant ovine growth hormone, recombinant human growth hormone and bonnet monkey zona pellucida glycoprotein from the inclusion bodies of E. coli.
Collapse
Affiliation(s)
- Amulya K Panda
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India.
| |
Collapse
|
18
|
Yoon SH, Han MJ, Lee SY, Jeong KJ, Yoo JS. Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng 2003; 81:753-67. [PMID: 12557308 DOI: 10.1002/bit.10626] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Combined transcriptome and proteome analysis was carried out to understand metabolic and physiological changes of Escherichia coli during the high cell density cultivation (HCDC). The expression of genes of TCA cycle enzymes, NADH dehydrogenase and ATPase, was up-regulated during the exponential fed-batch period and was down-regulated afterward. However, expression of most of the genes involved in glycolysis and pentose phosphate pathway was up-regulated at the stationary phase. The expression of most of amino acid biosynthesis genes was down-regulated as cell density increased, which seems to be the major reason for the reduced specific productivity of recombinant proteins during HCDC. The expression of chaperone genes increased with cell density, suggesting that the high cell density condition itself can be stressful to the cells. Severe competition for oxygen at high cell density seemed to make cells use cytochrome bd, which is less efficient but has a high oxygen affinity than cytochrome bo(3). Population cell density itself strongly affected the expression of porin protein genes, especially ompF, and hence the permeability of the outer membrane. Expression of phosphate starvation genes was most strongly up-regulated toward the end of cultivation. It was also found that sigma(E) (rpoE) plays a more important role than sigma(S) (rpoS) at the stationary phase of HCDC. These findings should be invaluable in designing metabolic engineering and fermentation strategies for the production of recombinant proteins and metabolites by HCDC of E. coli.
Collapse
Affiliation(s)
- Sung Ho Yoon
- Department of Chemical and Biomolecular Engineering, and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | | | | | | | | |
Collapse
|
19
|
Stärk E, Hitzmann B, Schügerl K, Scheper T, Fuchs C, Köster D, Märkl H. In-situ-fluorescence-probes: a useful tool for non-invasive bioprocess monitoring. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 74:21-38. [PMID: 11991181 DOI: 10.1007/3-540-45736-4_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Optical sensors appear to be very promising for different applications in modern biotechnology. They offer the possibility to interface all the well known optical analysis techniques to bioprocesses via fiber optical cables. Thus, high sophisticated and sensitive optical analysis techniques can be coupled to a bioprocess via these light signal transporting fibers. A wide variety of sensor types for application in biotechnology has been described. Normally these sensors are non-invasive and the response times are nearly instantaneous. In particular, the use of glass fiber technology makes these sensors small, robust and reduces their costs.
Collapse
Affiliation(s)
- E Stärk
- Institut für Technische Chemie, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Panda AK, Khan RH, Rao KB, Totey SM. Kinetics of inclusion body production in batch and high cell density fed-batch culture of Escherichia coli expressing ovine growth hormone. J Biotechnol 1999; 75:161-72. [PMID: 10553655 DOI: 10.1016/s0168-1656(99)00157-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A process for maximizing the volumetric productivity of recombinant ovine growth hormone (r-oGH) expressed in Escherichia coli during high cell density fermentation process has been devised. Kinetics of r-oGH expression as inclusion bodies and its effect on specific growth rates of E. coli cells were monitored during batch fermentation process. It was observed that during r-oGH expression in E. coli, the specific growth rate of the culture became an intrinsic property of the cells which reduced in a programmed manner upon induction. Nutrient feeding during protein expression phase of the fed-batch process was designed according to the reduction in specific growth rate of the culture. By feeding yeast extract along with glucose during fed-batch operation, high cell growth with very little accumulation of acetic acid was observed. Use of yeast extract helped in maintaining high specific cellular protein yield which resulted in high volumetric productivity of r-oGH. In 16 h of fed-batch fermentation, 3.2 g l-1 of r-oGH were produced at a cell OD of 124. This is the highest concentration of r-oGH reported to date using E. coli expression system. The volumetric productivity of r-oGH was 0.2 g l-1 h-1, which is also the highest value reported for any therapeutic protein using IPTG inducible expression system in a single stage fed-batch process.
Collapse
Affiliation(s)
- A K Panda
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India.
| | | | | | | |
Collapse
|
21
|
Kujau MJ, Riesenberg D. Co-operative effects of protein engineering and vector optimization on high yield expression of functional bivalent miniantibodies in Escherichia coli. Microbiol Res 1999; 154:27-34. [PMID: 10356794 DOI: 10.1016/s0944-5013(99)80031-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The volumetric yield of functional phosphocholine-binding miniantibodies could be increased in E. coli fermentations by the combination of the following approaches: Firstly, miniantibody mutants with amino acid exchanges in the VH chain leading to improved folding were expressed. Secondly, the expression vector was stabilized by an efficient suicide system to prevent plasmid loss. Thirdly, the cells were grown to high cell densities in a stirred tank reactor.
Collapse
Affiliation(s)
- M J Kujau
- Hans-Knöll-Institut für Naturstoff-Forschung Jena, Dept. Applied Microbiology, Germany.
| | | |
Collapse
|
22
|
Han SJ, Chang HN, Lee J. Fed-batch cultivation of an oxygen-dependent inducible promoter system, the nar promoter in Escherichia coli with an inactivated nar operon. Biotechnol Bioeng 1998; 59:400-6. [PMID: 10099353 DOI: 10.1002/(sici)1097-0290(19980820)59:4<400::aid-bit2>3.0.co;2-k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nar promoter of Escherichia coli is maximally induced under anaerobic or microaerobic conditions in the presence of nitrate. We previously demonstrated in batch experiments that the intact nar promoter of E. coli cloned into a pBR322-based plasmid serves as a high-level expression system in a nar mutant of E. coli (Lee et al., 1996b). In this study, we extend characterization of the nar promoter expression system to the fed-batch culture mode, which is widely used in industrial-scale fermentation. From these experiments, it was found that the specific beta-galactosidase activity expressed from the lacZ gene fused to the nar promoter was maximal when host cells were grown under aerobic conditions [dissolved oxygen, (DO) = 80%] to absorbance at 600 nm (OD600) = 35 before induction of the nar promoter by lowering DO to 1-2% with alternating microaerobic and aerobic conditions. Approximately 15 h after induction, the OD600 of the culture reached 135 and the specific beta-galactosidase activity increased to 40,000 Miller units, equivalent to approximately 35% of the total cellular proteins. The specific beta-galactosidase activity before induction was approximately 1,000 Miller units, giving an induction ratio of approximately 40. Based on these results, we conclude that the nar promoter provides a convenient and effective high level expression system under conditions of fed-batch culture.
Collapse
Affiliation(s)
- S J Han
- Department of Chemical Engineering and Bioprocess Engineering Research Center, KAIST, Taejon 305-701, Korea
| | | | | |
Collapse
|
23
|
Fed-batch culture ofEscherichia coli W by exponential feeding of sucrose as a carbon source. ACTA ACUST UNITED AC 1997. [DOI: 10.1007/bf02764454] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Kleman GL, Horken KM, Tabita FR, Strohl WR. Overproduction of recombinant ribulose 1,5-bisphosphate carboxylase/oxygenase from Synechococcus sp. strain PCC6301 in glucose-controlled high-cell-density fermentations by Escherichia coli K-12. Appl Environ Microbiol 1996; 62:3502-7. [PMID: 8795245 PMCID: PMC168151 DOI: 10.1128/aem.62.9.3502-3507.1996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A predictive and feedback glucose feed controller, previously developed for nutrient-sufficient growth of Escherichia coli to high cell densities, was used to produce large quantities of a heterologous, cyanobacterial recombinant hexadecameric (L8S8) protein, ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) in E. coli. Culture and plasmid stability conditions were optimized to yield the production of approximately 1 g of soluble, active recombinant RubisCO per liter. Recombinant RubisCO also was produced in lactose-induced high-cell-density fermentation of E. coli K-12.
Collapse
Affiliation(s)
- G L Kleman
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Escherichia coli is the most widely used prokaryotic system for the synthesis of heterologous proteins. Once an optimal expression system has been constructed, protein production can be enhanced by increasing the production of protein per cell per unit time (specific productivity), or by increasing the cell concentration per unit time (cell productivity). Various high cell-density culture (HCDC) techniques have been developed for growing recombinant and non-recombinant E. coli strains in fed-batch cultures at concentrations greater than 100 grams (dry cell weight) per liter. This article reviews the problems encountered in HCDC of E. coli, and discusses various solutions. Feeding strategies for HCDC of E. coli, and the results obtained using them, are also described.
Collapse
Affiliation(s)
- S Y Lee
- Department of Chemical Engineering, Korean Advanced Institute of Science and Technology (KAIST), Taejon
| |
Collapse
|