1
|
Chapman J, Paukner M, Leser M, Teng KW, Koide S, Holder M, Armache KJ, Becker C, Ueberheide B, Brenowitz M. Systematic Fe(II)-EDTA Method of Dose-Dependent Hydroxyl Radical Generation for Protein Oxidative Footprinting. Anal Chem 2023; 95:18316-18325. [PMID: 38049117 PMCID: PMC10734636 DOI: 10.1021/acs.analchem.3c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
Correlating the structure and dynamics of proteins with biological function is critical to understanding normal and dysfunctional cellular mechanisms. We describe a quantitative method of hydroxyl radical generation via Fe(II)-ethylenediaminetetraacetic acid (EDTA)-catalyzed Fenton chemistry that provides ready access to protein oxidative footprinting using equipment commonly found in research and process control laboratories. Robust and reproducible dose-dependent oxidation of protein samples is observed and quantitated by mass spectrometry with as fine a single residue resolution. An oxidation analysis of lysozyme provides a readily accessible benchmark for our method. The efficacy of our oxidation method is demonstrated by mapping the interface of a RAS-monobody complex, the surface of the NIST mAb, and the interface between PRC2 complex components. These studies are executed using standard laboratory tools and a few pennies of reagents; the mass spectrometry analysis can be streamlined to map the protein structure with single amino acid residue resolution.
Collapse
Affiliation(s)
- Jessica
R. Chapman
- The
Proteomics Laboratory, New York University
(NYU) School of Medicine, New York, New York 10013, United States
| | - Max Paukner
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Micheal Leser
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Kai Wen Teng
- Perlmutter
Cancer Center, NYU Langone Health, New York, New York 10016, United States
| | - Shohei Koide
- Perlmutter
Cancer Center, NYU Langone Health, New York, New York 10016, United States
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
| | - Marlene Holder
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
- Skirball
Institute of Biomolecular Medicine, NYU
School of Medicine, New York, New York 10013, United States
| | - Karim-Jean Armache
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
- Skirball
Institute of Biomolecular Medicine, NYU
School of Medicine, New York, New York 10013, United States
| | - Chris Becker
- Protein
Metrics Inc., Cupertino, California 95014, United States
| | - Beatrix Ueberheide
- The
Proteomics Laboratory, New York University
(NYU) School of Medicine, New York, New York 10013, United States
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
| | - Michael Brenowitz
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department
of Molecular Pharmacology, Albert Einstein
College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
2
|
Leser M, Chapman JR, Khine M, Pegan J, Law M, Makkaoui ME, Ueberheide BM, Brenowitz M. Chemical Generation of Hydroxyl Radical for Oxidative 'Footprinting'. Protein Pept Lett 2019; 26:61-69. [PMID: 30543161 DOI: 10.2174/0929866526666181212164812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Accepted: 10/30/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND For almost four decades, hydroxyl radical chemically generated by Fenton chemistry has been a mainstay for the oxidative 'footprinting' of macromolecules. OBJECTIVE In this article, we start by reviewing the application of chemical generation of hydroxyl radical to the development of oxidative footprinting of DNA and RNA and the subsequent application of the method to oxidative footprinting of proteins. We next discuss a novel strategy for generating hydroxyl radicals by Fenton chemistry that immobilizes catalytic iron on a solid surface (Pyrite Shrink Wrap laminate) for the application of nucleic acid and protein footprinting. METHOD Pyrite Shrink-Wrap Laminate is fabricated by depositing pyrite (Fe-S2, aka 'fool's gold') nanocrystals onto thermolabile plastic (Shrinky Dink). The laminate can be thermoformed into a microtiter plate format into which samples are deposited for oxidation. RESULTS We demonstrate the utility of the Pyrite Shrink-Wrap Laminate for the chemical generation of hydroxyl radicals by mapping the surface of the T-cell co-stimulatory protein Programmed Death - 1 (PD-1) and the interface of the complex with its ligand PD-L1. CONCLUSION We have developed and validated an affordable and reliable benchtop method of hydroxyl radical generation that will broaden the application of protein oxidative footprinting. Due to the minimal equipment required to implement this method, it should be easily adaptable by many laboratories with access to mass spectrometry.
Collapse
Affiliation(s)
- Micheal Leser
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jessica R Chapman
- Proteomics Laboratory, Department of Biochemistry, New York University School of Medicine, New York, NY, United States
| | - Michelle Khine
- Department of Biomedical Engineering, University of California, Irvine, CA, United States.,Department of Chemical Engineering & Materials Science, University of California, Irvine, CA, United States
| | - Jonathan Pegan
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Matt Law
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA, United States.,Department of Chemistry, University of California, Irvine, CA, United States
| | - Mohammed El Makkaoui
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA, United States.,Department of Chemistry, University of California, Irvine, CA, United States
| | - Beatrix M Ueberheide
- Proteomics Laboratory, Department of Biochemistry, New York University School of Medicine, New York, NY, United States.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
3
|
Woods CT, Laederach A. Classification of RNA structure change by 'gazing' at experimental data. Bioinformatics 2018; 33:1647-1655. [PMID: 28130241 PMCID: PMC5447233 DOI: 10.1093/bioinformatics/btx041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 01/20/2017] [Indexed: 11/12/2022] Open
Abstract
Motivation Mutations (or Single Nucleotide Variants) in folded RiboNucleic Acid structures that cause local or global conformational change are riboSNitches. Predicting riboSNitches is challenging, as it requires making two, albeit related, structure predictions. The data most often used to experimentally validate riboSNitch predictions is Selective 2' Hydroxyl Acylation by Primer Extension, or SHAPE. Experimentally establishing a riboSNitch requires the quantitative comparison of two SHAPE traces: wild-type (WT) and mutant. Historically, SHAPE data was collected on electropherograms and change in structure was evaluated by 'gel gazing.' SHAPE data is now routinely collected with next generation sequencing and/or capillary sequencers. We aim to establish a classifier capable of simulating human 'gazing' by identifying features of the SHAPE profile that human experts agree 'looks' like a riboSNitch. Results We find strong quantitative agreement between experts when RNA scientists 'gaze' at SHAPE data and identify riboSNitches. We identify dynamic time warping and seven other features predictive of the human consensus. The classSNitch classifier reported here accurately reproduces human consensus for 167 mutant/WT comparisons with an Area Under the Curve (AUC) above 0.8. When we analyze 2019 mutant traces for 17 different RNAs, we find that features of the WT SHAPE reactivity allow us to improve thermodynamic structure predictions of riboSNitches. This is significant, as accurate RNA structural analysis and prediction is likely to become an important aspect of precision medicine. Availability and Implementation The classSNitch R package is freely available at http://classsnitch.r-forge.r-project.org . Contact alain@email.unc.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chanin Tolson Woods
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Leser M, Pegan J, El Makkaoui M, Schlatterer JC, Khine M, Law M, Brenowitz M. Protein footprinting by pyrite shrink-wrap laminate. LAB ON A CHIP 2015; 15:1646-1650. [PMID: 25666234 PMCID: PMC9431544 DOI: 10.1039/c4lc01288g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The structure of macromolecules and their complexes dictate their biological function. In "footprinting", the solvent accessibility of the residues that constitute proteins, DNA and RNA can be determined from their reactivity to an exogenous reagent such as the hydroxyl radical (·OH). While ·OH generation for protein footprinting is achieved by radiolysis, photolysis and electrochemistry, we present a simpler solution. A thin film of pyrite (cubic FeS2) nanocrystals deposited onto a shape memory polymer (commodity shrink-wrap film) generates sufficient ·OH via Fenton chemistry for oxidative footprinting analysis of proteins. We demonstrate that varying either time or H2O2 concentration yields the required ·OH dose-oxidation response relationship. A simple and scalable sample handling protocol is enabled by thermoforming the "pyrite shrink-wrap laminate" into a standard microtiter plate format. The low cost and malleability of the laminate facilitates its integration into high throughput screening and microfluidic devices.
Collapse
Affiliation(s)
- Micheal Leser
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Jonathan Pegan
- Department of Biomedical Engineering, University of California, Irvine, CA
| | - Mohammed El Makkaoui
- Department of Chemistry, University of California, Irvine, CA
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA
| | | | - Michelle Khine
- Department of Biomedical Engineering, University of California, Irvine, CA
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA
| | - Matt Law
- Department of Chemistry, University of California, Irvine, CA
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
5
|
Bowater RP, Cobb AM, Pivonkova H, Havran L, Fojta M. Biophysical and electrochemical studies of protein–nucleic acid interactions. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-014-1405-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Cao S, Chen SJ. Statistical mechanical modeling of RNA folding: from free energy landscape to tertiary structural prediction. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2012; 27:185-212. [PMID: 27293312 DOI: 10.1007/978-3-642-25740-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In spite of the success of computational methods for predicting RNA secondary structure, the problem of predicting RNA tertiary structure folding remains. Low-resolution structural models show promise as they allow for rigorous statistical mechanical computation for the conformational entropies, free energies, and the coarse-grained structures of tertiary folds. Molecular dynamics refinement of coarse-grained structures leads to all-atom 3D structures. Modeling based on statistical mechanics principles also has the unique advantage of predicting the full free energy landscape, including local minima and the global free energy minimum. The energy landscapes combined with the 3D structures form the basis for quantitative predictions of RNA functions. In this chapter, we present an overview of statistical mechanical models for RNA folding and then focus on a recently developed RNA statistical mechanical model -- the Vfold model. The main emphasis is placed on the physics underpinning the models, the computational strategies, and the connections to RNA biology.
Collapse
Affiliation(s)
- Song Cao
- Department of Physics and Department of Biochemistry, University of Missouri, Columbia, MO 65211
| | - Shi-Jie Chen
- Department of Physics and Department of Biochemistry, University of Missouri, Columbia, MO 65211
| |
Collapse
|
7
|
Fluorescence polarization biosensor based on an aptamer enzymatic cleavage protection strategy. Anal Bioanal Chem 2012; 401:3229-34. [PMID: 21975602 DOI: 10.1007/s00216-011-5434-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/05/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
Abstract
A novel fluorescence polarization (FP) aptasensing platform based on target-induced aptamer enzymatic cleavage protection is reported. The method relies on the FP analysis of the phosphodiesterase I mediated size variation of a dye-labeled aptamer. The tyrosinamide/antityrosinamide DNA aptamer couple was firstly tested as a model system to establish the proof-of-concept. In the absence of the target, the labeled aptamer was enzymatically cleaved into small DNA fragments, leading to a low FP signal. Upon tyrosinamide binding, the DNA substrate was partially protected against the enzymatic attack, leading to an increase in the fluorescence anisotropy response as a result of the higher average molecular volume of the weakly digested probe. The method was subsequently applied to two other systems, i.e., for the detection of ochratoxin A and adenosine. Such an approach was found to combine simplicity and general applicability features.
Collapse
|
8
|
Bachu R, Padlan FCS, Rouhanifard S, Brenowitz M, Schlatterer JC. Monitoring equilibrium changes in RNA structure by 'peroxidative' and 'oxidative' hydroxyl radical footprinting. J Vis Exp 2011:e3244. [PMID: 22025107 DOI: 10.3791/3244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
RNA molecules play an essential role in biology. In addition to transmitting genetic information, RNA can fold into unique tertiary structures fulfilling a specific biologic role as regulator, binder or catalyst. Information about tertiary contact formation is essential to understand the function of RNA molecules. Hydroxyl radicals (•OH) are unique probes of the structure of nucleic acids due to their high reactivity and small size. When used as a footprinting probe, hydroxyl radicals map the solvent accessible surface of the phosphodiester backbone of DNA and RNA with as fine as single nucleotide resolution. Hydroxyl radical footprinting can be used to identify the nucleotides within an intermolecular contact surface, e.g. in DNA-protein and RNA-protein complexes. Equilibrium and kinetic transitions can be determined by conducting hydroxyl radical footprinting as a function of a solution variable or time, respectively. A key feature of footprinting is that limited exposure to the probe (e.g., 'single-hit kinetics') results in the uniform sampling of each nucleotide of the polymer. In this video article, we use the P4-P6 domain of the Tetrahymena ribozyme to illustrate RNA sample preparation and the determination of a Mg(II)-mediated folding isotherms. We describe the use of the well known hydroxyl radical footprinting protocol that requires H(2)O(2) (we call this the 'peroxidative' protocol) and a valuable, but not widely known, alternative that uses naturally dissolved O(2)(we call this the 'oxidative' protocol). An overview of the data reduction, transformation and analysis procedures is presented.
Collapse
|
9
|
Guieu V, Ravelet C, Perrier S, Zhu Z, Cayez S, Peyrin E. Aptamer enzymatic cleavage protection assay for the gold nanoparticle-based colorimetric sensing of small molecules. Anal Chim Acta 2011; 706:349-53. [PMID: 22023872 DOI: 10.1016/j.aca.2011.08.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/27/2011] [Accepted: 08/31/2011] [Indexed: 11/30/2022]
Abstract
A label-free, homogeneous aptamer-based sensor strategy was designed for the facile colorimetric detection of small target molecules. The format relied on the target-induced protection of DNA aptamer from the enzymatic digestion and its transduction into a detectable signal through the length-dependent adsorption of single-stranded DNA onto unmodified gold nanoparticles (AuNPs). The proof-of-principle of the approach was established by employing the anti-tyrosinamide aptamer as a model functional nucleic acid. In the absence of target, the aptamer was cleaved by the phosphodiesterase I enzymatic probe, leading to the release of mononucleotides and short DNA fragments. These governed effective electrostatic stabilization of AuNPs so that the nanoparticles remained dispersed and red-colored upon salt addition. Upon tyrosinamide binding, the enzymatic cleavage was impeded, resulting in the protection of the aptamer structure. As this long DNA molecule was unable to electrostatically stabilize AuNPs, the resulting colloidal solution turned blue after salt addition due to the formation of nanoparticle aggregates. The quantitative determination of the target can be achieved by monitoring the ratio of absorbance at 650 and 520 nm of the gold colloidal solution. A limit of detection of ~5 μM and a linear range up to 100 μM were obtained. The sensing platform was further applied, through the same experimental protocol, to the adenosine detection by using its DNA aptamer as recognition tool. This strategy could extend the potentialities, in terms of both simplicity and general applicability, of the aptamer-based sensing approaches.
Collapse
Affiliation(s)
- Valérie Guieu
- Département de Pharmacochimie Moléculaire UMR 5063 CNRS, ICMG FR 2607, Université Grenoble 1, Campus Universitaire, Saint-Martin d'Hères, France
| | | | | | | | | | | |
Collapse
|
10
|
Schlatterer JC, Brenowitz M. Complementing global measures of RNA folding with local reports of backbone solvent accessibility by time resolved hydroxyl radical footprinting. Methods 2009; 49:142-7. [PMID: 19426806 PMCID: PMC2753680 DOI: 10.1016/j.ymeth.2009.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/27/2009] [Accepted: 04/29/2009] [Indexed: 11/22/2022] Open
Abstract
A variety of analytical techniques are used to probe the mechanisms by which RNA molecules fold to discrete three dimensional structures. Methods such as small angle X-ray scattering (SAXS) report global properties like overall size and shape of the RNA. Other methods such as chemical or enzymatic mapping (footprinting) report properties with resolution as fine as single nucleotide. The hydroxyl radical (*OH) is a footprinting probe which cleaves the oligonucleotide backbone independently of sequence and thus is a valuable reporter of backbone solvent accessibility. Combinations of global and local measures of folding reactions are uniquely able to distinguish specific from nonspecific processes. This article highlights the application of *OH footprinting as a complement to SAXS for kinetics analysis of RNA folding. We illustrate this combination of techniques using a study of the role played by the stiffness of a hinge in determining the rate limiting step of a Mg(2+)-mediated RNA folding reaction.
Collapse
Affiliation(s)
- Jörg C. Schlatterer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
11
|
Sclavi B. Opening the DNA at the Promoter; The Energetic Challenge. RNA POLYMERASES AS MOLECULAR MOTORS 2009. [DOI: 10.1039/9781847559982-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bianca Sclavi
- LBPA UMR 8113 du CNRS ENS Cachan 61 Avenue du Président Wilson 94235 Cachan France
| |
Collapse
|
12
|
Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting. Nat Protoc 2008; 3:288-302. [PMID: 18274531 DOI: 10.1038/nprot.2007.533] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydroxyl radical (.OH) footprinting provides comprehensive site-specific quantitative information about the structural changes associated with macromolecular folding, interactions and ligand binding. 'Fast Fenton' footprinting is a laboratory-based method for time-resolved .OH footprinting capable of millisecond time resolution readily applicable to DNA and RNA. This protocol utilizes inexpensive chemical reagents (H2O2, Fe(NH4)2(SO4)2, EDTA, thiourea or ethanol) and widely available quench-flow mixers to reveal transient, often short-lived, intermediate states of complex biochemical processes. We describe a protocol developed to study RNA folding that can be readily tailored to particular applications. Once familiar with quench-flow mixer operation and its calibration, nucleic acid labeling and the conduct of a dose-response experiment, a single kinetic experiment of 30 time points takes about 1 h to perform. Sample processing and separation of the .OH reaction products takes several hours. Data analysis can take 45 min to several weeks depending on the depth of analysis conducted.
Collapse
|
13
|
Time-resolved footprinting for the study of the structural dynamics of DNA–protein interactions. Biochem Soc Trans 2008; 36:745-8. [DOI: 10.1042/bst0360745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transcription is often regulated at the level of initiation by the presence of transcription factors or nucleoid proteins or by changing concentrations of metabolites. These can influence the kinetic properties and/or structures of the intermediate RNA polymerase–DNA complexes in the pathway. Time-resolved footprinting techniques combine the high temporal resolution of a stopped-flow apparatus with the specific structural information obtained by the probing agent. Combined with a careful quantitative analysis of the evolution of the signals, this approach allows for the identification and kinetic and structural characterization of the intermediates in the pathway of DNA sequence recognition by a protein, such as a transcription factor or RNA polymerase. The combination of different probing agents is especially powerful in revealing different aspects of the conformational changes taking place at the protein–DNA interface. For example, hydroxyl radical footprinting, owing to their small size, provides a map of the solvent-accessible surface of the DNA backbone at a single nucleotide resolution; modification of the bases using potassium permanganate can reveal the accessibility of the bases when the double helix is distorted or melted; cross-linking experiments report on the formation of specific amino acid–DNA contacts, and DNase I footprinting results in a strong signal-to-noise ratio from DNA protection at the binding site and hypersensitivity at curved or kinked DNA sites. Recent developments in protein footprinting allow for the direct characterization of conformational changes of the proteins in the complex.
Collapse
|
14
|
Chan LL, Pineda M, Heeres JT, Hergenrother PJ, Cunningham BT. A general method for discovering inhibitors of protein-DNA interactions using photonic crystal biosensors. ACS Chem Biol 2008; 3:437-48. [PMID: 18582039 DOI: 10.1021/cb800057j] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Protein-DNA interactions are essential for fundamental cellular processes such as transcription, DNA damage repair, and apoptosis. As such, small molecule disruptors of these interactions could be powerful tools for investigation of these biological processes, and such compounds would have great potential as therapeutics. Unfortunately, there are few methods available for the rapid identification of compounds that disrupt protein-DNA interactions. Here we show that photonic crystal (PC) technology can be utilized to detect protein-DNA interactions, and can be used in a high-throughput screening mode to identify compounds that prevent protein-DNA binding. The PC technology is used to detect binding between protein-DNA interactions that are DNA-sequence-dependent (the bacterial toxin-antitoxin system MazEF) and those that are DNA-sequence-independent (the human apoptosis inducing factor (AIF)). The PC technology was further utilized in a screen for inhibitors of the AIF-DNA interaction, and through this screen aurin tricarboxylic acid was identified as the first in vitro inhibitor of AIF. The generality and simplicity of the photonic crystal method should enable this technology to find broad utility for identification of compounds that inhibit protein-DNA binding.
Collapse
Affiliation(s)
- Leo L. Chan
- Department of Electrical and Computer Engineering
| | | | | | - Paul J. Hergenrother
- Department of Biochemistry
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | | |
Collapse
|
15
|
Chance MR, Brenowitz M, Sullivan M, Sclavi B, Maleknia SD, Ralston C. A new method for examining the dynamics of macromolecules: Time-resolved synchrotron x-ray “footprinting”. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/08940889808260960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Shcherbakova I, Mitra S, Beer RH, Brenowitz M. Following molecular transitions with single residue spatial and millisecond time resolution. Methods Cell Biol 2008; 84:589-615. [PMID: 17964944 DOI: 10.1016/s0091-679x(07)84019-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
"Footprinting" describes assays in which ligand binding or structure formation protects polymers such as nucleic acids and proteins from either cleavage or modification; footprinting allows the accessibility of individual residues to be mapped in solution. Equilibrium and time-dependent footprinting links site-specific structural information with thermodynamic and kinetic transitions, respectively. The hydroxyl radical (*OH) is a uniquely insightful footprinting probe by virtue of it being among the most reactive chemical oxidants; it reports the solvent accessibility of reactive sites on macromolecules with as fine as a single residue resolution. A novel method of millisecond time-resolved *OH footprinting is presented based on the Fenton reaction, Fe(II) + H(2)O(2) --> Fe(III) + *OH + OH(-). It is implemented using a standard three-syringe quench-flow mixer. The utility of this method is demonstrated by its application to the studies on RNA folding. Its applicability to a broad range of biological questions involving the function of DNA, RNA, and proteins is discussed.
Collapse
Affiliation(s)
- Inna Shcherbakova
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
17
|
Gupta S, Cheng H, Mollah AKMM, Jamison E, Morris S, Chance MR, Khrapunov S, Brenowitz M. DNA and protein footprinting analysis of the modulation of DNA binding by the N-terminal domain of the Saccharomyces cerevisiae TATA binding protein. Biochemistry 2007; 46:9886-98. [PMID: 17683121 DOI: 10.1021/bi7003608] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recombinant full-length Saccharomyces cerevisiae TATA binding protein (TBP) and its isolated C-terminal conserved core domain (TBPc) were prepared with measured high specific DNA-binding activities. Direct, quantitative comparison of TATA box binding by TBP and TBPc reveals greater affinity by TBPc for either of two high-affinity sequences at several different experimental conditions. TBPc associates more rapidly than TBP to TATA box bearing DNA and dissociates more slowly. The structural origins of the thermodynamic and kinetic effects of the N-terminal domain on DNA binding by TBP were explored in comparative studies of TBPc and TBP by "protein footprinting" with hydroxyl radical (*OH) side chain oxidation. Some residues within TBPc and the C-terminal domain of TBP are comparably protected by DNA, consistent with solvent accessibility changes calculated from core domain crystal structures. In contrast, the reactivity of some residues located on the top surface and the DNA-binding saddle of the C-terminal domain differs between TBP and TBPc in both the presence and absence of bound DNA; these results are not predicted from the crystal structures. A strikingly different pattern of side chain oxidation is observed for TBP when a nonionic detergent is present. Taken together, these results are consistent with the N-terminal domain actively modulating TATA box binding by TBP and nonionic detergent modulating the interdomain interaction.
Collapse
Affiliation(s)
- Sayan Gupta
- Center for Synchrotron Biosciences, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ellis T, Evans DA, Martin CRH, Hartley JA. A 96-well DNase I footprinting screen for drug-DNA interactions. Nucleic Acids Res 2007; 35:e89. [PMID: 17586817 PMCID: PMC1919508 DOI: 10.1093/nar/gkm467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The established protocol for DNase I footprinting has been modified to allow multiple parallel reactions to be rapidly performed in 96-well microtitre plates. By scrutinizing every aspect of the traditional method and making appropriate modifications it has been possible to considerably reduce the time, risk of sample loss and complexity of footprinting, whilst dramatically increasing the yield of data (30-fold). A semi-automated analysis system has also been developed to present footprinting data as an estimate of the binding affinity of each tested compound to any base pair in the assessed DNA sequence, giving an intuitive ‘one compound–one line’ scheme. Here, we demonstrate the screening capabilities of the 96-well assay and the subsequent data analysis using a series of six pyrrolobenzodiazepine-polypyrrole compounds and human Topoisomerase II alpha promoter DNA. The dramatic increase in throughput, quantified data and decreased handling time allow, for the first time, DNase I footprinting to be used as a screening tool to assess DNA-binding agents.
Collapse
Affiliation(s)
- Tom Ellis
- Spirogen Ltd, London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH and Cancer Research UK Drug-DNA Interactions Research Group, Department of Oncology, University College London, 91 Riding House Street, London W1W 7BS, UK
| | - David A. Evans
- Spirogen Ltd, London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH and Cancer Research UK Drug-DNA Interactions Research Group, Department of Oncology, University College London, 91 Riding House Street, London W1W 7BS, UK
| | - Christopher R. H. Martin
- Spirogen Ltd, London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH and Cancer Research UK Drug-DNA Interactions Research Group, Department of Oncology, University College London, 91 Riding House Street, London W1W 7BS, UK
| | - John A. Hartley
- Spirogen Ltd, London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH and Cancer Research UK Drug-DNA Interactions Research Group, Department of Oncology, University College London, 91 Riding House Street, London W1W 7BS, UK
- *To whom correspondence should be addressed. +44 (0)20 7679 9326+44 (0)20 7436 2956
| |
Collapse
|
19
|
Shcherbakova I, Mitra S, Beer RH, Brenowitz M. Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res 2006; 34:e48. [PMID: 16582097 PMCID: PMC1421499 DOI: 10.1093/nar/gkl055] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 02/14/2006] [Accepted: 02/24/2006] [Indexed: 11/20/2022] Open
Abstract
'Footprinting' describes assays in which ligand binding or structure formation protects polymers such as nucleic acids and proteins from either cleavage or modification; footprinting allows the accessibility of individual residues to be mapped in solution. Equilibrium and time-dependent footprinting links site-specific structural information with thermodynamic and kinetic transitions. The hydroxyl radical (*OH) is a particularly valuable footprinting probe by virtue of it being among the most reactive of chemical oxidants; it reports the solvent accessibility of reactive sites on macromolecules with as fine as a single residue resolution. A novel method of millisecond time-resolved .OH footprinting has been developed based on the Fenton reaction, Fe(II) + H2O2 --> Fe(III) + *OH + OH-. This method can be implemented in laboratories using widely available three-syringe quench flow mixers and inexpensive reagents to study local changes in the solvent accessibility of DNA, RNA and proteins associated with their biological function.
Collapse
Affiliation(s)
- Inna Shcherbakova
- Department of Biochemistry, Albert Einstein College of Medicine1300 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Chemistry, Fordham University441 East Fordham Road, Bronx, NY 10458, USA
| | - Somdeb Mitra
- Department of Biochemistry, Albert Einstein College of Medicine1300 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Chemistry, Fordham University441 East Fordham Road, Bronx, NY 10458, USA
| | - Robert H. Beer
- Department of Chemistry, Fordham University441 East Fordham Road, Bronx, NY 10458, USA
| | - Michael Brenowitz
- To whom correspondence should be addressed. Tel: 00 1 718 430 3179; Fax: 00 1 718 430 8565;
| |
Collapse
|
20
|
Shcherbakova I, Brenowitz M. Perturbation of the hierarchical folding of a large RNA by the destabilization of its Scaffold's tertiary structure. J Mol Biol 2005; 354:483-96. [PMID: 16242711 DOI: 10.1016/j.jmb.2005.09.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 09/06/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
The P4-P6 domain serves as a scaffold against which the periphery and catalytic core organize and fold during Mg2+-mediated folding of the Tetrahymena thermophila ribozyme. The most prominent structural motif of the P4-P6 domain is the tetraloop-tetraloop receptor interaction which "clamps" the distal parts of its hairpin-like structure. Destabilization of the tertiary structure of the P4-P6 domain by perturbation of the tetraloop-tetraloop receptor interaction alters the Mg2+-mediated folding pathway. The folding hierarchy of P5c approximately P4-P6 > periphery > catalytic core that is a striking attribute of the folding of the wild-type RNA is abolished. The initial steps in folding of the mutant RNA are > or =50-fold faster than those of the wild-type ribozyme with the earliest observed tertiary contacts forming around regions known to specifically bind Mg2+. The interaction between the mutant tetraloop and the tetraloop receptor appears coincidently with slowly forming catalytic core tertiary contacts. Thus, the stability conferred upon the P4-P6 domain by the tetraloop-tetraloop receptor interaction dictates the preferred folding pathway by stabilizing an early intermediate. A sub-denaturing concentration of urea diminishes the early barrier to folding the wild-type ribozyme along with complex effects on the subsequent steps of folding the wild-type and mutant RNA.
Collapse
Affiliation(s)
- Inna Shcherbakova
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
21
|
Brenowitz M, Erie DA, Chance MR. Catching RNA polymerase in the act of binding: intermediates in transcription illuminated by synchrotron footprinting. Proc Natl Acad Sci U S A 2005; 102:4659-60. [PMID: 15781859 PMCID: PMC555728 DOI: 10.1073/pnas.0501152102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
22
|
Shcherbakova I, Gupta S, Chance MR, Brenowitz M. Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme. J Mol Biol 2004; 342:1431-42. [PMID: 15364572 DOI: 10.1016/j.jmb.2004.07.092] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 07/26/2004] [Accepted: 07/27/2004] [Indexed: 11/23/2022]
Abstract
The time-course of monovalent cation-induced folding of the L-21 Sca1 Tetrahymena thermophila ribozyme and a selected mutant was quantitatively followed using synchrotron X-ray (.OH) footprinting. Initiating folding by increasing the concentration of either Na+ or K+ to 1.5M from an initial condition of approximately 0.008 M Na+ at 42 degrees C resulted in the complete formation of tertiary contacts within the P5abc subdomain and between the peripheral helices within the dead time of our measurements (k>50 s(-1)). These results contrast with folding rates of 2-0.2 s(-1) previously observed for formation of these contacts in 10mM Mg2+ from the same initial condition. Thus, the initial formation of native tertiary contacts is inhibited by divalent but not monovalent cations. The native contacts within the catalytic core form without a detectable burst phase at rates of 0.4-1.0 s(-1) in a manner reminiscent of the Mg2+-dependent folding behavior, although tenfold faster. The tertiary interactions stabilizing the catalytic core interaction with P4-P6 and P2.1, as well as one of the protections internal for the P4-P6 domain, display progress curves with appreciable burst amplitudes and a phase comparable in rate to that of the catalytic core. That the slow folding of the ribozyme's core is a consequence of the alt-P3 secondary structure is shown by the 100% burst phase amplitudes that are observed for folding of the U273A mutant ribozyme within which the native secondary structure (P3) is strengthened. Thus, formation of a misfolded intermediate(s) resulting from the alt-P3 secondary structure is independent of ion valency while the rate at which the respective intermediates are resolved is sensitive to ion valency. The overall portrait painted by these results is that ion valency differentially affects steps in the folding process and that folding in monovalent ion alone for the U273A mutant Tetrahymena ribozyme is fast and direct.
Collapse
Affiliation(s)
- Inna Shcherbakova
- Department of Biochemistry and Center for Synchrotron Biosciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
23
|
Takamoto K, Chance MR, Brenowitz M. Semi-automated, single-band peak-fitting analysis of hydroxyl radical nucleic acid footprint autoradiograms for the quantitative analysis of transitions. Nucleic Acids Res 2004; 32:E119. [PMID: 15319447 PMCID: PMC516076 DOI: 10.1093/nar/gnh117] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hydroxyl radical footprinting can probe the solvent accessibility of the ribose moiety of the individual nucleotides of DNA and RNA. Semi-automated analytical tools are presented for the quantitative analyses of nucleic acid footprint transitions in which processes such as folding or ligand binding are followed as a function of time or ligand concentration. Efficient quantitation of the intensities of the electrophoretic bands comprising the footprinting reaction products is achieved by fitting a series of Lorentzian curves to line profiles obtained from gels utilizing sequentially relaxed constraints consistent with electrophoretic mobility. An automated process of data 'standardization' has been developed that corrects for differences in the loading amounts in the electrophoresis. This process enhances the accuracy of the derived transitions and makes generating them easier. Together with visualization of the processed footprinting in false-color two-dimensional maps, DNA and RNA footprinting data can be accurately, precisely and efficiently processed allowing transitions to be objectively and comprehensively analyzed. The utility of this new analysis approach is illustrated by its application to the ion-meditated folding of a large RNA molecule.
Collapse
Affiliation(s)
- Keiji Takamoto
- Department of Biochemistry, Center for Synchrotron Biosciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
24
|
Barciszewska MZ, Rapp G, Betzel C, Erdmann VA, Barciszewski J. Structural changes of tRNA and 5S rRNA induced with magnesium and visualized with synchrotron mediated hydroxyl radical cleavage. Mol Biol Rep 2002; 28:103-10. [PMID: 11931387 DOI: 10.1023/a:1017951120531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The structure of native yeast tRNA(Phe) and wheat germ ribosomal 5S RNA induced by different magnesium ion concentrations was studied in solution with a synchrotron mediated hydroxyl radical RNA cleavage reaction. We showed that very small amounts of Mg+2 can induce significant changes in the hydroxyl radical cleavage pattern of tRNA(Phe). It also turned out that a reactivity of tRNAz(Phe) towards *OH coincides with the strong metal binding sites. Because of the Mg ions are heavily hydrated one can suggest the strong correlation of the observed nucleosides reactivity in vicinity of Mg2+ binding sites with availability of water molecules as a source of hydroxyl radical. On the other hand the structure of wheat germ 5S rRNA is less sensitive to the hydroxyl radical reaction than tRNA(Phe) although some changes are visible at 4 mM Mg ions. It is probably due to the lack of strong Mg+2 binding sites in that molecule. The reactivity of nucleotides in loops C and D of 5S rRNA is not effected, what suggests their flexibility or involvement in higher order structure formation. There is different effect of magnesium on tRNA and 5S rRNA folding. We found that nucleotides forming strong binding sites for magnesium are very sensitive to X-ray generated hydroxyl radical and can be mapped with *OH. The results show, that guanine nucleotides are preferentially hydrated. X-ray footprinting mediated hydroxyl radical RNA cleavage is a very powerful method and has been applied to studies of stable RNAs for the first time.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Hydroxyl Radical
- Magnesium/pharmacology
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation/drug effects
- RNA, Fungal/chemistry
- RNA, Fungal/drug effects
- RNA, Fungal/genetics
- RNA, Plant/chemistry
- RNA, Plant/drug effects
- RNA, Plant/genetics
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/drug effects
- RNA, Ribosomal, 5S/genetics
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/drug effects
- RNA, Transfer, Phe/genetics
- Saccharomyces cerevisiae/chemistry
- Saccharomyces cerevisiae/genetics
- Synchrotrons
- Triticum/chemistry
- Triticum/genetics
Collapse
|
25
|
Dhavan GM, Crothers DM, Chance MR, Brenowitz M. Concerted binding and bending of DNA by Escherichia coli integration host factor. J Mol Biol 2002; 315:1027-37. [PMID: 11827473 DOI: 10.1006/jmbi.2001.5303] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integration host factor (IHF) is a heterodimeric Escherichia coli protein that plays essential roles in a variety of cellular processes including site-specific recombination, transcription, and DNA replication. The IHF-DNA interface extends over three helical turns and includes sequential minor groove contacts that present strong, sequence specific protection patterns against hydroxyl radical cleavage. Synchrotron X-ray footprinting has been used to follow the kinetics of formation of DNA-protein contacts in the IHF-DNA complex with single base-pair spatial, and millisecond time, resolution. The three sites of IHF protection on the DNA develop with similar time-dependence, indicating that sequence specific binding and bending occur concertedly. Two distinct phases are observed in the association process. The first "burst" phase is characterized by a rate that is greater than diffusion limited (>10(10) s(-1) M(-1)) and the second phase is on the order of diffusion controlled (approximately 10(8) M(-1) s(-1)). The overall kinetics of association become faster with increasing IHF concentration showing that complex formation is second-order with protein. The rate of association is maximal between 100 and 200 mM KCl decreasing at higher and lower concentrations. The rate of IHF dissociation from site-specifically bound DNA increases monotonically as KCl concentration is increased. The dissociation progress curves are biphasic with the amplitude of the first phase dependent upon competitor DNA concentration. These results are the first analysis by synchrotron footprinting of the fast kinetics of a protein-DNA interaction and suggest that IHF binds its specific site through a multiple-step mechanism in which the first step is facilitated diffusion along the length of the duplex followed by subsequent binding and bending of the DNA in a concerted manner.
Collapse
Affiliation(s)
- Gauri M Dhavan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
26
|
Henn A, Halfon J, Kela I, Orion I, Sagi I. Nucleic acid fragmentation on the millisecond timescale using a conventional X-ray rotating anode source: application to protein-DNA footprinting. Nucleic Acids Res 2001; 29:E122. [PMID: 11812859 PMCID: PMC97631 DOI: 10.1093/nar/29.24.e122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nucleic acid fragmentation (footprinting) by *OH radicals is used often as a tool to probe nucleic acid structure and nucleic acid-protein interactions. This method has proven valuable because it provides structural information with single base pair resolution. Recent developments in the field introduced the 'synchrotron X-ray footprinting' method, which uses a high-flux X-ray source to produce single base pair fragmentation of nucleic acid in tens of milliseconds. We developed a complementary method that utilizes X-rays generated from a conventional rotating anode machine in which nucleic acid footprints can be generated by X-ray exposures as short as 100-300 ms. Our theoretical and experimental studies indicate that efficient cleavage of nucleic acids by X-rays depends upon sample preparation, energy of the X-ray source and the beam intensity. In addition, using this experimental set up, we demonstrated the feasibility of conducting X-ray footprinting to produce protein-DNA protection portraits at sub-second timescales.
Collapse
Affiliation(s)
- Arnon Henn
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
27
|
Goldsmith SC, Guan JQ, Almo S, Chance M. Synchrotron protein footprinting: a technique to investigate protein-protein interactions. J Biomol Struct Dyn 2001; 19:405-18. [PMID: 11790140 DOI: 10.1080/07391102.2001.10506750] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Traditional approaches for macromolecular structure elucidation, including NMR, crystallography and cryo-EM have made significant progress in defining the structures of protein-protein complexes. A substantial number of macromolecular structures, however, have not been examined with atomic detail due to sample size and heterogeneity, or resolution limitations of the technique; therefore, the general applicability of each method is greatly reduced. Synchrotron footprinting attempts to bridge the gap in these methods by monitoring changes in accessible surface areas of discrete macromolecular moieties. As evidenced by our previous studies on RNA folding and DNA-protein interactions, the three-dimensional structure is probed by examining the reactions of these moieties with hydroxyl radicals generated by synchrotron X-rays. Here we report the application of synchrotron footprinting to the investigation of protein- protein interactions, as the novel technique has been utilized to successfully map the contact sites of gelsolin segment-1 in the gelsolin segment 1/actin complex. Footprinting results demonstrate that phenylalanine 104, located on the actin binding helix of gelsolin segment 1, is protected from hydroxyl radical modification in the presence of actin. This change in reactivity results from the specific protection of gelsolin segment-1, consistent with the substantial decrease in solvent accessibility of F104 upon actin binding, as calculated from the crystal structural of the gelsolin segment 1/actin complex. The results presented here establish synchrotron footprinting as a broadly applicable method to probe structural features of macromolecular complexes that are not amenable to conventional approaches.
Collapse
Affiliation(s)
- S C Goldsmith
- Center for Synchrotron Biosciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
28
|
Krylov AS, Zasedateleva OA, Prokopenko DV, Rouviere-Yaniv J, Mirzabekov AD. Massive parallel analysis of the binding specificity of histone-like protein HU to single- and double-stranded DNA with generic oligodeoxyribonucleotide microchips. Nucleic Acids Res 2001; 29:2654-60. [PMID: 11410675 PMCID: PMC55728 DOI: 10.1093/nar/29.12.2654] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A generic hexadeoxyribonucleotide microchip has been applied to test the DNA-binding properties of HU histone-like bacterial protein, which is known to have a low sequence specificity. All 4096 hexamers flanked within 8mers by degenerate bases at both the 3'- and 5'-ends were immobilized within the 100 x 100 x 20 mm polyacrylamide gel pads of the microchip. Single-stranded immobilized oligonucleotides were converted in some experiments to the double-stranded form by hybridization with a specified mixture of 8mers. The DNA interaction with HU was characterized by three type of measurements: (i) binding of FITC-labeled HU to microchip oligonucleotides; (ii) melting curves of complexes of labeled HU with single-stranded microchip oligonucleotides; (iii) the effect of HU binding on melting curves of microchip double-stranded DNA labeled with another fluorescent dye, Texas Red. Large numbers of measurements of these parameters were carried out in parallel for all or many generic microchip elements in real time with a multi-wavelength fluorescence microscope. Statistical analysis of these data suggests some preference for HU binding to G/C-rich single-stranded oligonucleotides. HU complexes with double-stranded microchip 8mers can be divided into two groups in which HU binding either increased the melting temperature (T(m)) of duplexes or decreased it. The stabilized duplexes showed some preference for presence of the sequence motifs AAG, AGA and AAGA. In the second type of complex, enriched with A/T base pairs, the destabilization effect was higher for longer stretches of A/T duplexes. Binding of HU to labeled duplexes in the second type of complex caused some decrease in fluorescence. This decrease also correlates with the higher A/T content and lower T(m). The results demonstrate that generic microchips could be an efficient approach in analysis of sequence specificity of proteins.
Collapse
Affiliation(s)
- A S Krylov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia
| | | | | | | | | |
Collapse
|
29
|
Ralston CY, Sclavi B, Brenowitz M, Sullivan M, Chance MR. The Early Folding Intermediates of theTetrahymenaRibozyme are Kinetically Trapped. J Biomol Struct Dyn 2000; 17 Suppl 1:195-200. [DOI: 10.1080/07391102.2000.10506621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Sclavi B, Woodson S, Sullivan M, Chance M, Brenowitz M. Following the folding of RNA with time-resolved synchrotron X-ray footprinting. Methods Enzymol 1998; 295:379-402. [PMID: 9750229 DOI: 10.1016/s0076-6879(98)95050-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rapid mixing synchrotron X-ray footprinting technique described in this article allows nucleic acid folding and ligand binding reactions to be followed on a millisecond time resolution with single nucleotide resolution. In principle, the change in .OH protection of every nucleotide in a nucleic acid hundreds of nucleotides long can be monitored separately. In addition, a wide range of solution conditions are compatible with the radiolytic generation of .OH. These characteristics of synchrotron X-ray footprinting create opportunities for conducting thermodynamic and kinetic studies of nucleic acids that are both comprehensive and detailed. Kinetic footprinting studies of a number of systems have been initiated by the Center for Synchrotron Biosciences using this technique.
Collapse
Affiliation(s)
- B Sclavi
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
31
|
Gross P, Yee AA, Arrowsmith CH, Macgregor RB. Quantitative hydroxyl radical footprinting reveals cooperative interactions between DNA-binding subdomains of PU.1 and IRF4. Biochemistry 1998; 37:9802-11. [PMID: 9657694 DOI: 10.1021/bi9731448] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quantitative hydroxyl radical footprinting and fluorescence polarization measurements have been used to determine the dissociation constants (Kd) of complexes between the ets domain of the murine transcription factor PU.1 and three different DNA fragments. Two natural PU.1 binding sites, the SV40 enhancer site and the lambdaB motif of Iglambda2-4 enhancer, were used as well as the PU.1 binding site present in the crystallized PU.1-DNA complex. With the use of quantitative hydroxyl radical footprinting we obtained binding isotherms for individual protected nucleotides and contact sites on both strands of the DNA. Kd values of (1.53 +/- 0. 12) x 10(-)8 M were found for the lambdaB element, (3.60 +/- 0.65) x 10(-)8 M for the SV40 enhancer site, and (2.28 +/- 0.27) x 10(-)8 M for the sequence used in the crystal structure. In addition, the binding of a second protein, the DNA binding domain of IRF4, to the lambdaB site by itself and in the presence of PU.1 was analyzed. The IRF4 DBD shows three footprints on the TTCC strand and one footprint on the GGAA strand of the lambdaB element. The dissociation constant for the binary IRF4 DBD-lambdaB complex equals (5.59 +/- 0.60) x 10(-)7 M. The Kd value of the IRF4-lambdaB interaction is reduced by a factor of 5 in the presence of two different DNA-bound PU.1 protein constructs, PU.1 DBD and a PU.1 construct containing the PEST domain (PU.1-PEST). A similar decrease of the Kd value was observed for the binding of PU.1-PEST in the presence of DNA-bound IRF4 DBD demonstrating a cooperative interaction between the PU. 1-PEST and IRF4 DBD. On the basis of the hydroxyl radical footprints in the ternary PU.1/IRF4/lambdaB complex, a model for the interactions between the two proteins and the lambdaB site was developed. The DNA binding domains of both proteins bind the DNA in the major groove with potential protein-protein interactions near the intervening minor groove.
Collapse
Affiliation(s)
- P Gross
- Department of Pharmaceutical Sciences, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
32
|
Crouch SR, Cullen TF, Scheeline A, Kirkor ES. Kinetic Determinations and Some Kinetic Aspects of Analytical Chemistry. Anal Chem 1998. [DOI: 10.1021/a1980005s] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Chance MR, Sclavi B, Woodson SA, Brenowitz M. Examining the conformational dynamics of macromolecules with time-resolved synchrotron X-ray 'footprinting'. Structure 1997; 5:865-9. [PMID: 9261085 DOI: 10.1016/s0969-2126(97)00241-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M R Chance
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|