1
|
Lamberti M, Kikirikis N, Putten MJAMV, Feber JL. Impact of background input on memory consolidation. Sci Rep 2024; 14:23681. [PMID: 39390214 PMCID: PMC11467303 DOI: 10.1038/s41598-024-75463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Memory consolidation involves repeated replay of new information by the hippocampus, which transfers memories to the neocortex for long-term storage. This occurs mainly during slow wave sleep, a phase characterized in the cortex by low cholinergic tone and low afferent input. High cholinergic tone has been shown to hamper memory consolidation, probably mediated by reduced network excitability (the ease of activity propagation in a network). We used cortical neuronal networks on multi electrode arrays to investigate whether low background input contributes to memory consolidation. Networks received focal electrical stimuli to memorize, with or without background afferent input (global optogenetic stimulation). Background stimulation hampered memory formation and consolidation, confirming the importance of low background input. Moreover, it lowered network excitability, similar to high cholinergic tone. These findings suggest that high network excitability is a critical feature of slow wave sleep that facilitates memory consolidation.
Collapse
Affiliation(s)
- Martina Lamberti
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands.
| | - Nikolaos Kikirikis
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands
| | - Joost le Feber
- Department of Clinical Neurophysiology, University of Twente, Enschede, PO Box 217 7500AE, The Netherlands.
| |
Collapse
|
2
|
Gutiérrez Pérez ML, Lugo Machado JA, Lozano Lavado V, Navarro Pimiento DC. Sleep and Learning: A Systematic Review. Int Arch Otorhinolaryngol 2024; 28:e657-e661. [PMID: 39464363 PMCID: PMC11511274 DOI: 10.1055/s-0043-1777294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/02/2023] [Indexed: 10/29/2024] Open
Abstract
Introduction Sleep deprivation has a great impact on the learning process in physicians in training. Therefore, inquiring on this phenomenon in the most recent investigations will facilitate the provision of evidence on the influence regarding the absence of sleep on the learning process in health personnel. Objectives The aim of this systematic review is to review, analyze and discuss the current literature that shows the impact of sleep on the learning process on doctors in training. Data Synthesis A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A search of the existing literature between the years of 2000 and 2022 was performed in the PubMed and Elsevier databases, taking into account the inclusion criteria of articles in English or Spanish and the established timeframe. As a result, 128 articles distributed in the databases were obtained and 23 articles that met the inclusion criteria were selected. Conclusion Sleep is a fundamental factor for the consolidation, processing and functioning of memory and learning. Health professionals are a population at risk of sleep deprivation, thus it is important to take into account the effects it has on patients and health personnel.
Collapse
Affiliation(s)
- Martha Lucía Gutiérrez Pérez
- Otorhinolaryngology Interest Group UEB (ORLIG-UEB), Colombian School of Medicine, Universidad El Bosque, Bogotá, Colombia
| | - Juan Antonio Lugo Machado
- Department of Head and Neck Surgery, Hospital de Especialidades núm. 2, Centro Médico Nacional del Noroeste, Instituto Mexicano del Seguro Social, Ciudad Obregón, Sonora, Mexico
- Hospital General de Obregón, Ciudad Obregón, Sonora, Mexico
| | - Valeria Lozano Lavado
- Otorhinolaryngology Interest Group UEB (ORLIG-UEB), Colombian School of Medicine, Universidad El Bosque, Bogotá, Colombia
| | - Diana Camila Navarro Pimiento
- Otorhinolaryngology Interest Group UEB (ORLIG-UEB), Colombian School of Medicine, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
3
|
Al-Smadi S, Padros A, Goss GG, Dickson CT. The translational inhibitor and amnestic agent emetine also suppresses ongoing hippocampal neural activity similarly to other blockers of protein synthesis. Hippocampus 2024; 34:380-392. [PMID: 38785391 DOI: 10.1002/hipo.23611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The consolidation of memory is thought to ultimately depend on the synthesis of new proteins, since translational inhibitors such as anisomycin and cycloheximide adversely affect the permanence of long-term memory. However, when applied directly in brain, these agents also profoundly suppress neural activity to an extent that is directly correlated to the degree of protein synthesis inhibition caused. Given that neural activity itself is likely to help mediate consolidation, this finding is a serious criticism of the strict de novo protein hypothesis of memory. Here, we test the neurophysiological effects of another translational inhibitor, emetine. Unilateral intra-hippocampal infusion of emetine suppressed ongoing local field and multiunit activity at ipsilateral sites as compared to the contralateral hippocampus in a fashion that was positively correlated to the degree of protein synthesis inhibition as confirmed by autoradiography. This suppression of activity was also specific to the circumscribed brain region in which protein synthesis inhibition took place. These experiments provide further evidence that ongoing protein synthesis is necessary and fundamental for neural function and suggest that the disruption of memory observed in behavioral experiments using translational inhibitors may be due, in large part, to neural suppression.
Collapse
Affiliation(s)
- S Al-Smadi
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - A Padros
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - G G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - C T Dickson
- Department of Physiology, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
- Department of Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Chappel-Farley MG, Adams JN, Betzel RF, Janecek JC, Sattari NS, Berisha DE, Meza NJ, Niknazar H, Kim S, Dave A, Chen IY, Lui KK, Neikrug AB, Benca RM, Yassa MA, Mander BA. Medial temporal lobe functional network architecture supports sleep-related emotional memory processing in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564260. [PMID: 37961192 PMCID: PMC10634911 DOI: 10.1101/2023.10.27.564260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Memory consolidation occurs via reactivation of a hippocampal index during non-rapid eye movement slow-wave sleep (NREM SWS) which binds attributes of an experience existing within cortical modules. For memories containing emotional content, hippocampal-amygdala dynamics facilitate consolidation over a sleep bout. This study tested if modularity and centrality-graph theoretical measures that index the level of segregation/integration in a system and the relative import of its nodes-map onto central tenets of memory consolidation theory and sleep-related processing. Findings indicate that greater network integration is tied to overnight emotional memory retention via NREM SWS expression. Greater hippocampal and amygdala influence over network organization supports emotional memory retention, and hippocampal or amygdala control over information flow are differentially associated with distinct stages of memory processing. These centrality measures are also tied to the local expression and coupling of key sleep oscillations tied to sleep-dependent memory consolidation. These findings suggest that measures of intrinsic network connectivity may predict the capacity of brain functional networks to acquire, consolidate, and retrieve emotional memories.
Collapse
Affiliation(s)
- Miranda G. Chappel-Farley
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Jenna N. Adams
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, University of Indiana Bloomington, Bloomington IN, 47405
| | - John C. Janecek
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Negin S. Sattari
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Destiny E. Berisha
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Novelle J. Meza
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Hamid Niknazar
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
| | - Soyun Kim
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Abhishek Dave
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ivy Y. Chen
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Kitty K. Lui
- San Diego State University/University of California San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92093, USA
| | - Ariel B. Neikrug
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ruth M. Benca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, 53706, WI, USA
- Department of Psychiatry and Behavioral Medicine, Wake Forest University, Winston-Salem, NC, 27109, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
| | - Michael A. Yassa
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine CA, 92697, USA
| | - Bryce A. Mander
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine CA, 92697, USA
| |
Collapse
|
5
|
Chaudhuri-Vayalambrone P, Rule ME, Bauza M, Krstulovic M, Kerekes P, Burton S, O'Leary T, Krupic J. Simultaneous representation of multiple time horizons by entorhinal grid cells and CA1 place cells. Cell Rep 2023; 42:112716. [PMID: 37402167 DOI: 10.1016/j.celrep.2023.112716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/08/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023] Open
Abstract
Grid cells and place cells represent the spatiotemporal continuum of an animal's past, present, and future locations. However, their spatiotemporal relationship is unclear. Here, we co-record grid and place cells in freely foraging rats. We show that average time shifts in grid cells tend to be prospective and are proportional to their spatial scale, providing a nearly instantaneous readout of a spectrum of progressively increasing time horizons ranging hundreds of milliseconds. Average time shifts of place cells are generally larger compared to grid cells and also increase with place field sizes. Moreover, time horizons display nonlinear modulation by the animal's trajectories in relation to the local boundaries and locomotion cues. Finally, long and short time horizons occur at different parts of the theta cycle, which may facilitate their readout. Together, these findings suggest that population activity of grid and place cells may represent local trajectories essential for goal-directed navigation and planning.
Collapse
Affiliation(s)
| | | | - Marius Bauza
- Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London W1T4JG, UK; Cambridge Phenotyping Limited, London NW1 9ND, UK
| | - Marino Krstulovic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Pauline Kerekes
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Stephen Burton
- Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London W1T4JG, UK
| | - Timothy O'Leary
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Julija Krupic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Cambridge Phenotyping Limited, London NW1 9ND, UK.
| |
Collapse
|
6
|
Rubio FJ, Olivares DE, Dunn C, Zhang S, Hilaire EM, Henry A, Mejias-Aponte C, Nogueras-Ortiz CJ, Selvam PV, Cruz FC, Madangopal R, Morales M, Hope BT. Flow Cytometry of Synaptoneurosomes (FCS) Reveals Increased Ribosomal S6 and Calcineurin Proteins in Activated Medial Prefrontal Cortex to Nucleus Accumbens Synapses. J Neurosci 2023; 43:4217-4233. [PMID: 37160369 PMCID: PMC10255002 DOI: 10.1523/jneurosci.0927-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
Learning and behavior activate cue-specific patterns of sparsely distributed cells and synapses called ensembles that undergo memory-encoding engram alterations. While Fos is often used to label selectively activated cell bodies and identify neuronal ensembles, there is no comparable endogenous marker to label activated synapses and identify synaptic ensembles. For the purpose of identifying candidate synaptic activity markers, we optimized a flow cytometry of synaptoneurosome (FCS) procedure for assessing protein alterations in activated synapses from male and female rats. After injecting yellow fluorescent protein (YFP)-expressing adeno-associated virus into medial prefrontal cortex (mPFC) to label terminals in nucleus accumbens (NAc) of rats, we injected 20 mg/kg cocaine in a novel context (cocaine+novelty) to activate synapses, and prepared NAc synaptoneurosomes 0-60 min following injections. For FCS, we used commercially available antibodies to label presynaptic and postsynaptic markers synaptophysin and PSD-95 as well as candidate markers of synaptic activity [activity-regulated cytoskeleton protein (Arc), CaMKII and phospho-CaMKII, ribosomal protein S6 (S6) and phospho-S6, and calcineurin and phospho-calcineurin] in YFP-labeled synaptoneurosomes. Cocaine+novelty increased the percentage of S6-positive synaptoneurosomes at 5-60 min and calcineurin-positive synaptoneurosomes at 5-10 min. Electron microscopy verified that S6 and calcineurin levels in synaptoneurosomes were increased 10 min after cocaine+novelty. Pretreatment with the anesthetic chloral hydrate blocked cocaine+novelty-induced S6 and calcineurin increases in synaptoneurosomes, and novel context exposure alone (without cocaine) increased S6, both of which indicate that these increases were due to neural activity per se. Overall, FCS can be used to study protein alterations in activated synapses coming from specifically labeled mPFC projections to NAc.SIGNIFICANCE STATEMENT Memories are formed during learning and are stored in the brain by long-lasting molecular and cellular alterations called engrams formed within specific patterns of cue-activated neurons called neuronal ensembles. While Fos has been used to identify activated ensemble neurons and the engrams within them, we have not had a similar marker for activated synapses that can be used to identify synaptic engrams. Here we developed a procedure for high-throughput in-line analysis of flow cytometry of synaptoneurosome (FCS) and found that ribosomal S6 protein and calcineurin were increased in activated mPFC-NAc synapses. FCS can be used to study protein alterations in activated synapses within specifically labeled circuits.
Collapse
Affiliation(s)
- F Javier Rubio
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Daniel E Olivares
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Christopher Dunn
- Flow Cytometry Unit, Intramural Research Program/National Institute on Aging/National Institutes of Health, Baltimore, Maryland 21224
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Elias M Hilaire
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Akeem Henry
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Carlos Mejias-Aponte
- Confocal and Electron Microscopy Core, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Carlos J Nogueras-Ortiz
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland 21224
| | - Pooja V Selvam
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Fabio C Cruz
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, CEP 04023-062, São Paulo, Brazil
| | - Rajtarun Madangopal
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Marisela Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Bruce T Hope
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
7
|
Zhu Y, Zeng Y, Ren J, Zhang L, Chen C, Fernandez G, Qin S. Emotional learning retroactively promotes memory integration through rapid neural reactivation and reorganization. eLife 2022; 11:e60190. [PMID: 36476501 PMCID: PMC9815824 DOI: 10.7554/elife.60190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Neutral events preceding emotional experiences can be better remembered, likely by assigning them as significant to guide possible use in future. Yet, the neurobiological mechanisms of how emotional learning enhances memory for past mundane events remain unclear. By two behavioral studies and one functional magnetic resonance imaging study with an adapted sensory preconditioning paradigm, we show rapid neural reactivation and connectivity changes underlying emotion-charged retroactive memory enhancement. Behaviorally, emotional learning retroactively enhanced initial memory for neutral associations across the three studies. Neurally, emotional learning potentiated trial-specific reactivation of overlapping neural traces in the hippocampus and stimulus-relevant neocortex. It further induced rapid hippocampal-neocortical functional reorganization supporting such retroactive memory benefit, as characterized by enhanced hippocampal-neocortical coupling modulated by the amygdala during emotional learning, and a shift of hippocampal connectivity from stimulus-relevant neocortex to distributed transmodal prefrontal-parietal areas at post-learning rests. Together, emotional learning retroactively promotes memory integration for past neutral events through stimulating trial-specific reactivation of overlapping representations and reorganization of associated memories into an integrated network to foster its priority for future use.
Collapse
Affiliation(s)
- Yannan Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenNetherlands
| | - Yimeng Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Jingyuan Ren
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenNetherlands
| | - Lingke Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Changming Chen
- School of Education, Chongqing Normal UniversityChongqingChina
| | - Guillen Fernandez
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenNetherlands
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
8
|
Yan Y, Hulbert JC, Zhuang K, Liu W, Wei D, Qiu J, Anderson MC, Yang W. Reduced hippocampal-cortical connectivity during memory suppression predicts the ability to forget unwanted memories. Cereb Cortex 2022; 33:4189-4201. [PMID: 36156067 PMCID: PMC10110427 DOI: 10.1093/cercor/bhac336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The ability to suppress unwelcome memories is important for productivity and well-being. Successful memory suppression is associated with hippocampal deactivations and a concomitant disruption of this region's functionality. Much of the previous neuroimaging literature exploring such suppression-related hippocampal modulations has focused on the region's negative coupling with the prefrontal cortex. Task-based changes in functional connectivity between the hippocampus and other brain regions still need further exploration. In the present study, we utilize psychophysiological interactions and seed connectome-based predictive modeling to investigate the relationship between the hippocampus and the rest of the brain as 134 participants attempted to suppress unwanted memories during the Think/No-Think task. The results show that during retrieval suppression, the right hippocampus exhibited decreased functional connectivity with visual cortical areas (lingual and cuneus gyrus), left nucleus accumbens and the brain-stem that predicted superior forgetting of unwanted memories on later memory tests. Validation tests verified that prediction performance was not an artifact of head motion or prediction method and that the negative features remained consistent across different brain parcellations. These findings suggest that systemic memory suppression involves more than the modulation of hippocampal activity-it alters functional connectivity patterns between the hippocampus and visual cortex, leading to successful forgetting.
Collapse
Affiliation(s)
- Yuchi Yan
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, No. 2 TianSheng Road, Beibei District, Chongqing 400715, China.,Faculty of Psychology, Southwest University (SWU), No. 2 TianShen Road, Beibei District, Chongqing 400715, China
| | - Justin C Hulbert
- Psychology Program, Bard College, PO Box 5000, Annandale-on-Hudson, New York 12504, United States
| | - Kaixiang Zhuang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, No. 2 TianSheng Road, Beibei District, Chongqing 400715, China.,Faculty of Psychology, Southwest University (SWU), No. 2 TianShen Road, Beibei District, Chongqing 400715, China
| | - Wei Liu
- School of Psychology, Central China Normal University (CCNU), No. 152 Luoyu Road, Hongshan, Wuhan 430079, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, No. 2 TianSheng Road, Beibei District, Chongqing 400715, China.,Faculty of Psychology, Southwest University (SWU), No. 2 TianShen Road, Beibei District, Chongqing 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, No. 2 TianSheng Road, Beibei District, Chongqing 400715, China.,Faculty of Psychology, Southwest University (SWU), No. 2 TianShen Road, Beibei District, Chongqing 400715, China
| | - Michael C Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - Wenjing Yang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, No. 2 TianSheng Road, Beibei District, Chongqing 400715, China.,Faculty of Psychology, Southwest University (SWU), No. 2 TianShen Road, Beibei District, Chongqing 400715, China
| |
Collapse
|
9
|
DiCola NM, Lacy AL, Bishr OJ, Kimsey KM, Whitney JL, Lovett SD, Burke SN, Maurer AP. Advanced age has dissociable effects on hippocampal CA1 ripples and CA3 high frequency events in male rats. Neurobiol Aging 2022; 117:44-58. [PMID: 35665647 PMCID: PMC9392897 DOI: 10.1016/j.neurobiolaging.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023]
Abstract
Sharp wave/ripples/high frequency events (HFEs) are transient bursts of depolarization in hippocampal subregions CA3 and CA1 that occur during rest and pauses in behavior. Previous studies have reported that CA1 ripples in aged rats have lower frequency than those detected in young animals. While CA1 ripples are thought to be driven by CA3, HFEs in CA3 have not been examined in aged animals. The current study obtained simultaneous recordings from CA1 and CA3 in young and aged rats to examine sharp wave/ripples/HFEs in relation to age. While CA1 ripple frequency was reduced with age, there were no age differences in the frequency of CA3 HFEs, although power and length were lower in old animals. While there was a proportion of CA1 ripples that co-occurred with a CA3 HFE, none of the age-related differences in CA1 ripples could be explained by alterations in CA3 HFE characteristics. These findings suggest that age differences in CA1 are not due to altered CA3 activity, but instead reflect distinct mechanisms of ripple generation with age.
Collapse
Affiliation(s)
- Nicholas M. DiCola
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Alexa L. Lacy
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Omar J. Bishr
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kathryn M. Kimsey
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jenna L. Whitney
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Sarah D. Lovett
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Sara N. Burke
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA,Corresponding author at: University of Florida, Neuroscience, McKnight Brain Institute, P.O. Box 100244, 1149 Newell Dr, RM L1-100G, Gainesville, FL 32610, USA. (S.N. Burke)
| | - Andrew P. Maurer
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA,Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA,Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA,Corresponding author at: McKnight Brain Institute, 1149 Newell Dr, RM L1-100E, University of Florida, Gainesville, FL 32610, USA. (A.P. Maurer)
| |
Collapse
|
10
|
Abstract
Over the past few decades, the importance of sleep has become increasingly recognized for many physiologic functions, including cognition. Many studies have reported the deleterious effect of sleep loss or sleep disruption on cognitive performance. Beyond ensuring adequate sleep quality and duration, discovering methods to enhance sleep to augment its restorative effects is important to improve learning in many populations, such as the military, students, age-related cognitive decline, and cognitive disorders.
Collapse
Affiliation(s)
- Roneil G Malkani
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA.
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 520, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Takehara-Nishiuchi K. Neuronal ensemble dynamics in associative learning. Curr Opin Neurobiol 2022; 73:102530. [DOI: 10.1016/j.conb.2022.102530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 01/19/2023]
|
12
|
Abstract
In human neuroscience, studies of cognition are rarely grounded in non-task-evoked, 'spontaneous' neural activity. Indeed, studies of spontaneous activity tend to focus predominantly on intrinsic neural patterns (for example, resting-state networks). Taking a 'representation-rich' approach bridges the gap between cognition and resting-state communities: this approach relies on decoding task-related representations from spontaneous neural activity, allowing quantification of the representational content and rich dynamics of such activity. For example, if we know the neural representation of an episodic memory, we can decode its subsequent replay during rest. We argue that such an approach advances cognitive research beyond a focus on immediate task demand and provides insight into the functional relevance of the intrinsic neural pattern (for example, the default mode network). This in turn enables a greater integration between human and animal neuroscience, facilitating experimental testing of theoretical accounts of intrinsic activity, and opening new avenues of research in psychiatry.
Collapse
|
13
|
Rea-Sandin G, Breitenstein RS, Doane LD, Vakulskas E, Valiente C, Lemery-Chalfant K. Early Life Socioeconomic Differences in Associations between Childhood Sleep and Academic Performance. JOURNAL OF APPLIED DEVELOPMENTAL PSYCHOLOGY 2022; 79. [PMID: 35250138 PMCID: PMC8896821 DOI: 10.1016/j.appdev.2022.101392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poor sleep can negatively impact children's academic performance. However, it is unknown whether early-life socioeconomic status (SES) moderates later sleep and academics. We tested associations between actigraphy-based sleep duration and midpoint time, and parent-reported sleep problems with objective and subjective measures of academic performance. We also examined whether relations varied by early and concurrent SES. Children (n=707; 52% female; M age=8.44 years; 28.7% Hispanic/Latinx; 29.7% at/below poverty line) were assessed at 12 months for SES and eight years for SES, sleep, and academics. There were no main effects of sleep on academics. More sleep problems predicted lower Applied Problems performance for low SES children (b=-.73, p<.05) and better performance for high SES children (b=.69, p<.05). For high SES children, greater sleep problems (b=-.11, p<.05) and longer sleep duration (b=-.11, p<.05) predicted lower academic achievement. However, most associations were consistent across SES, illustrating the complex interplay between sleep, academic outcomes, and SES.
Collapse
Affiliation(s)
- Gianna Rea-Sandin
- Department of Psychology, Arizona State University, Tempe, AZ, United States of America
| | - Reagan S Breitenstein
- Department of Psychology, Arizona State University, Tempe, AZ, United States of America.,Department of Psychology, Appalachian State University, Boone, NC, United States of America
| | - Leah D Doane
- Department of Psychology, Arizona State University, Tempe, AZ, United States of America
| | - Emily Vakulskas
- Department of Psychology, Arizona State University, Tempe, AZ, United States of America.,School of Medicine, Wake Forest University, Winston-Salem, NC, United States of America
| | - Carlos Valiente
- T. Denny Sanford School of Social and Family Dynamics, Arizona State University, Tempe, AZ, United States of America
| | | |
Collapse
|
14
|
Wittkuhn L, Chien S, Hall-McMaster S, Schuck NW. Replay in minds and machines. Neurosci Biobehav Rev 2021; 129:367-388. [PMID: 34371078 DOI: 10.1016/j.neubiorev.2021.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 11/19/2022]
Abstract
Experience-related brain activity patterns reactivate during sleep, wakeful rest, and brief pauses from active behavior. In parallel, machine learning research has found that experience replay can lead to substantial performance improvements in artificial agents. Together, these lines of research suggest replay has a variety of computational benefits for decision-making and learning. Here, we provide an overview of putative computational functions of replay as suggested by machine learning and neuroscientific research. We show that replay can lead to faster learning, less forgetting, reorganization or augmentation of experiences, and support planning and generalization. In addition, we highlight the benefits of reactivating abstracted internal representations rather than veridical memories, and discuss how replay could provide a mechanism to build internal representations that improve learning and decision-making.
Collapse
Affiliation(s)
- Lennart Wittkuhn
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, D-14195 Berlin, Germany.
| | - Samson Chien
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, D-14195 Berlin, Germany
| | - Sam Hall-McMaster
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, D-14195 Berlin, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, D-14195 Berlin, Germany.
| |
Collapse
|
15
|
Berners-Lee A, Wu X, Foster DJ. Prefrontal Cortical Neurons Are Selective for Non-Local Hippocampal Representations during Replay and Behavior. J Neurosci 2021; 41:5894-5908. [PMID: 34035138 PMCID: PMC8265798 DOI: 10.1523/jneurosci.1158-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Diverse functions such as decision-making and memory consolidation may depend on communication between neurons in the hippocampus (HP) and prefrontal cortex (PFC). HP replay is a candidate mechanism to facilitate this communication, however details remain largely unknown because of the technical challenges of recording sufficient numbers of HP neurons for replay while also recording PFC neurons. Here, we implanted male rats with 40-tetrode drives, split between HP and PFC, during learning of a Y-maze spatial memory task. Surprisingly, we found that in contrast to their non-selectivity for maze arm during movement, a portion of PFC neurons were highly selective for HP replay of different arms. Moreover, PFC neurons' selectivity to HP non-local arm representation during running tended to match their replay arm selectivity and was predictive of future choice. Thus, PFC activity that is tuned to HP activity is best explained by non-local HP position representations rather than HP representation of actual position, providing a new potential mechanism of HP-PFC coordination during HP replay.SIGNIFICANCE STATEMENT The hippocampus (HP) is implicated in spatial learning while the prefrontal cortex (PFC) is implicated in decision-making. The question of how the two areas interact has been of great interest. A specific activity type in HP called replay is particularly interesting because it resembles internal exploration of non-local experiences, but is technically challenging to study, requiring recordings from large numbers of HP neurons simultaneously. Here, we combined replay recordings from HP with prefrontal recordings, to reveal a surprising degree of selectivity for replay, and a pattern of coordination that supports some conceptions of hippocampocortical interaction and challenges others.
Collapse
Affiliation(s)
- Alice Berners-Lee
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, California 94720
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Xiaojing Wu
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David J Foster
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, California 94720
| |
Collapse
|
16
|
Wise T, Liu Y, Chowdhury F, Dolan RJ. Model-based aversive learning in humans is supported by preferential task state reactivation. SCIENCE ADVANCES 2021; 7:eabf9616. [PMID: 34321205 PMCID: PMC8318377 DOI: 10.1126/sciadv.abf9616] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Harm avoidance is critical for survival, yet little is known regarding the neural mechanisms supporting avoidance in the absence of trial-and-error experience. Flexible avoidance may be supported by a mental model (i.e., model-based), a process for which neural reactivation and sequential replay have emerged as candidate mechanisms. During an aversive learning task, combined with magnetoencephalography, we show prospective and retrospective reactivation during planning and learning, respectively, coupled to evidence for sequential replay. Specifically, when individuals plan in an aversive context, we find preferential reactivation of subsequently chosen goal states. Stronger reactivation is associated with greater hippocampal theta power. At outcome receipt, unchosen goal states are reactivated regardless of outcome valence. Replay of paths leading to goal states was modulated by outcome valence, with aversive outcomes associated with stronger reverse replay than safe outcomes. Our findings are suggestive of avoidance involving simulation of unexperienced states through hippocampally mediated reactivation and replay.
Collapse
Affiliation(s)
- Toby Wise
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Yunzhe Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Fatima Chowdhury
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Raymond J Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
17
|
Redish AD. Beyond replay: Introduction to the special issue on hippocampal replay. Hippocampus 2021; 30:3-5. [PMID: 31875338 DOI: 10.1002/hipo.23184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
18
|
Schmidt B, Redish AD. Disrupting the medial prefrontal cortex with designer receptors exclusively activated by designer drug alters hippocampal sharp-wave ripples and their associated cognitive processes. Hippocampus 2021; 31:1051-1067. [PMID: 34107138 DOI: 10.1002/hipo.23367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/09/2022]
Abstract
The hippocampus and medial prefrontal cortex (mPFC) interact during a myriad of cognitive processes including decision-making and long-term memory consolidation. Exactly how the mPFC and hippocampus interact during goal-directed decision-making remains to be fully elucidated. During periods of rest, bursts of high-frequency oscillations, termed sharp-wave ripple (SWR), appear in the local field potential. Impairing SWRs on the maze or during post-learning rest can interfere with memory-guided decision-making and memory consolidation. We hypothesize that the hippocampus and mPFC bidirectionally interact during SWRs to support memory consolidation and decision-making. Rats were trained on the neuroeconomic spatial decision-making task, Restaurant Row, to make serial stay-skip decisions where the amount of effort (delay to reward) varied upon entry to each restaurant. Hippocampal cells and SWRs were recorded in rats with the mPFC transduced with inhibitory DREADDs. We found that disrupting the mPFC impaired consolidating SWRs in the hippocampus. Hippocampal SWR rates depended on the internalized value of the reward (derived from individual flavor preferences), a parameter important in decision-making, and disrupting the mPFC changed this relationship. Additionally, we found a dissociation between SWRs that occurred while rats were on the maze dependent upon whether those SWRs occurred while the rat was anticipating food reward or during post-reward consumption.
Collapse
Affiliation(s)
- Brandy Schmidt
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
19
|
O'Callaghan C, Walpola IC, Shine JM. Neuromodulation of the mind-wandering brain state: the interaction between neuromodulatory tone, sharp wave-ripples and spontaneous thought. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190699. [PMID: 33308063 DOI: 10.1098/rstb.2019.0699] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mind-wandering has become a captivating topic for cognitive neuroscientists. By now, it is reasonably well described in terms of its phenomenology and the large-scale neural networks that support it. However, we know very little about what neurobiological mechanisms trigger a mind-wandering episode and sustain the mind-wandering brain state. Here, we focus on the role of ascending neuromodulatory systems (i.e. acetylcholine, noradrenaline, serotonin and dopamine) in shaping mind-wandering. We advance the hypothesis that the hippocampal sharp wave-ripple (SWR) is a compelling candidate for a brain state that can trigger mind-wandering episodes. This hippocampal rhythm, which occurs spontaneously in quiescent behavioural states, is capable of propagating widespread activity in the default network and is functionally associated with recollective, associative, imagination and simulation processes. The occurrence of the SWR is heavily dependent on hippocampal neuromodulatory tone. We describe how the interplay of neuromodulators may promote the hippocampal SWR and trigger mind-wandering episodes. We then identify the global neuromodulatory signatures that shape the evolution of the mind-wandering brain state. Under our proposed framework, mind-wandering emerges due to the interplay between neuromodulatory systems that influence the transitions between brain states, which either facilitate, or impede, a wandering mind. This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.
Collapse
Affiliation(s)
- Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine, University of Sydney, Sydney, Australia.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ishan C Walpola
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
20
|
Alzoubi KH, Abdel-Hafiz L, Khabour OF, El-Elimat T, Alzubi MA, Alali FQ. Evaluation of the Effect of Hypericum triquetrifolium Turra on Memory Impairment Induced by Chronic Psychosocial Stress in Rats: Role of BDNF. Drug Des Devel Ther 2020; 14:5299-5314. [PMID: 33299301 PMCID: PMC7720289 DOI: 10.2147/dddt.s278153] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/14/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chronic psychosocial stress impairs memory function and leads to a depression-like phenotype induced by a persistent status of oxidative stress. Hypericum perforatum L. (St. John's wort) is widely used to relieve symptoms of anxiety and depression; however, its long-term use is associated with adverse effects. Hypericum triquetrifolium Turra is closely related to H. perforatum. Both plants belong to Hypericaceae family and share many biologically active compounds. Previous work by our group showed that methanolic extracts of H. triquetrifolium have potent antioxidant activity as well as high hypericin content, a component that proved to have stress-relieving and antidepressant effects by other studies. Therefore, we hypothesized that H. triquetrifolium would reduce stress-induced cognitive impairment in a rat model of chronic stress. OBJECTIVE To determine whether chronic treatment with H. triquetrifolium protects against stress-associated memory deficits and to investigate a possible mechanism. METHODS The radial arm water maze (RAWM) was used to test learning and memory in rats exposed to daily stress using the resident-intruder paradigm. Stressed and unstressed rats received chronic H. triquetrifolium or vehicle. We also measured levels of brain-derived neurotrophic factor (BDNF) in the hippocampus, cortex and cerebellum. RESULTS Neither chronic stress nor chronic H. triquetrifolium administration affected performance during acquisition. However, memory tests in the RAWM showed that chronic stress impaired different post-encoding memory stages. H. triquetrifolium prevented this impairment. Furthermore, hippocampal BDNF levels were markedly lower in stressed animals than in unstressed animals, and chronic administration of H triquetrifolium chronic administration protected against this reduction. No significant difference was observed in the effects of chronic stress and/or H. triquetrifolium treatment on BDNF levels in the cerebellum and cortex. CONCLUSION H. triquetrifolium extract can oppose stress-associated hippocampus-dependent memory deficits in a mechanism that may involve BDNF in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, Heinrich Heine Universität, Düsseldorf, Germany
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Mohammad A Alzubi
- Integrative Life Sciences Doctoral Program, Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Feras Q Alali
- College of Pharmacy, QU Health, Qatar University, DohaQatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
21
|
Karakaş S. A review of theta oscillation and its functional correlates. Int J Psychophysiol 2020; 157:82-99. [DOI: 10.1016/j.ijpsycho.2020.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/29/2022]
|
22
|
Tambini A, D'Esposito M. Causal Contribution of Awake Post-encoding Processes to Episodic Memory Consolidation. Curr Biol 2020; 30:3533-3543.e7. [PMID: 32735812 DOI: 10.1016/j.cub.2020.06.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/06/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022]
Abstract
Stable representations of past experience are thought to depend on processes that unfold after events are initially encoded into memory. Post-encoding reactivation and hippocampal-cortical interactions are leading candidate mechanisms thought to support memory retention and stabilization across hippocampal-cortical networks. Although putative consolidation mechanisms have been observed during sleep and periods of awake rest, the direct causal contribution of awake consolidation mechanisms to later behavior is unclear, especially in humans. Moreover, it has been argued that observations of putative consolidation processes are epiphenomenal and not causally important, yet there are few tools to test the functional contribution of these mechanisms in humans. Here, we combined transcranial magnetic stimulation (TMS) and fMRI to test the role of awake consolidation processes by targeting hippocampal interactions with lateral occipital cortex (LOC). We applied theta-burst TMS to LOC (and a control site) to interfere with an extended window (approximately 30-50 min) after memory encoding. Behaviorally, post-encoding TMS to LOC selectively impaired associative memory retention compared to multiple control conditions. In the control TMS condition, we replicated prior reports of post-encoding reactivation and memory-related hippocampal-LOC interactions during periods of awake rest using fMRI. However, post-encoding LOC TMS reduced these processes, such that post-encoding reactivation in LOC and memory-related hippocampal-LOC functional connectivity were no longer present. By targeting and manipulating post-encoding neural processes, these findings highlight the direct contribution of awake time periods to episodic memory consolidation. This combined TMS-fMRI approach provides an opportunity for causal manipulations of human memory consolidation.
Collapse
Affiliation(s)
- Arielle Tambini
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Neurobiology and Behavior, Center for Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92617, USA.
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Inayat S, Qandeel, Nazariahangarkolaee M, Singh S, McNaughton BL, Whishaw IQ, Mohajerani MH. Low acetylcholine during early sleep is important for motor memory consolidation. Sleep 2020; 43:zsz297. [PMID: 31825510 PMCID: PMC7294415 DOI: 10.1093/sleep/zsz297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/06/2019] [Indexed: 01/29/2023] Open
Abstract
The synaptic homeostasis theory of sleep proposes that low neurotransmitter activity in sleep optimizes memory consolidation. We tested this theory by asking whether increasing acetylcholine levels during early sleep would weaken motor memory consolidation. We trained separate groups of adult mice on the rotarod walking task and the single pellet reaching task, and after training, administered physostigmine, an acetylcholinesterase inhibitor, to increase cholinergic tone in subsequent sleep. Post-sleep testing showed that physostigmine impaired motor skill acquisition of both tasks. Home-cage video monitoring and electrophysiology revealed that physostigmine disrupted sleep structure, delayed non-rapid-eye-movement sleep onset, and reduced slow-wave power in the hippocampus and cortex. Additional experiments showed that: (1) the impaired performance associated with physostigmine was not due to its effects on sleep structure, as 1 h of sleep deprivation after training did not impair rotarod performance, (2) a reduction in cholinergic tone by inactivation of cholinergic neurons during early sleep did not affect rotarod performance, and (3) stimulating or blocking muscarinic and nicotinic acetylcholine receptors did not impair rotarod performance. Taken together, the experiments suggest that the increased slow wave activity and inactivation of both muscarinic and nicotinic receptors during early sleep due to reduced acetylcholine contribute to motor memory consolidation.
Collapse
Affiliation(s)
- Samsoon Inayat
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Qandeel
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | - Surjeet Singh
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Bruce L McNaughton
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Center for the Neurobiology of Learning and Memory, University of California, Irvine
| | - Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
24
|
|
25
|
Dhawan AG. Memory Reactivation and Its Effect on Exercise Performance and Heart Rate. Front Sports Act Living 2020; 2:20. [PMID: 33345014 PMCID: PMC7739786 DOI: 10.3389/fspor.2020.00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/25/2020] [Indexed: 12/02/2022] Open
Abstract
Neuronal ensemble and brain plasticity both play an important role in memory consolidation and subsequently memory reactivation. To date, many studies have been designed to study the effect of exercise, heart-rate variability, and other factors on brain plasticity and memory. Here, we present a case study in which we have demonstrated the effect of neuronal ensemble and memory formed during High-intensity aerobic training (VO2 max) and Target Heart-Rate (THR) training and the effect of reactivation of same memory on THR and performance. Of note is the fact that the reactivation and recreation of memory stimulus learned and formed during High-intensity training, such as place, time, odor, and other conditions, can elevate the THR to the same previous peak zone even at low intensity. This demonstrates that reactivation of previously acquired memory or using the stimulation from the neuronal ensemble of consolidated memory during the specific event of training may exert similar physiological effects on exercise or the body to those that are learned during the memory acquisition phase. Hence, as exercise has an effect on memory, the memories may have an effect on exercise performances.
Collapse
|
26
|
Friedrich M, Mölle M, Friederici AD, Born J. Sleep-dependent memory consolidation in infants protects new episodic memories from existing semantic memories. Nat Commun 2020; 11:1298. [PMID: 32157080 PMCID: PMC7064567 DOI: 10.1038/s41467-020-14850-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/03/2020] [Indexed: 01/22/2023] Open
Abstract
Any experienced event may be encoded and retained in detail as part of our episodic memory, and may also refer and contribute to our generalized knowledge stored in semantic memory. The beginnings of this declarative memory formation are only poorly understood. Even less is known about the interrelation between episodic and semantic memory during the earliest developmental stages. Here, we show that the formation of episodic memories in 14- to 17-month-old infants depends on sleep, subsequent to exposure to novel events. Infant brain responses reveal that, after sleep-dependent consolidation, the newly stored events are not processed semantically, although appropriate lexical-semantic memories are present and accessible by similar events that were not experienced before the nap. We propose that temporarily disabled semantic processing protects precise episodic memories from interference with generalized semantic memories. Selectively restricted semantic access could also trigger semantic refinement, and thus, might even improve semantic memory.
Collapse
Affiliation(s)
- Manuela Friedrich
- Department of Psychology, Humboldt-University of Berlin, Rudower Chaussee 18, D-12489, Berlin, Germany. .,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany.
| | - Matthias Mölle
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Marie-Curie-Straße, D-23562, Lübeck, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, D-72076, Tübingen, Germany
| |
Collapse
|
27
|
Abstract
Given the critical role of sleep, particularly sleep slow oscillations, sleep spindles, and hippocampal sharp wave ripples, in memory consolidation, sleep enhancement represents a key opportunity to improve cognitive performance. Techniques such as transcranial electrical and magnetic stimulation and acoustic stimulation can enhance slow oscillations and sleep spindles and potentially improve memory. Targeted memory reactivation in sleep may enhance or stabilize memory consolidation. Each technique has technical considerations that may limit its broader clinical application. Therefore, neurostimulation to enhance sleep quality, in particular sleep slow oscillations, has the potential for improving sleep-related memory consolidation in healthy and clinical populations.
Collapse
Affiliation(s)
- Roneil G Malkani
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine. 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611, USA.
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine. 710 North Lake Shore Drive, Suite 520, Chicago, IL 60611, USA
| |
Collapse
|
28
|
Poluektov M, Narbut A, Dorokhov V. Daytime napping and its effects on memory consolidation. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:127-132. [DOI: 10.17116/jnevro2020120081127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Parameshwaran D, Subramaniyam NP, Thiagarajan TC. Waveform complexity: A new metric for EEG analysis. J Neurosci Methods 2019; 325:108313. [DOI: 10.1016/j.jneumeth.2019.108313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 11/30/2022]
|
30
|
Puchkova AN. [Learning during sleep: pitfalls, advances and promises]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:8-14. [PMID: 31317909 DOI: 10.17116/jnevro20191190428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sleep plays a crucial role in memory consolidation. Research dedicated to learning during sleep is based on a theory that new information can be also acquired in a sleep state. This review covers the studies that aim to form new memory traces during sleep that persist into wakefulness or try to uncover the mechanisms of such learning. The possibility of associative, perceptive and other forms of learning, primarily implicit learning, is shown.
Collapse
Affiliation(s)
- A N Puchkova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow ,Russia
| |
Collapse
|
31
|
Malerba P, Rulkov NF, Bazhenov M. Large time step discrete-time modeling of sharp wave activity in hippocampal area CA3. COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION 2019; 72:162-175. [PMID: 33814862 PMCID: PMC8015963 DOI: 10.1016/j.cnsns.2018.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reduced models of neuronal spiking activity simulated with a fixed integration time are frequently used in studies of spatio-temporal dynamics of neurobiological networks. The choice of fixed time step integration provides computational simplicity and efficiency, especially in cases dealing with large number of neurons and synapses operating at a different level of activity across the population at any given time. A network model tuned to generate a particular type of oscillations or wave patterns is sensitive to the intrinsic properties of neurons and synapses and, therefore, commonly susceptible to changes the time step of integration. In this study, we analyzed a model of sharp-wave activity in the network of hippocampal area CA3, to examine how an increase of the integration time step affects network behavior and to propose adjustments of intrinsic properties neurons and synapses that help minimize or remove the damage caused by the time step increase.
Collapse
Affiliation(s)
- Paola Malerba
- Department of Medicine, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093, United States
- Department of Cognitive Sciences, University of California
Irvine, Irvine, CA 92697-5100, United States
| | - Nikolai F. Rulkov
- BioCircuits Institute, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093, United States
| |
Collapse
|
32
|
Montes-Rodríguez CJ, Rueda-Orozco PE, Prospéro-García O. Total sleep deprivation impairs fear memory retrieval by decreasing the basolateral amygdala activity. Brain Res 2019; 1719:17-23. [PMID: 31128099 DOI: 10.1016/j.brainres.2019.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022]
Abstract
It is well known that sleep deprivation impairs fear memory processes, but little is known about the underlying mechanisms or circuits. The aim of this study was to evaluate the effects of total sleep deprivation (24 h) on contextual fear memory acquisition, consolidation, and retrieval, as well as c-Fos activity in the hippocampus and amygdala. Fear memory recall was associated with an increase in the number of c-Fos-positive cells in the hippocampal CA1 and CA3 regions and the basolateral amygdala (BLA). Total sleep deprivation before to the acquisition and during consolidation of memory impaired retrieval and blocked the associated c-Fos activity in the hippocampus and amygdala. In contrast, total sleep deprivation before memory recall also impaired retrieval, but selectively prevented the increase of c-Fos activity in the amygdala (but not in the hippocampus). Our data indicate that sleep is essential not only for acquisition and consolidation but also for the retrieval of fear memories. They also suggest a differential susceptibility of specific memory-related neural circuits (hippocampus and BLA) to the absence of sleep.
Collapse
Affiliation(s)
- C J Montes-Rodríguez
- Grupo de Plasticidad Sináptica y Ensambles Neuronales, Centro de Ciencias de la Complejidad (C3), Facultad de Psicología, UNAM, Mexico.
| | - P E Rueda-Orozco
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Mexico.
| | - O Prospéro-García
- Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico
| |
Collapse
|
33
|
Kelley P, Evans MDR, Kelley J. Making Memories: Why Time Matters. Front Hum Neurosci 2018; 12:400. [PMID: 30386221 PMCID: PMC6198140 DOI: 10.3389/fnhum.2018.00400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 09/18/2018] [Indexed: 11/29/2022] Open
Abstract
In the last decade advances in human neuroscience have identified the critical importance of time in creating long-term memories. Circadian neuroscience has established biological time functions via cellular clocks regulated by photosensitive retinal ganglion cells and the suprachiasmatic nuclei. Individuals have different circadian clocks depending on their chronotypes that vary with genetic, age, and sex. In contrast, social time is determined by time zones, daylight savings time, and education and employment hours. Social time and circadian time differences can lead to circadian desynchronization, sleep deprivation, health problems, and poor cognitive performance. Synchronizing social time to circadian biology leads to better health and learning, as demonstrated in adolescent education. In-day making memories of complex bodies of structured information in education is organized in social time and uses many different learning techniques. Research in the neuroscience of long-term memory (LTM) has demonstrated in-day time spaced learning patterns of three repetitions of information separated by two rest periods are effective in making memories in mammals and humans. This time pattern is based on the intracellular processes required in synaptic plasticity. Circadian desynchronization, sleep deprivation, and memory consolidation in sleep are less well-understood, though there has been considerable progress in neuroscience research in the last decade. The interplay of circadian, in-day and sleep neuroscience research are creating an understanding of making memories in the first 24-h that has already led to interventions that can improve health and learning.
Collapse
Affiliation(s)
- Paul Kelley
- Sleep, Circadian and Memory Neuroscience, The Open University, Milton Keynes, United Kingdom
| | - M. D. R. Evans
- Sociology and Applied Statistics Program, University of Nevada, Reno, Reno, NV, United States
- Sociology, University of Nevada, Reno, Reno, NV, United States
| | - Jonathan Kelley
- Sociology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
34
|
Collins JA, Dickerson BC. Functional connectivity in category-selective brain networks after encoding predicts subsequent memory. Hippocampus 2018; 29:440-450. [PMID: 30009477 DOI: 10.1002/hipo.23003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022]
Abstract
Activity in category selective regions of the temporal and parietal lobes during encoding has been associated with subsequent memory for face and scene stimuli. Reactivation theories of memory consolidation predict that after encoding connectivity between these category-selective regions and the hippocampus should be modulated and predict recognition memory. However, support for this proposal has been limited in humans. Here, participants completed a resting-state functional MRI (fMRI) scan, followed by face- and place-encoding tasks, followed by another resting-state fMRI scan during which they were asked to think about the stimuli they had previously encountered. Individual differences in face recognition memory were predicted by the degree to which connectivity between face-responsive regions of the fusiform gyrus and perirhinal cortex increased following the face-encoding task. In contrast, individual differences in scene recognition were predicted by connectivity between the hippocampus and a scene-selective region of the retrosplenial cortex before and after the place-encoding task. Our results provide novel evidence for category specificity in the neural mechanisms supporting memory consolidation.
Collapse
Affiliation(s)
- Jessica A Collins
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
35
|
Pu Y, Cornwell BR, Cheyne D, Johnson BW. High-gamma activity in the human hippocampus and parahippocampus during inter-trial rest periods of a virtual navigation task. Neuroimage 2018; 178:92-103. [DOI: 10.1016/j.neuroimage.2018.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022] Open
|
36
|
Verhoeven FM, Newell KM. Unifying practice schedules in the timescales of motor learning and performance. Hum Mov Sci 2018; 59:153-169. [DOI: 10.1016/j.humov.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
|
37
|
Zak N, Moberget T, Bøen E, Boye B, Waage TR, Dietrichs E, Harkestad N, Malt UF, Westlye LT, Andreassen OA, Andersson S, Elvsåshagen T. Longitudinal and cross-sectional investigations of long-term potentiation-like cortical plasticity in bipolar disorder type II and healthy individuals. Transl Psychiatry 2018; 8:103. [PMID: 29795193 PMCID: PMC5966393 DOI: 10.1038/s41398-018-0151-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/19/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022] Open
Abstract
Visual evoked potential (VEP) plasticity is a promising assay for noninvasive examination of long-term potentiation (LTP)-like synaptic processes in the cerebral cortex. We conducted longitudinal and cross-sectional investigations of VEP plasticity in controls and individuals with bipolar disorder (BD) type II. VEP plasticity was assessed at baseline, as described previously (Elvsåshagen et al. Biol Psychiatry 2012), and 2.2 years later, at follow-up. The longitudinal sample with VEP data from both time points comprised 29 controls and 16 patients. VEP data were available from 13 additional patients at follow-up (total n = 58). VEPs were evoked by checkerboard reversals in two premodulation blocks before and six blocks after a plasticity-inducing block of prolonged (10 min) visual stimulation. VEP plasticity was computed by subtracting premodulation VEP amplitudes from postmodulation amplitudes. Saliva samples for cortisol analysis were collected immediately after awakening in the morning, 30 min later, and at 12:30 PM, at follow-up. We found reduced VEP plasticity in BD type II, that impaired plasticity was present in the euthymic phases of the illness, and that VEP plasticity correlated negatively with depression severity. There was a positive association between VEP plasticity and saliva cortisol in controls, possibly reflecting an inverted U-shaped relationship between cortisol and synaptic plasticity. VEP plasticity exhibited moderate temporal stability over a period of 2.2 years. The present study provides additional evidence for impaired LTP-like cortical plasticity in BD type II. VEP plasticity is an accessible method, which may help elucidate the pathophysiological and clinical significance of synaptic dysfunction in psychiatric disorders.
Collapse
Affiliation(s)
- Nathalia Zak
- 0000 0004 0389 8485grid.55325.34Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torgeir Moberget
- 0000 0004 0389 8485grid.55325.34Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - Erlend Bøen
- 0000 0004 0512 8628grid.413684.cDepartment of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Birgitte Boye
- 0000 0004 0389 8485grid.55325.34Section of Psychosocial Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1Department of Behavioural Sciences in Medicine, University of Oslo, Oslo, Norway
| | - Trine R. Waage
- 0000 0004 1936 8921grid.5510.1Department of Psychology, University of Oslo, Oslo, Norway
| | - Espen Dietrichs
- 0000 0004 1936 8921grid.5510.1Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,0000 0004 0389 8485grid.55325.34Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Nina Harkestad
- 0000 0004 1936 7443grid.7914.bDepartment of Biological and Medical Pscyhology, University of Bergen, Bergen, Norway
| | - Ulrik F. Malt
- 0000 0004 1936 8921grid.5510.1Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,0000 0004 0389 8485grid.55325.34Department of Research and Education, Oslo University Hospital, Oslo, Norway
| | - Lars T. Westlye
- 0000 0004 0389 8485grid.55325.34Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- 0000 0004 0389 8485grid.55325.34Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stein Andersson
- 0000 0004 1936 8921grid.5510.1Department of Psychology, University of Oslo, Oslo, Norway
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Neurology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
38
|
Malerba P, Bazhenov M. Circuit mechanisms of hippocampal reactivation during sleep. Neurobiol Learn Mem 2018; 160:98-107. [PMID: 29723670 DOI: 10.1016/j.nlm.2018.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/13/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
Abstract
The hippocampus is important for memory and learning, being a brain site where initial memories are formed and where sharp wave - ripples (SWR) are found, which are responsible for mapping recent memories to long-term storage during sleep-related memory replay. While this conceptual schema is well established, specific intrinsic and network-level mechanisms driving spatio-temporal patterns of hippocampal activity during sleep, and specifically controlling off-line memory reactivation are unknown. In this study, we discuss a model of hippocampal CA1-CA3 network generating spontaneous characteristic SWR activity. Our study predicts the properties of CA3 input which are necessary for successful CA1 ripple generation and the role of synaptic interactions and intrinsic excitability in spike sequence replay during SWRs. Specifically, we found that excitatory synaptic connections promote reactivation in both CA3 and CA1, but the different dynamics of sharp waves in CA3 and ripples in CA1 result in a differential role for synaptic inhibition in modulating replay: promoting spike sequence specificity in CA3 but not in CA1 areas. Finally, we describe how awake learning of spatial trajectories leads to synaptic changes sufficient to drive hippocampal cells' reactivation during sleep, as required for sleep-related memory consolidation.
Collapse
Affiliation(s)
- Paola Malerba
- Department of Medicine, University of California San Diego, United States
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, United States.
| |
Collapse
|
39
|
Tang W, Jadhav SP. Sharp-wave ripples as a signature of hippocampal-prefrontal reactivation for memory during sleep and waking states. Neurobiol Learn Mem 2018; 160:11-20. [PMID: 29331447 DOI: 10.1016/j.nlm.2018.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/31/2017] [Accepted: 01/09/2018] [Indexed: 11/25/2022]
Abstract
It is widely believed that memories that are encoded and retrieved during waking behavior are consolidated during sleep. Recent studies on the interactions between the hippocampus and the prefrontal cortex have greatly advanced our understanding of the physiological bases of these memory processes. Although hippocampal-prefrontal network activity differs in many aspects during waking and sleep states, here we review evidence that hippocampal sharp-wave ripples (SWRs) emerge as a common neurophysiological pattern in both states, facilitating communication between these two regions via coordinated reactivation of stored memory information. We further consider whether sleep and awake reactivation mediate similar memory processes or have different mnemonic functions, and the mechanistic role of this cross-regional dialogue in learning and memory. Finally, we provide an integrated view of how these two forms of reactivation might work together to support spatial learning and memory.
Collapse
Affiliation(s)
- Wenbo Tang
- Graduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA
| | - Shantanu P Jadhav
- Graduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA; Neuroscience Program, Department of Psychology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
40
|
Larzabal C, Tramoni E, Muratot S, Thorpe SJ, Barbeau EJ. Extremely long-term memory and familiarity after 12 years. Cognition 2018; 170:254-262. [PMID: 29096326 PMCID: PMC5730537 DOI: 10.1016/j.cognition.2017.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 11/30/2022]
Abstract
In 2006 Mitchell demonstrated that implicit memory was robust to decay. He showed that the ability to identify fragments of pictures seen 17 years before was significantly higher than for new stimuli. Is this true only for implicit memory? In this study, we tested whether explicit memory was still possible for drawings (n = 144) that had been presented once or three times, two seconds each time on average, approximately 12 years earlier. Surprisingly, our data reveal that our participants were able to recognize pictures above chance level. Preserved memory was mainly observed in the youngest subjects, for stimuli seen three times. Despite the fact that confidence judgments were low, reports suggest that recognition could be based on a strong sense of familiarity. These data extend Mitchell's findings and show that familiarity can also be robust to decay.
Collapse
Affiliation(s)
- Christelle Larzabal
- Université de Toulouse, UPS, Centre de Recherche Cerveau et Cognition, France; CNRS, CerCo, Toulouse, France.
| | - Eve Tramoni
- INSERM U 751, Marseille, France; Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Sophie Muratot
- Université de Toulouse, UPS, Centre de Recherche Cerveau et Cognition, France; CNRS, CerCo, Toulouse, France
| | - Simon J Thorpe
- Université de Toulouse, UPS, Centre de Recherche Cerveau et Cognition, France; CNRS, CerCo, Toulouse, France
| | - Emmanuel J Barbeau
- Université de Toulouse, UPS, Centre de Recherche Cerveau et Cognition, France; CNRS, CerCo, Toulouse, France
| |
Collapse
|
41
|
Liu ZX, Grady C, Moscovitch M. The effect of prior knowledge on post-encoding brain connectivity and its relation to subsequent memory. Neuroimage 2017; 167:211-223. [PMID: 29158201 DOI: 10.1016/j.neuroimage.2017.11.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/08/2017] [Accepted: 11/16/2017] [Indexed: 02/02/2023] Open
Abstract
It is known that prior knowledge can facilitate memory acquisition. It is unclear, however, whether prior knowledge can affect post-encoding brain activity to facilitate memory consolidation. In this fMRI study, we asked participants to associate novel houses with famous/nonfamous faces and investigated how associative-encoding tasks with/without prior knowledge differentially affected post-encoding brain connectivity during rest. Besides memory advantages in the famous condition, we found that post-encoding hippocampal connectivity with the fusiform face area (FFA) and ventral-medial-prefrontal cortex (vmPFC) was stronger following encoding of associations with famous than non-famous faces. Importantly, post-encoding functional connectivity between the hippocampus (HPC) and FFA, and between the anterior temporal pole region (aTPL) and posterior perceptual regions (i.e., FFA and the parahippocampal place area), together predicted a large proportion of the variance in subsequent memory performance. This prediction was specific for face-house associative memory, not face/house item memory, and only in the famous condition where prior knowledge was involved. These results support the idea that when prior knowledge is involved, the HPC, vmPFC, and aTPL, which support prior episodic, social-evaluative/schematic, and semantic memories, respectively, continue to interact with each other and posterior perceptual brain regions during the post-encoding rest to facilitate off-line processing of the newly formed memory, and enhance memory consolidation.
Collapse
Affiliation(s)
- Zhong-Xu Liu
- Rotman Research Institute, Baycrest Health Sciences, University of Toronto, Canada.
| | - Cheryl Grady
- Rotman Research Institute, Baycrest Health Sciences, University of Toronto, Canada; Department of Psychology, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Health Sciences, University of Toronto, Canada; Department of Psychology, University of Toronto, Canada
| |
Collapse
|
42
|
Tambini A, Berners-Lee A, Davachi L. Brief targeted memory reactivation during the awake state enhances memory stability and benefits the weakest memories. Sci Rep 2017; 7:15325. [PMID: 29127388 PMCID: PMC5681594 DOI: 10.1038/s41598-017-15608-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022] Open
Abstract
Reactivation of representations corresponding to recent experience is thought to be a critical mechanism supporting long-term memory stabilization. Targeted memory reactivation, or the re-exposure of recently learned cues, seeks to induce reactivation and has been shown to benefit later memory when it takes place during sleep. However, despite recent evidence for endogenous reactivation during post-encoding awake periods, less work has addressed whether awake targeted memory reactivation modulates memory. Here, we found that brief (50 ms) visual stimulus re-exposure during a repetitive foil task enhanced the stability of cued versus uncued associations in memory. The extent of external or task-oriented attention prior to re-exposure was inversely related to cueing benefits, suggesting that an internally-orientated state may be most permissible to reactivation. Critically, cueing-related memory benefits were greatest in participants without explicit recognition of cued items and remained reliable when only considering associations not recognized as cued, suggesting that explicit cue-triggered retrieval processes did not drive cueing benefits. Cueing benefits were strongest for associations and participants with the poorest initial learning. These findings expand our knowledge of the conditions under which targeted memory reactivation can benefit memory, and in doing so, support the notion that reactivation during awake time periods improves memory stabilization.
Collapse
Affiliation(s)
- Arielle Tambini
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, 94720, USA.
| | - Alice Berners-Lee
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, 94720, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lila Davachi
- Department of Psychology and Center for Neural Science, New York University, 6 Washington Place, New York, NY, 10003, USA
| |
Collapse
|
43
|
Hennies N, Lambon Ralph MA, Durrant SJ, Cousins JN, Lewis PA. Cued Memory Reactivation During SWS Abolishes the Beneficial Effect of Sleep on Abstraction. Sleep 2017; 40:3926042. [PMID: 28821209 DOI: 10.1093/sleep/zsx102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Study Objectives Extracting regularities from stimuli in our environment and generalizing these to new situations are fundamental processes in human cognition. Sleep has been shown to enhance these processes, possibly by facilitating reactivation-triggered memory reorganization. Here, we assessed whether cued reactivation during slow wave sleep (SWS) promotes the beneficial effect of sleep on abstraction of statistical regularities. Methods We used an auditory statistical learning task, in which the benefit of sleep has been firmly established. Participants were exposed to a probabilistically determined sequence of tones and subsequently tested for recognition of novel short sequences adhering to this same statistical pattern in both immediate and delayed recall sessions. In different groups, the exposure stream was replayed during SWS in the night between the recall sessions (SWS-replay group), in wake just before sleep (presleep replay group), or not at all (control group). Results Surprisingly, participants who received replay in sleep performed worse in the delayed recall session than the control and the presleep replay group. They also failed to show the association between SWS and task performance that has been observed in previous studies and was present in the controls. Importantly, sleep structure and sleep quality did not differ between groups, suggesting that replay during SWS did not impair sleep but rather disrupted or interfered with sleep-dependent mechanisms that underlie the extraction of the statistical pattern. Conclusions These findings raise important questions about the scope of cued memory reactivation and the mechanisms that underlie sleep-related generalization.
Collapse
Affiliation(s)
- Nora Hennies
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Manchester, United Kingdom
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Manchester, United Kingdom
| | - Simon J Durrant
- School of Psychology, University of Lincoln, Lincoln, United Kingdom
| | - James N Cousins
- Cognitive Neuroscience Laboratory, Duke-NUS Graduate Medical School, Singapore
| | - Penelope A Lewis
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
44
|
Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States. J Neurosci 2017; 37:11789-11805. [PMID: 29089440 DOI: 10.1523/jneurosci.2291-17.2017] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/26/2017] [Accepted: 10/22/2017] [Indexed: 01/01/2023] Open
Abstract
Hippocampal sharp-wave ripple (SWR) events occur during both behavior (awake SWRs) and slow-wave sleep (sleep SWRs). Awake and sleep SWRs both contribute to spatial learning and memory, thought to be mediated by the coordinated reactivation of behavioral experiences in hippocampal-cortical circuits seen during SWRs. Current hypotheses suggest that reactivation contributes to memory consolidation processes, but whether awake and sleep reactivation are suited to play similar or different roles remains unclear. Here we addressed that issue by examining the structure of hippocampal (area CA1) and prefrontal (PFC) activity recorded across behavior and sleep stages in male rats learning a spatial alternation task. We found a striking state difference: prefrontal modulation during awake and sleep SWRs was surprisingly distinct, with differing patterns of excitation and inhibition. CA1-PFC synchronization was stronger during awake SWRs, and spatial reactivation, measured using both pairwise and ensemble measures, was more structured for awake SWRs compared with post-task sleep SWRs. Stronger awake reactivation was observed despite the absence of coordination between network oscillations, namely hippocampal SWRs and cortical delta and spindle oscillations, which is prevalent during sleep. Finally, awake CA1-PFC reactivation was enhanced most prominently during initial learning in a novel environment, suggesting a key role in early learning. Our results demonstrate significant differences in awake and sleep reactivation in the hippocampal-prefrontal network. These findings suggest that awake SWRs support accurate memory storage and memory-guided behavior, whereas sleep SWR reactivation is better suited to support integration of memories across experiences during consolidation.SIGNIFICANCE STATEMENT Hippocampal sharp-wave ripples (SWRs) occur both in the awake state during behavior and in the sleep state after behavior. Awake and sleep SWRs are associated with memory reactivation and are important for learning, but their specific memory functions remain unclear. Here, we found profound differences in hippocampal-cortical reactivation during awake and sleep SWRs, with key implications for their roles in memory. Awake reactivation is a higher-fidelity representation of behavioral experiences, and is enhanced during early learning, without requiring coordination of network oscillations that is seen during sleep. Our findings suggest that awake reactivation is ideally suited to support initial memory formation, retrieval and planning, whereas sleep reactivation may play a broader role in integrating memories across experiences during consolidation.
Collapse
|
45
|
O'Neill J, Boccara CN, Stella F, Schoenenberger P, Csicsvari J. Superficial layers of the medial entorhinal cortex replay independently of the hippocampus. Science 2017; 355:184-188. [PMID: 28082591 DOI: 10.1126/science.aag2787] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/01/2016] [Indexed: 01/23/2023]
Abstract
The hippocampus is thought to initiate systems-wide mnemonic processes through the reactivation of previously acquired spatial and episodic memory traces, which can recruit the entorhinal cortex as a first stage of memory redistribution to other brain areas. Hippocampal reactivation occurs during sharp wave-ripples, in which synchronous network firing encodes sequences of places. We investigated the coordination of this replay by recording assembly activity simultaneously in the CA1 region of the hippocampus and superficial layers of the medial entorhinal cortex. We found that entorhinal cell assemblies can replay trajectories independently of the hippocampus and sharp wave-ripples. This suggests that the hippocampus is not the sole initiator of spatial and episodic memory trace reactivation. Memory systems involved in these processes may include nonhierarchical, parallel components.
Collapse
Affiliation(s)
- J O'Neill
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, A-3400 Klosterneuburg, Austria.
| | - C N Boccara
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, A-3400 Klosterneuburg, Austria
| | - F Stella
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, A-3400 Klosterneuburg, Austria
| | - P Schoenenberger
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, A-3400 Klosterneuburg, Austria
| | - J Csicsvari
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, A-3400 Klosterneuburg, Austria.
| |
Collapse
|
46
|
Batterink LJ, Westerberg CE, Paller KA. Vocabulary learning benefits from REM after slow-wave sleep. Neurobiol Learn Mem 2017; 144:102-113. [PMID: 28697944 PMCID: PMC5582992 DOI: 10.1016/j.nlm.2017.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/15/2017] [Accepted: 07/04/2017] [Indexed: 12/20/2022]
Abstract
Memory reactivation during slow-wave sleep (SWS) influences the consolidation of recently acquired knowledge. This reactivation occurs spontaneously during sleep but can also be triggered by presenting learning-related cues, a technique known as targeted memory reactivation (TMR). Here we examined whether TMR can improve vocabulary learning. Participants learned the meanings of 60 novel words. Auditory cues for half the words were subsequently presented during SWS in an afternoon nap. Memory performance for cued versus uncued words did not differ at the group level but was systematically influenced by REM sleep duration. Participants who obtained relatively greater amounts of REM showed a significant benefit for cued relative to uncued words, whereas participants who obtained little or no REM demonstrated a significant effect in the opposite direction. We propose that REM after SWS may be critical for the consolidation of highly integrative memories, such as new vocabulary. Reactivation during SWS may allow newly encoded memories to be associated with other information, but this association can include disruptive linkages with pre-existing memories. Subsequent REM sleep may then be particularly beneficial for integrating new memories into appropriate pre-existing memory networks. These findings support the general proposition that memory storage benefits optimally from a cyclic succession of SWS and REM.
Collapse
|
47
|
Faw M, Faw B. Response to 'Hippocampus as a wormhole: gateway to consciousness'. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2017; 8. [PMID: 28834415 DOI: 10.1002/wcs.1447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Reply to: Behrendt R-P. Hippocampus as a wormhole: gateway to consciousness. WIREs Cogn Sci 2017, e1446. doi: 10.1002/wcs.1446.
Collapse
Affiliation(s)
| | - Bill Faw
- Brewton-Parker College, Mt. Vernon, GA, USA
| |
Collapse
|
48
|
Selectivity in Postencoding Connectivity with High-Level Visual Cortex Is Associated with Reward-Motivated Memory. J Neurosci 2017; 37:537-545. [PMID: 28100737 DOI: 10.1523/jneurosci.4032-15.2016] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 08/02/2016] [Accepted: 09/07/2016] [Indexed: 11/21/2022] Open
Abstract
Reward motivation has been demonstrated to enhance declarative memory by facilitating systems-level consolidation. Although high-reward information is often intermixed with lower reward information during an experience, memory for high value information is prioritized. How is this selectivity achieved? One possibility is that postencoding consolidation processes bias memory strengthening to those representations associated with higher reward. To test this hypothesis, we investigated the influence of differential reward motivation on the selectivity of postencoding markers of systems-level memory consolidation. Human participants encoded intermixed, trial-unique memoranda that were associated with either high or low-value during fMRI acquisition. Encoding was interleaved with periods of rest, allowing us to investigate experience-dependent changes in connectivity as they related to later memory. Behaviorally, we found that reward motivation enhanced 24 h associative memory. Analysis of patterns of postencoding connectivity showed that, even though learning trials were intermixed, there was significantly greater connectivity with regions of high-level, category-selective visual cortex associated with high-reward trials. Specifically, increased connectivity of category-selective visual cortex with both the VTA and the anterior hippocampus predicted associative memory for high- but not low-reward memories. Critically, these results were independent of encoding-related connectivity and univariate activity measures. Thus, these findings support a model by which the selective stabilization of memories for salient events is supported by postencoding interactions with sensory cortex associated with reward. SIGNIFICANCE STATEMENT Reward motivation is thought to promote memory by supporting memory consolidation. Yet, little is known as to how brain selects relevant information for subsequent consolidation based on reward. We show that experience-dependent changes in connectivity of both the anterior hippocampus and the VTA with high-level visual cortex selectively predicts memory for high-reward memoranda at a 24 h delay. These findings provide evidence for a novel mechanism guiding the consolidation of memories for valuable events, namely, postencoding interactions between neural systems supporting mesolimbic dopamine activation, episodic memory, and perception.
Collapse
|
49
|
Ferezou I, Deneux T. Review: How do spontaneous and sensory-evoked activities interact? NEUROPHOTONICS 2017; 4:031221. [PMID: 28630882 PMCID: PMC5469390 DOI: 10.1117/1.nph.4.3.031221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/16/2017] [Indexed: 11/14/2023]
Abstract
Twenty years ago, the seminal work of Grinvald et al. revolutionized the view cast on spontaneous cortical activity by showing how, instead of being a mere measure of noise, it profoundly impacts cortical responses to a sensory input and therefore could play a role in sensory processing. This paved the way for a number of studies on the interactions between spontaneous and sensory-evoked activities. Spontaneous activity has subsequently been found to be highly structured and to participate in high cognitive functions, such as influencing conscious perception in humans. However, its functional role remains poorly understood, and only a few speculations exist, from the maintenance of the cortical network to the internal representation of an a priori knowledge of the environment. Furthermore, elucidation of this functional role could stem from studying the opposite relationship between spontaneous and sensory-evoked activities, namely, how a sensory input influences subsequent internal activities. Indeed, this question has remained largely unexplored, but a recent study by the Grinvald laboratory shows that a brief sensory input largely dampens spontaneous rhythms, suggesting a more sophisticated view where some spontaneous rhythms might relate to sensory processing and some others not.
Collapse
Affiliation(s)
- Isabelle Ferezou
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Thomas Deneux
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| |
Collapse
|
50
|
Thorn CA, Popiolek M, Stark E, Edgerton JR. Effects of M1 and M4 activation on excitatory synaptic transmission in CA1. Hippocampus 2017; 27:794-810. [PMID: 28422371 PMCID: PMC5573954 DOI: 10.1002/hipo.22732] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/24/2017] [Accepted: 03/31/2017] [Indexed: 01/23/2023]
Abstract
Hippocampal networks are particularly susceptible to dysfunction in many neurodegenerative diseases and neuropsychiatric disorders including Alzheimer's disease, Lewy body dementia, and schizophrenia. CA1, a major output region of the hippocampus, receives glutamatergic input from both hippocampal CA3 and entorhinal cortex, via the Schaffer collateral (SC) and temporoammonic (TA) pathways, respectively. SC and TA inputs to CA1 are thought to be differentially involved in the retrieval of previously stored memories versus the encoding of novel information, and switching between these two crucial hippocampal functions is thought to critically depend on acetylcholine (ACh) acting at muscarinic receptors. In this study, we aimed to determine the roles of specific subtypes of muscarinic receptors in mediating the neuromodulatory effects of ACh on glutamatergic synaptic transmission in the SC and TA pathways of CA1. Using selective pharmacological activation of M1 or M4 receptors along with extracellular and intracellular electrophysiology recordings from adult rat hippocampal slices, we demonstrate that activation of M1 receptors increases spontaneous spike rates of neuronal ensembles in CA1 and increases the intrinsic excitability of pyramidal neurons and interneurons. Selective activation of M4 receptors inhibits glutamate release in the SC pathway, while leaving synaptic transmission in the TA pathway comparatively intact. These results suggest specific mechanisms by which M1 and M4 activation may normalize CA1 circuit activity following disruptions of signaling that accompany neurodegenerative dementias or neuropsychiatric disorders. These findings are of particular interest in light of clinical findings that xanomeline, an M1/M4 preferring agonist, was able to improve cognitive and behavioral symptoms in patients with Alzheimer's disease or schizophrenia.
Collapse
Affiliation(s)
| | - Michael Popiolek
- Pfizer Internal Medicine Research UnitCambridgeMassachusetts02139
| | - Eda Stark
- Pfizer Internal Medicine Research UnitCambridgeMassachusetts02139
| | | |
Collapse
|