1
|
Hong M, Zhou X, Zeng C, Xu D, Xu T, Liao S, Wang K, Zhu C, Shan G, Huang X, Chen X, Feng X, Guang S. Nucleolar stress induces nucleolar stress body formation via the NOSR-1/NUMR-1 axis in Caenorhabditis elegans. Nat Commun 2024; 15:7256. [PMID: 39179648 PMCID: PMC11343841 DOI: 10.1038/s41467-024-51693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
Environmental stimuli not only alter gene expression profiles but also induce structural changes in cells. How distinct nuclear bodies respond to cellular stress is poorly understood. Here, we identify a subnuclear organelle named the nucleolar stress body (NoSB), the formation of which is induced by the inhibition of rRNA transcription or inactivation of rRNA processing and maturation in C. elegans. NoSB does not colocalize with other previously described subnuclear organelles. We conduct forward genetic screening and identify a bZIP transcription factor, named nucleolar stress response-1 (NOSR-1), that is required for NoSB formation. The inhibition of rRNA transcription or inactivation of rRNA processing and maturation increases nosr-1 expression. By using transcriptome analysis of wild-type animals subjected to different nucleolar stress conditions and nosr-1 mutants, we identify that the SR-like protein NUMR-1 (nuclear localized metal responsive) is the target of NOSR-1. Interestingly, NUMR-1 is a component of NoSB and itself per se is required for the formation of NoSB. We conclude that the NOSR-1/NUMR-1 axis likely responds to nucleolar stress and mediates downstream stress-responsive transcription programs and subnuclear morphology alterations in C. elegans.
Collapse
Affiliation(s)
- Minjie Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaotian Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chenming Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ting Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shimiao Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ge Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Xuezhu Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
2
|
Oroz J, Laurents DV. RNA binding proteins: Diversity from microsurgeons to cowboys. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194398. [PMID: 31271896 DOI: 10.1016/j.bbagrm.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 01/21/2023]
Abstract
The conformation and mechanism of proteins that degrade and bind RNA, which has provided key insights into post-transcriptional gene regulation, is explored here. During the twentieth century's last decades, the characterization of ribonucleases and RNA binding domains revealed the diversity of their reaction mechanisms and modes of RNA recognition, and the bases of protein folding, substrate specificity and binding affinity. More recent research showed how these domains combine through oligomerization or genetic recombination to create larger proteins with highly specific and readily programmable ribonucleolytic activity. In the last 15 years, the study of the capacity of proteins, usually disordered, to pool RNAs into discrete, non-aqueous microdroplets to facilitate their transport, modification and degradation - analogous to cowboys herding cattle - has advanced our comprehension of gene expression. Finally, the current uses of RNA binding proteins and the future applications of protein/RNA microdroplets are highlighted.
Collapse
Affiliation(s)
- Javier Oroz
- "Rocasolano" Institute of Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain
| | - Douglas V Laurents
- "Rocasolano" Institute of Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain.
| |
Collapse
|
3
|
White NA, Sumita M, Marquez VE, Hoogstraten CG. Coupling between conformational dynamics and catalytic function at the active site of the lead-dependent ribozyme. RNA (NEW YORK, N.Y.) 2018; 24:1542-1554. [PMID: 30111534 PMCID: PMC6191710 DOI: 10.1261/rna.067579.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
In common with other self-cleaving RNAs, the lead-dependent ribozyme (leadzyme) undergoes dynamic fluctuations to a chemically activated conformation. We explored the connection between conformational dynamics and self-cleavage function in the leadzyme using a combination of NMR spin-relaxation analysis of ribose groups and conformational restriction via chemical modification. The functional studies were performed with a North-methanocarbacytidine modification that prevents fluctuations to C2'-endo conformations while maintaining an intact 2'-hydroxyl nucleophile. Spin-relaxation data demonstrate that the active-site Cyt-6 undergoes conformational exchange attributed to sampling of a minor C2'-endo state with an exchange lifetime on the order of microseconds to tens of microseconds. A conformationally restricted species in which the fluctuations to the minor species are interrupted shows a drastic decrease in self-cleavage activity. Taken together, these data indicate that dynamic sampling of a minor species at the active site of this ribozyme, and likely of related naturally occurring motifs, is strongly coupled to catalytic function. The combination of NMR dynamics analysis with functional probing via conformational restriction is a general methodology for dissecting dynamics-function relationships in RNA.
Collapse
Affiliation(s)
- Neil A White
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Minako Sumita
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Victor E Marquez
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
4
|
Franco-Echevarría E, González-Polo N, Zorrilla S, Martínez-Lumbreras S, Santiveri CM, Campos-Olivas R, Sánchez M, Calvo O, González B, Pérez-Cañadillas JM. The structure of transcription termination factor Nrd1 reveals an original mode for GUAA recognition. Nucleic Acids Res 2017; 45:10293-10305. [PMID: 28973465 PMCID: PMC5737872 DOI: 10.1093/nar/gkx685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Transcription termination of non-coding RNAs is regulated in yeast by a complex of three RNA binding proteins: Nrd1, Nab3 and Sen1. Nrd1 is central in this process by interacting with Rbp1 of RNA polymerase II, Trf4 of TRAMP and GUAA/G terminator sequences. We lack structural data for the last of these binding events. We determined the structures of Nrd1 RNA binding domain and its complexes with three GUAA-containing RNAs, characterized RNA binding energetics and tested rationally designed mutants in vivo. The Nrd1 structure shows an RRM domain fused with a second α/β domain that we name split domain (SD), because it is formed by two non-consecutive segments at each side of the RRM. The GUAA interacts with both domains and with a pocket of water molecules, trapped between the two stacking adenines and the SD. Comprehensive binding studies demonstrate for the first time that Nrd1 has a slight preference for GUAA over GUAG and genetic and functional studies suggest that Nrd1 RNA binding domain might play further roles in non-coding RNAs transcription termination.
Collapse
Affiliation(s)
- Elsa Franco-Echevarría
- Departament of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | | | - Silvia Zorrilla
- Department of Cellular and Molecular Biology, Biological Research Center, CSIC
| | - Santiago Martínez-Lumbreras
- Department of Chemistry, King's College London.,Department of Biological Physical Chemistry, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | - Clara M Santiveri
- Spectroscopy and Nuclear Magnetic Resonance Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre
| | - Ramón Campos-Olivas
- Spectroscopy and Nuclear Magnetic Resonance Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca
| | - Olga Calvo
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca
| | - Beatriz González
- Departament of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | - José Manuel Pérez-Cañadillas
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
5
|
Kamina AD, Williams N. Non-canonical binding interactions of the RNA recognition motif (RRM) domains of P34 protein modulate binding within the 5S ribonucleoprotein particle (5S RNP). PLoS One 2017; 12:e0177890. [PMID: 28542332 PMCID: PMC5436847 DOI: 10.1371/journal.pone.0177890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/04/2017] [Indexed: 11/18/2022] Open
Abstract
RNA binding proteins are involved in many aspects of RNA metabolism. In Trypanosoma brucei, our laboratory has identified two trypanosome-specific RNA binding proteins P34 and P37 that are involved in the maturation of the 60S subunit during ribosome biogenesis. These proteins are part of the T. brucei 5S ribonucleoprotein particle (5S RNP) and P34 binds to 5S ribosomal RNA (rRNA) and ribosomal protein L5 through its N-terminus and its RNA recognition motif (RRM) domains. We generated truncated P34 proteins to determine these domains’ interactions with 5S rRNA and L5. Our analyses demonstrate that RRM1 of P34 mediates the majority of binding with 5S rRNA and the N-terminus together with RRM1 contribute the most to binding with L5. We determined that the consensus ribonucleoprotein (RNP) 1 and 2 sequences, characteristic of canonical RRM domains, are not fully conserved in the RRM domains of P34. However, the aromatic amino acids previously described to mediate base stacking interactions with their RNA target are conserved in both of the RRM domains of P34. Surprisingly, mutation of these aromatic residues did not disrupt but instead enhanced 5S rRNA binding. However, we identified four arginine residues located in RRM1 of P34 that strongly impact L5 binding. These mutational analyses of P34 suggest that the binding site for 5S rRNA and L5 are near each other and specific residues within P34 regulate the formation of the 5S RNP. These studies show the unique way that the domains of P34 mediate binding with the T. brucei 5S RNP.
Collapse
Affiliation(s)
- Anyango D. Kamina
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Noreen Williams
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Kuwasako K, Nameki N, Tsuda K, Takahashi M, Sato A, Tochio N, Inoue M, Terada T, Kigawa T, Kobayashi N, Shirouzu M, Ito T, Sakamoto T, Wakamatsu K, Güntert P, Takahashi S, Yokoyama S, Muto Y. Solution structure of the first RNA recognition motif domain of human spliceosomal protein SF3b49 and its mode of interaction with a SF3b145 fragment. Protein Sci 2016; 26:280-291. [PMID: 27862552 PMCID: PMC5275738 DOI: 10.1002/pro.3080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 01/17/2023]
Abstract
The spliceosomal protein SF3b49, a component of the splicing factor 3b (SF3b) protein complex in the U2 small nuclear ribonucleoprotein, contains two RNA recognition motif (RRM) domains. In yeast, the first RRM domain (RRM1) of Hsh49 protein (yeast orthologue of human SF3b49) reportedly interacts with another component, Cus1 protein (orthologue of human SF3b145). Here, we solved the solution structure of the RRM1 of human SF3b49 and examined its mode of interaction with a fragment of human SF3b145 using NMR methods. Chemical shift mapping showed that the SF3b145 fragment spanning residues 598–631 interacts with SF3b49 RRM1, which adopts a canonical RRM fold with a topology of β1‐α1‐β2‐β3‐α2‐β4. Furthermore, a docking model based on NOESY measurements suggests that residues 607–616 of the SF3b145 fragment adopt a helical structure that binds to RRM1 predominantly via α1, consequently exhibiting a helix–helix interaction in almost antiparallel. This mode of interaction was confirmed by a mutational analysis using GST pull‐down assays. Comparison with structures of all RRM domains when complexed with a peptide found that this helix–helix interaction is unique to SF3b49 RRM1. Additionally, all amino acid residues involved in the interaction are well conserved among eukaryotes, suggesting evolutionary conservation of this interaction mode between SF3b49 RRM1 and SF3b145. PDB Code(s): 5GVQ
Collapse
Affiliation(s)
- Kanako Kuwasako
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo, 202-8585, Japan.,RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Nobukazu Nameki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kengo Tsuda
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mari Takahashi
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Atsuko Sato
- Department of Chemical & Biological Sciences, Japan Women's University, Mejirodai, Bunkyo, Tokyo, 112-8681, Japan
| | - Naoya Tochio
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Makoto Inoue
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takaho Terada
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takanori Kigawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Naohiro Kobayashi
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takuhiro Ito
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Taiichi Sakamoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan
| | - Kaori Wakamatsu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Peter Güntert
- Tatsuo Miyazawa Memorial Program, RIKEN Genomic Sciences Center, Yokohama, 230-0045, Japan.,Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute of Advanced Studies, Goethe University Frankfurt, Max-von-Laue-Str, Frankfurt am Main, 60438, Germany
| | - Seizo Takahashi
- Department of Chemical & Biological Sciences, Japan Women's University, Mejirodai, Bunkyo, Tokyo, 112-8681, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yutaka Muto
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo, 202-8585, Japan.,RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
7
|
Basu S, Bahadur RP. A structural perspective of RNA recognition by intrinsically disordered proteins. Cell Mol Life Sci 2016; 73:4075-84. [PMID: 27229125 PMCID: PMC7079799 DOI: 10.1007/s00018-016-2283-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/13/2016] [Accepted: 05/20/2016] [Indexed: 11/24/2022]
Abstract
Protein-RNA recognition is essential for gene expression and its regulation, which is indispensable for the survival of the living organism at one hand, on the other hand, misregulation of this recognition may lead to their extinction. Polymorphic conformation of both the interacting partners is a characteristic feature of such molecular recognition that promotes the assembly. Many RNA binding proteins (RBP) or regions in them are found to be intrinsically disordered, and this property helps them to play a central role in the regulatory processes. Sequence composition and the length of the flexible linkers between RNA binding domains in RBPs are crucial in making significant contacts with its partner RNA. Polymorphic conformations of RBPs can provide thermodynamic advantage to its binding partner while acting as a chaperone. Prolonged extensions of the disordered regions in RBPs also contribute to the stability of the large cellular machines including ribosome and viral assemblies. The involvement of these disordered regions in most of the significant cellular processes makes RBPs highly associated with various human diseases that arise due to their misregulation.
Collapse
Affiliation(s)
- Sushmita Basu
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
8
|
Ochieng PO, White NA, Feig M, Hoogstraten CG. Intrinsic Base-Pair Rearrangement in the Hairpin Ribozyme Directs RNA Conformational Sampling and Tertiary Interface Formation. J Phys Chem B 2016; 120:10885-10898. [PMID: 27701852 DOI: 10.1021/acs.jpcb.6b05606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dynamic fluctuations in RNA structure enable conformational changes that are required for catalysis and recognition. In the hairpin ribozyme, the catalytically active structure is formed as an intricate tertiary interface between two RNA internal loops. Substantial alterations in the structure of each loop are observed upon interface formation, or docking. The very slow on-rate for this relatively tight interaction has led us to hypothesize a double conformational capture mechanism for RNA-RNA recognition. We used extensive molecular dynamics simulations to assess conformational sampling in the undocked form of the loop domain containing the scissile phosphate (loop A). We observed several major accessible conformations with distinctive patterns of hydrogen bonding and base stacking interactions in the active-site internal loop. Several important conformational features characteristic of the docked state were observed in well-populated substates, consistent with the kinetic sampling of docking-competent states by isolated loop A. Our observations suggest a hybrid or multistage binding mechanism, in which initial conformational selection of a docking-competent state is followed by induced-fit adjustment to an in-line, chemically reactive state only after formation of the initial complex with loop B.
Collapse
Affiliation(s)
- Patrick O Ochieng
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Neil A White
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
Basu S, Bahadur RP. A structural perspective of RNA recognition by intrinsically disordered proteins. CELLULAR AND MOLECULAR LIFE SCIENCES : CMLS 2016. [PMID: 27229125 DOI: 10.1007/s00018‐016‐2283‐1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Protein-RNA recognition is essential for gene expression and its regulation, which is indispensable for the survival of the living organism at one hand, on the other hand, misregulation of this recognition may lead to their extinction. Polymorphic conformation of both the interacting partners is a characteristic feature of such molecular recognition that promotes the assembly. Many RNA binding proteins (RBP) or regions in them are found to be intrinsically disordered, and this property helps them to play a central role in the regulatory processes. Sequence composition and the length of the flexible linkers between RNA binding domains in RBPs are crucial in making significant contacts with its partner RNA. Polymorphic conformations of RBPs can provide thermodynamic advantage to its binding partner while acting as a chaperone. Prolonged extensions of the disordered regions in RBPs also contribute to the stability of the large cellular machines including ribosome and viral assemblies. The involvement of these disordered regions in most of the significant cellular processes makes RBPs highly associated with various human diseases that arise due to their misregulation.
Collapse
Affiliation(s)
- Sushmita Basu
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
10
|
Wu CH, Chen YP, Liu SL, Chien FC, Mou CY, Cheng RP. Attenuating HIV Tat/TAR-mediated protein expression by exploring the side chain length of positively charged residues. Org Biomol Chem 2015; 13:11096-104. [PMID: 26399751 DOI: 10.1039/c5ob01729g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA is a drug target involved in diverse cellular functions and viral processes. Molecules that inhibit the HIV TAR RNA-Tat protein interaction may attenuate Tat/TAR-dependent protein expression and potentially serve as anti-HIV therapeutics. By incorporating positively charged residues with mixed side chain lengths, we designed peptides that bind TAR RNA with enhanced intracellular activity. Tat-derived peptides that were individually substituted with positively charged residues with varying side chain lengths were evaluated for TAR RNA binding. Positively charged residues with different side chain lengths were incorporated at each Arg and Lys position in the Tat-derived peptide to enhance TAR RNA binding. The resulting peptides showed enhanced TAR RNA binding affinity, cellular uptake, nuclear localization, proteolytic resistance, and inhibition of intracellular Tat/TAR-dependent protein expression compared to the parent Tat-derived peptide with no cytotoxicity. Apparently, the enhanced inhibition of protein expression by these peptides was not determined by RNA binding affinity, but by proteolytic resistance. Despite the high TAR binding affinity, a higher binding specificity would be necessary for practical purposes. Importantly, altering the positively charged residue side chain length should be a viable strategy to generate potentially useful RNA-targeting bioactive molecules.
Collapse
Affiliation(s)
- Cheng-Hsun Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | | | | | | | | | | |
Collapse
|
11
|
Brooks AN, Duff MO, May G, Yang L, Bolisetty M, Landolin J, Wan K, Sandler J, Booth BW, Celniker SE, Graveley BR, Brenner SE. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins. Genome Res 2015; 25:1771-80. [PMID: 26294686 PMCID: PMC4617972 DOI: 10.1101/gr.192518.115] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/19/2015] [Indexed: 12/26/2022]
Abstract
Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected the splicing of pre-mRNAs encoding other splicing regulators. This large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.
Collapse
Affiliation(s)
- Angela N Brooks
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; Broad Institute, Cambridge, Massachusetts 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Michael O Duff
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Gemma May
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Li Yang
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Mohan Bolisetty
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Jane Landolin
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ken Wan
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jeremy Sandler
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Benjamin W Booth
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Susan E Celniker
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Steven E Brenner
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
12
|
Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 2015; 16:10310-44. [PMID: 24740821 DOI: 10.1039/c4cp00316k] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent developments in the fragment molecular orbital (FMO) method for theoretical formulation, implementation, and application to nano and biomolecular systems are reviewed. The FMO method has enabled ab initio quantum-mechanical calculations for large molecular systems such as protein-ligand complexes at a reasonable computational cost in a parallelized way. There have been a wealth of application outcomes from the FMO method in the fields of biochemistry, medicinal chemistry and nanotechnology, in which the electron correlation effects play vital roles. With the aid of the advances in high-performance computing, the FMO method promises larger, faster, and more accurate simulations of biomolecular and related systems, including the descriptions of dynamical behaviors in solvent environments. The current status and future prospects of the FMO scheme are addressed in these contexts.
Collapse
Affiliation(s)
- Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.
| | | | | | | | | |
Collapse
|
13
|
Bahrami-Samani E, Vo DT, de Araujo PR, Vogel C, Smith AD, Penalva LOF, Uren PJ. Computational challenges, tools, and resources for analyzing co- and post-transcriptional events in high throughput. WILEY INTERDISCIPLINARY REVIEWS. RNA 2015; 6:291-310. [PMID: 25515586 PMCID: PMC4397117 DOI: 10.1002/wrna.1274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 11/10/2022]
Abstract
Co- and post-transcriptional regulation of gene expression is complex and multifaceted, spanning the complete RNA lifecycle from genesis to decay. High-throughput profiling of the constituent events and processes is achieved through a range of technologies that continue to expand and evolve. Fully leveraging the resulting data is nontrivial, and requires the use of computational methods and tools carefully crafted for specific data sources and often intended to probe particular biological processes. Drawing upon databases of information pre-compiled by other researchers can further elevate analyses. Within this review, we describe the major co- and post-transcriptional events in the RNA lifecycle that are amenable to high-throughput profiling. We place specific emphasis on the analysis of the resulting data, in particular the computational tools and resources available, as well as looking toward future challenges that remain to be addressed.
Collapse
Affiliation(s)
- Emad Bahrami-Samani
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Dat T. Vo
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Patricia Rosa de Araujo
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY
| | - Andrew D. Smith
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Philip J. Uren
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
14
|
Tripet B, Mason KE, Eilers BJ, Burns J, Powell P, Fischer AM, Copié V. Structural and biochemical analysis of the Hordeum vulgare L. HvGR-RBP1 protein, a glycine-rich RNA-binding protein involved in the regulation of barley plant development and stress response. Biochemistry 2014; 53:7945-60. [PMID: 25495582 PMCID: PMC4278681 DOI: 10.1021/bi5007223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/25/2014] [Indexed: 12/26/2022]
Abstract
The timing of whole-plant senescence influences important agricultural traits such as yield and grain protein content. Post-transcriptional regulation by plant RNA-binding proteins is essential for proper control of gene expression, development, and stress responses. Here, we report the three-dimensional solution NMR structure and nucleic acid-binding properties of the barley glycine-rich RNA-binding protein HvGR-RBP1, whose transcript has been identified as being >45-fold up-regulated in early-as compared to late-senescing near-isogenic barley germplasm. NMR analysis reveals that HvGR-RBP1 is a multidomain protein comprising a well-folded N-terminal RNA Recognition Motif (RRM) and a structurally disordered C-terminal glycine-rich domain. Chemical shift differences observed in 2D (1)H-(15)N correlation (HSQC) NMR spectra of full-length HvGR-RBP1 and N-HvGR-RBP1 (RRM domain only) suggest that the two domains can interact both in-trans and intramolecularly, similar to what is observed in the tobacco NtGR-RBP1 protein. Further, we show that the RRM domain of HvGR-RBP1 binds single-stranded DNA nucleotide fragments containing the consensus nucleotide sequence 5'-TTCTGX-3' with low micromolar affinity in vitro. We also demonstrate that the C-terminal glycine-rich (HvGR) domain of Hv-GR-RBP1 can interact nonspecifically with ssRNA in vitro. Structural similarities with other plant glycine-rich RNA-binding proteins suggest that HvGR-RBP1 may be multifunctional. Based on gene expression analysis following cold stress in barley and E. coli growth studies following cold shock treatment, we conclude that HvGR-RBP1 functions in a manner similar to cold-shock proteins and harbors RNA chaperone activity. HvGR-RBP1 is therefore not only involved in the regulation of barley development including senescence, but also functions in plant responses to environmental stress.
Collapse
MESH Headings
- Cold-Shock Response/physiology
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Hordeum/genetics
- Hordeum/metabolism
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Brian
P. Tripet
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Katelyn E. Mason
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Brian J. Eilers
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Jennifer Burns
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Paul Powell
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Andreas M. Fischer
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Valérie Copié
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
15
|
Reyes-Herrera PH, Ficarra E. Computational Methods for CLIP-seq Data Processing. Bioinform Biol Insights 2014; 8:199-207. [PMID: 25336930 PMCID: PMC4196881 DOI: 10.4137/bbi.s16803] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 12/25/2022] Open
Abstract
RNA-binding proteins (RBPs) are at the core of post-transcriptional regulation and thus of gene expression control at the RNA level. One of the principal challenges in the field of gene expression regulation is to understand RBPs mechanism of action. As a result of recent evolution of experimental techniques, it is now possible to obtain the RNA regions recognized by RBPs on a transcriptome-wide scale. In fact, CLIP-seq protocols use the joint action of CLIP, crosslinking immunoprecipitation, and high-throughput sequencing to recover the transcriptome-wide set of interaction regions for a particular protein. Nevertheless, computational methods are necessary to process CLIP-seq experimental data and are a key to advancement in the understanding of gene regulatory mechanisms. Considering the importance of computational methods in this area, we present a review of the current status of computational approaches used and proposed for CLIP-seq data.
Collapse
Affiliation(s)
- Paula H Reyes-Herrera
- Facultad de Ingeniería Electrónica y Biomédica, Universidad Antonio Nariño, Bogotá, Colombia
| | - Elisa Ficarra
- Department of Control and Computer Engineering, Politecnico di Torino, TO, Italy
| |
Collapse
|
16
|
Zhang H, Li C, Yang F, Su J, Tan J, Zhang X, Wang C. Cation-pi interactions at non-redundant protein-RNA interfaces. BIOCHEMISTRY (MOSCOW) 2014; 79:643-52. [DOI: 10.1134/s0006297914070062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Wang R, Li H. The mysterious RAMP proteins and their roles in small RNA-based immunity. Protein Sci 2012; 21:463-70. [PMID: 22323284 DOI: 10.1002/pro.2044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new class of prokaryotic RNA binding proteins called Repeat Associated Mysterious Proteins (RAMPs), has recently been identified. These proteins play key roles in a novel type immunity in which the DNA of the host organism (e.g. a prokaryote) has sequence segments corresponding to the sequences of potential viral invaders. The sequences embedded in the host DNA confer immunity by directing selective destruction of the nucleic acid of the virus using an RNA-based strategy. In this viral defense mechanism, RAMP proteins have multiple functional roles including endoribonucleotic cleavage and ribonucleoprotein particle assembly. RAMPs contain the classical RNA recognition motif (RRM), often in tandem, and a conserved glycine-rich segment (G-loop) near the carboxyl terminus. However, unlike RRMs that bind single-stranded RNA using their β-sheet surface, RAMPs make use of both sides of the RRM fold and interact with both single-stranded and structured RNA. The unique spatial arrangement of the two RRM folds, facilitated by a hallmark G-loop, is crucial to formation of a composite surface for recognition of specific RNA. Evidence for RNA-dependent oligomerization is also observed in some RAMP proteins that may serve as an important strategy to increase specificity.
Collapse
Affiliation(s)
- Ruiying Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
18
|
Muto Y, Yokoyama S. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:229-46. [PMID: 22278943 DOI: 10.1002/wrna.1107] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules.
Collapse
Affiliation(s)
- Yutaka Muto
- Systems and Structural Biology Center, RIKEN, Tsurumi, Japan.
| | | |
Collapse
|
19
|
Santiveri CM, Mirassou Y, Rico-Lastres P, Martínez-Lumbreras S, Pérez-Cañadillas JM. Pub1p C-terminal RRM domain interacts with Tif4631p through a conserved region neighbouring the Pab1p binding site. PLoS One 2011; 6:e24481. [PMID: 21931728 PMCID: PMC3169606 DOI: 10.1371/journal.pone.0024481] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 08/11/2011] [Indexed: 11/18/2022] Open
Abstract
Pub1p, a highly abundant poly(A)+ mRNA binding protein in Saccharomyces cerevisiae, influences the stability and translational control of many cellular transcripts, particularly under some types of environmental stresses. We have studied the structure, RNA and protein recognition modes of different Pub1p constructs by NMR spectroscopy. The structure of the C-terminal RRM domain (RRM3) shows a non-canonical N-terminal helix that packs against the canonical RRM fold in an original fashion. This structural trait is conserved in Pub1p metazoan homologues, the TIA-1 family, defining a new class of RRM-type domains that we propose to name TRRM (TIA-1 C-terminal domain-like RRM). Pub1p TRRM and the N-terminal RRM1-RRM2 tandem bind RNA with high selectivity for U-rich sequences, with TRRM showing additional preference for UA-rich ones. RNA-mediated chemical shift changes map to β-sheet and protein loops in the three RRMs. Additionally, NMR titration and biochemical in vitro cross-linking experiments determined that Pub1p TRRM interacts specifically with the N-terminal region (1-402) of yeast eIF4G1 (Tif4631p), very likely through the conserved Box1, a short sequence motif neighbouring the Pab1p binding site in Tif4631p. The interaction involves conserved residues of Pub1p TRRM, which define a protein interface that mirrors the Pab1p-Tif4631p binding mode. Neither protein nor RNA recognition involves the novel N-terminal helix, whose functional role remains unclear. By integrating these new results with the current knowledge about Pub1p, we proposed different mechanisms of Pub1p recruitment to the mRNPs and Pub1p-mediated mRNA stabilization in which the Pub1p/Tif4631p interaction would play an important role.
Collapse
Affiliation(s)
- Clara M. Santiveri
- Department of Biological Physical Chemistry, Instituto de Química-Física “Rocasolano”, CSIC, Madrid, Spain
| | - Yasmina Mirassou
- Department of Biological Physical Chemistry, Instituto de Química-Física “Rocasolano”, CSIC, Madrid, Spain
| | - Palma Rico-Lastres
- Department of Biological Physical Chemistry, Instituto de Química-Física “Rocasolano”, CSIC, Madrid, Spain
| | | | | |
Collapse
|
20
|
Gupta A, Gribskov M. The role of RNA sequence and structure in RNA--protein interactions. J Mol Biol 2011; 409:574-87. [PMID: 21514302 DOI: 10.1016/j.jmb.2011.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/07/2011] [Accepted: 04/04/2011] [Indexed: 11/17/2022]
Abstract
We investigate the sequence and structural properties of RNA--protein interaction sites in 211 RNA--protein chain pairs, the largest set of RNA--protein complexes analyzed to date. Statistical analysis confirms and extends earlier analyses made on smaller data sets. There are 24.6% of hydrogen bonds between RNA and protein that are nucleobase specific, indicating the importance of both nucleobase-specific and -nonspecific interactions. While there is no significant difference between RNA base frequencies in protein-binding and non-binding regions, distinct preferences for RNA bases, RNA structural states, protein residues, and protein secondary structure emerge when nucleobase-specific and -nonspecific interactions are considered separately. Guanine nucleobase and unpaired RNA structural states are significantly preferred in nucleobase-specific interactions; however, nonspecific interactions disfavor guanine, while still favoring unpaired RNA structural states. The opposite preferences of nucleobase-specific and -nonspecific interactions for guanine may explain discrepancies between earlier studies with regard to base preferences in RNA--protein interaction regions. Preferences for amino acid residues differ significantly between nucleobase-specific and -nonspecific interactions, with nonspecific interactions showing the expected bias towards positively charged residues. Irregular protein structures are strongly favored in interactions with the protein backbone, whereas there is little preference for specific protein secondary structure in either nucleobase-specific interaction or -nonspecific interaction. Overall, this study shows strong preferences for both RNA bases and RNA structural states in protein--RNA interactions, indicating their mutual importance in protein recognition.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Biological Sciences, Purdue University, Hockmeyer Hall of Structural Biology, West Lafayette, IN 47907, USA
| | | |
Collapse
|
21
|
Naik PK, Ranjan P, Kesari P, Jain S. MetalloPred: A tool for hierarchical prediction of metal ion binding proteins using cluster of neural networks and sequence derived features. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jbpc.2011.22014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Kurisaki I, Fukuzawa K, Nakano T, Mochizuki Y, Watanabe H, Tanaka S. Fragment molecular orbital (FMO) study on stabilization mechanism of neuro-oncological ventral antigen (NOVA)–RNA complex system. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.theochem.2010.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Block KF, Puerta-Fernandez E, Wallace JG, Breaker RR. Association of OLE RNA with bacterial membranes via an RNA-protein interaction. Mol Microbiol 2010; 79:21-34. [PMID: 21166891 DOI: 10.1111/j.1365-2958.2010.07439.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ornate, large, extremophilic (OLE) RNAs are large, non-coding transcripts characterized by their ornate secondary structure and presence predominantly in Gram-positive, extremophilic bacteria. A gene for an OLE-associated protein (OAP) is almost always located immediately downstream of the OLE gene. OAP has no extensive homology to other proteins and is predicted to form multiple transmembrane domains. We show that this protein forms a ribonucleoprotein complex with OLE RNA using at least 2:1 protein : RNA stoichiometry. A series of truncated OLE RNA constructs was used to establish that most of the RNA can be deleted without eliminating protein binding. Two primary binding sites are present within the RNA, although additional binding determinants exist and extensive structural stabilization is induced by OAP. RNA fluorescence in situ hybridization (FISH) was used in Escherichia coli to demonstrate that ribonucleoprotein complex formation localizes the RNA near cell membranes of this heterologous system. Therefore, the majority of the complex structure formed by OLE RNA may perform a biochemical function that requires membrane localization.
Collapse
Affiliation(s)
- Kirsten F Block
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
24
|
Tsuda K, Someya T, Kuwasako K, Takahashi M, He F, Unzai S, Inoue M, Harada T, Watanabe S, Terada T, Kobayashi N, Shirouzu M, Kigawa T, Tanaka A, Sugano S, Güntert P, Yokoyama S, Muto Y. Structural basis for the dual RNA-recognition modes of human Tra2-β RRM. Nucleic Acids Res 2010; 39:1538-53. [PMID: 20926394 PMCID: PMC3045587 DOI: 10.1093/nar/gkq854] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human Transformer2-β (hTra2-β) is an important member of the serine/arginine-rich protein family, and contains one RNA recognition motif (RRM). It controls the alternative splicing of several pre-mRNAs, including those of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Accordingly, the RRM of hTra2-β specifically binds to two types of RNA sequences [the CAA and (GAA)(2) sequences]. We determined the solution structure of the hTra2-β RRM (spanning residues Asn110-Thr201), which not only has a canonical RRM fold, but also an unusual alignment of the aromatic amino acids on the β-sheet surface. We then solved the complex structure of the hTra2-β RRM with the (GAA)(2) sequence, and found that the AGAA tetra-nucleotide was specifically recognized through hydrogen-bond formation with several amino acids on the N- and C-terminal extensions, as well as stacking interactions mediated by the unusually aligned aromatic rings on the β-sheet surface. Further NMR experiments revealed that the hTra2-β RRM recognizes the CAA sequence when it is integrated in the stem-loop structure. This study indicates that the hTra2-β RRM recognizes two types of RNA sequences in different RNA binding modes.
Collapse
Affiliation(s)
- Kengo Tsuda
- RIKEN Systems and Structural Biology Center, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bahadur RP, Kannan S, Zacharias M. Binding of the bacteriophage P22 N-peptide to the boxB RNA motif studied by molecular dynamics simulations. Biophys J 2010; 97:3139-49. [PMID: 20006951 DOI: 10.1016/j.bpj.2009.09.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 08/28/2009] [Accepted: 09/01/2009] [Indexed: 11/30/2022] Open
Abstract
Protein-RNA interactions are important for many cellular processes. The Nut-utilization site (N)-protein of bacteriophages contains an N-terminal arginine-rich motif that undergoes a folding transition upon binding to the boxB RNA hairpin loop target structure. Molecular dynamics simulations were used to investigate the dynamics of the P22 N-peptide-boxB complex and to elucidate the energetic contributions to binding. In addition, the free-energy changes of RNA and peptide conformational adaptation to the bound forms, as well as the role of strongly bound water molecules at the peptide-RNA interface, were studied. The influence of peptide amino acid substitutions and the salt dependence of interaction were investigated and showed good agreement with available experimental results. Several tightly bound water molecules were found at the RNA-binding interface in both the presence and absence of N-peptide. Explicit consideration of the waters resulted in shifts of calculated contributions during the energetic analysis, but overall similar binding energy contributions were found. Of interest, it was found that the electrostatic field of the RNA has a favorable influence on the coil-to-alpha-helix transition of the N-peptide already outside of the peptide-binding site. This result may have important implications for understanding peptide-RNA complex formation, which often involves coupled folding and association processes. It indicates that electrostatic interactions near RNA molecules can lead to a shift in the equilibrium toward the bound form of an interacting partner before it enters the binding pocket.
Collapse
Affiliation(s)
- Ranjit P Bahadur
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | | | | |
Collapse
|
26
|
Tang ZQ, Lin HH, Zhang HL, Han LY, Chen X, Chen YZ. Prediction of functional class of proteins and peptides irrespective of sequence homology by support vector machines. Bioinform Biol Insights 2009; 1:19-47. [PMID: 20066123 PMCID: PMC2789692 DOI: 10.4137/bbi.s315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Various computational methods have been used for the prediction of protein and peptide function based on their sequences. A particular challenge is to derive functional properties from sequences that show low or no homology to proteins of known function. Recently, a machine learning method, support vector machines (SVM), have been explored for predicting functional class of proteins and peptides from amino acid sequence derived properties independent of sequence similarity, which have shown promising potential for a wide spectrum of protein and peptide classes including some of the low- and non-homologous proteins. This method can thus be explored as a potential tool to complement alignment-based, clustering-based, and structure-based methods for predicting protein function. This article reviews the strategies, current progresses, and underlying difficulties in using SVM for predicting the functional class of proteins. The relevant software and web-servers are described. The reported prediction performances in the application of these methods are also presented.
Collapse
Affiliation(s)
- Zhi Qun Tang
- Department of Pharmacy and Department of Computational Science, National University of Singapore, Republic of Singapore, 117543
| | - Hong Huang Lin
- Department of Pharmacy and Department of Computational Science, National University of Singapore, Republic of Singapore, 117543
| | - Hai Lei Zhang
- Department of Pharmacy and Department of Computational Science, National University of Singapore, Republic of Singapore, 117543
| | - Lian Yi Han
- Department of Pharmacy and Department of Computational Science, National University of Singapore, Republic of Singapore, 117543
| | - Xin Chen
- Department of Biotechnology, Zhejiang University, Hang Zhou, Zhejiang Province, P. R. China, 310029
| | - Yu Zong Chen
- Department of Pharmacy and Department of Computational Science, National University of Singapore, Republic of Singapore, 117543
- Shanghai Center for Bioinformatics Technology, Shanghai, P. R. China, 201203
| |
Collapse
|
27
|
Mrd1p is required for release of base-paired U3 snoRNA within the preribosomal complex. Mol Cell Biol 2009; 29:5763-74. [PMID: 19704003 DOI: 10.1128/mcb.00428-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, ribosomes are made from precursor rRNA (pre-rRNA) and ribosomal proteins in a maturation process that requires a large number of snoRNPs and processing factors. A fundamental problem is how the coordinated and productive folding of the pre-rRNA and assembly of successive pre-rRNA-protein complexes is achieved cotranscriptionally. The conserved protein Mrd1p, which contains five RNA binding domains (RBDs), is essential for processing events leading to small ribosomal subunit synthesis. We show that full function of Mrd1p requires all five RBDs and that the RBDs are functionally distinct and needed during different steps in processing. Mrd1p mutations trap U3 snoRNA in pre-rRNP complexes both in base-paired and non-base-paired interactions. A single essential RBD, RBD5, is involved in both types of interactions, but its conserved RNP1 motif is not needed for releasing the base-paired interactions. RBD5 is also required for the late pre-rRNP compaction preceding A(2) cleavage. Our results suggest that Mrd1p modulates successive conformational rearrangements within the pre-rRNP that influence snoRNA-pre-rRNA contacts and couple U3 snoRNA-pre-rRNA remodeling and late steps in pre-rRNP compaction that are essential for cleavage at A(0) to A(2). Mrd1p therefore coordinates key events in biosynthesis of small ribosome subunits.
Collapse
|
28
|
Stelzer AC, Frank AT, Bailor MH, Andricioaei I, Al-Hashimi HM. Constructing atomic-resolution RNA structural ensembles using MD and motionally decoupled NMR RDCs. Methods 2009; 49:167-73. [PMID: 19699798 DOI: 10.1016/j.ymeth.2009.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/15/2009] [Accepted: 08/18/2009] [Indexed: 12/30/2022] Open
Abstract
A broad structural landscape often needs to be characterized in order to fully understand how regulatory RNAs perform their biological functions at the atomic level. We present a protocol for visualizing thermally accessible RNA conformations at atomic-resolution and with timescales extending up to milliseconds. The protocol combines molecular dynamics (MD) simulations with experimental residual dipolar couplings (RDCs) measured in partially aligned (13)C/(15)N isotopically enriched elongated RNA samples. The structural ensembles generated in this manner provide insights into RNA dynamics and its role in functionally important transitions.
Collapse
Affiliation(s)
- Andrew C Stelzer
- Department of Chemistry and Biophysics, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
29
|
Tsuda K, Kuwasako K, Takahashi M, Someya T, Inoue M, Terada T, Kobayashi N, Shirouzu M, Kigawa T, Tanaka A, Sugano S, Güntert P, Muto Y, Yokoyama S. Structural basis for the sequence-specific RNA-recognition mechanism of human CUG-BP1 RRM3. Nucleic Acids Res 2009; 37:5151-66. [PMID: 19553194 PMCID: PMC2731918 DOI: 10.1093/nar/gkp546] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The CUG-binding protein 1 (CUG-BP1) is a member of the CUG-BP1 and ETR-like factors (CELF) family or the Bruno-like family and is involved in the control of splicing, translation and mRNA degradation. Several target RNA sequences of CUG-BP1 have been predicted, such as the CUG triplet repeat, the GU-rich sequences and the AU-rich element of nuclear pre-mRNAs and/or cytoplasmic mRNA. CUG-BP1 has three RNA-recognition motifs (RRMs), among which the third RRM (RRM3) can bind to the target RNAs on its own. In this study, we solved the solution structure of the CUG-BP1 RRM3 by hetero-nuclear NMR spectroscopy. The CUG-BP1 RRM3 exhibited a noncanonical RRM fold, with the four-stranded β-sheet surface tightly associated with the N-terminal extension. Furthermore, we determined the solution structure of the CUG-BP1 RRM3 in the complex with (UG)3 RNA, and discovered that the UGU trinucleotide is specifically recognized through extensive stacking interactions and hydrogen bonds within the pocket formed by the β-sheet surface and the N-terminal extension. This study revealed the unique mechanism that enables the CUG-BP1 RRM3 to discriminate the short RNA segment from other sequences, thus providing the molecular basis for the comprehension of the role of the RRM3s in the CELF/Bruno-like family.
Collapse
Affiliation(s)
- Kengo Tsuda
- RIKEN Systems and Structural Biology Center, Tsurumi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Frank AT, Stelzer AC, Al-Hashimi HM, Andricioaei I. Constructing RNA dynamical ensembles by combining MD and motionally decoupled NMR RDCs: new insights into RNA dynamics and adaptive ligand recognition. Nucleic Acids Res 2009; 37:3670-9. [PMID: 19369218 PMCID: PMC2699496 DOI: 10.1093/nar/gkp156] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We describe a strategy for constructing atomic resolution dynamical ensembles of RNA molecules, spanning up to millisecond timescales, that combines molecular dynamics (MD) simulations with NMR residual dipolar couplings (RDC) measured in elongated RNA. The ensembles are generated via a Monte Carlo procedure by selecting snap-shot from an MD trajectory that reproduce experimentally measured RDCs. Using this approach, we construct ensembles for two variants of the transactivation response element (TAR) containing three (HIV-1) and two (HIV-2) nucleotide bulges. The HIV-1 TAR ensemble reveals significant mobility in bulge residues C24 and U25 and to a lesser extent U23 and neighboring helical residue A22 that give rise to large amplitude spatially correlated twisting and bending helical motions. Omission of bulge residue C24 in HIV-2 TAR leads to a significant reduction in both the local mobility in and around the bulge and amplitude of inter-helical bending motions. In contrast, twisting motions of the helices remain comparable in amplitude to HIV-1 TAR and spatial correlations between them increase significantly. Comparison of the HIV-1 TAR dynamical ensemble and ligand bound TAR conformations reveals that several features of the binding pocket and global conformation are dynamically preformed, providing support for adaptive recognition via a ‘conformational selection’ type mechanism.
Collapse
Affiliation(s)
- Aaron T Frank
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences 2, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
31
|
KURISAKI I, WATANABE H, TANAKA S. Simulation Study of RNA-Binding Protein, Pumilio. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2009. [DOI: 10.2477/jccj.h2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Galicia-Vázquez G, Lindqvist L, Wang X, Harvey I, Liu J, Pelletier J. High-throughput assays probing protein–RNA interactions of eukaryotic translation initiation factors. Anal Biochem 2009; 384:180-8. [DOI: 10.1016/j.ab.2008.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/21/2008] [Accepted: 09/22/2008] [Indexed: 11/26/2022]
|
33
|
Julien KR, Sumita M, Chen PH, Laird-Offringa IA, Hoogstraten CG. Conformationally restricted nucleotides as a probe of structure-function relationships in RNA. RNA (NEW YORK, N.Y.) 2008; 14:1632-1643. [PMID: 18596252 PMCID: PMC2491483 DOI: 10.1261/rna.866408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/17/2008] [Indexed: 05/26/2023]
Abstract
We introduce the use of commercially available locked nucleic acids (LNAs) as a functional probe in RNA. LNA nucleotides contain a covalent linkage that restricts the pseudorotation phase of the ribose to C3'-endo (A-form). Introduction of an LNA at a single site thus allows the role of ribose structure and dynamics in RNA function to be assessed. We apply LNA probing at multiple sites to analyze self-cleavage in the lead-dependent ribozyme (leadzyme), thermodynamic stability in the UUCG tetraloop, and the kinetics of recognition of U1A protein by U1 snRNA hairpin II. In the leadzyme, locking a single guanosine residue into the C3'-endo pucker increases the catalytic rate by a factor of 20, despite the fact that X-ray crystallographic and NMR structures of the leadzyme ground state reported a C2'-endo conformation at this site. These results strongly suggest that a conformational change at this position is critical for catalytic function. Functional insights obtained in all three systems demonstrate the highly general applicability of LNA probing in analysis of the role of ribose orientation in RNA structure, dynamics, and function.
Collapse
Affiliation(s)
- Kristine R Julien
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
34
|
Bevilacqua PC, Blose JM. Structures, kinetics, thermodynamics, and biological functions of RNA hairpins. Annu Rev Phys Chem 2008; 59:79-103. [PMID: 17937599 DOI: 10.1146/annurev.physchem.59.032607.093743] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most RNA comprises one strand and therefore can fold back on itself to form complex structures. At the heart of these structures is the hairpin, which is composed of a stem having Watson-Crick base pairing and a loop wherein the backbone changes directionality. First, we review the structure of hairpins including diversity in the stem, loop, and closing base pair. The function of RNA hairpins in biology is discussed next, including roles for isolated hairpins, as well as hairpins in the context of complex tertiary structures. We describe the kinetics and thermodynamics of hairpin folding including models for hairpin folding, folding transition states, and the cooperativity of folding. Lastly, we discuss some ways in which hairpins can influence the folding and function of tertiary structures, both directly and indirectly. RNA hairpins provide a simple means of controlling gene expression that can be understood in the language of physical chemistry.
Collapse
Affiliation(s)
- Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
35
|
Characterizing complex dynamics in the transactivation response element apical loop and motional correlations with the bulge by NMR, molecular dynamics, and mutagenesis. Biophys J 2008; 95:3906-15. [PMID: 18621815 DOI: 10.1529/biophysj.108.140285] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The HIV-1 transactivation response element (TAR) RNA binds a variety of proteins and is a target for developing anti-HIV therapies. TAR has two primary binding sites: a UCU bulge and a CUGGGA apical loop. We used NMR residual dipolar couplings, carbon spin relaxation (R(1) and R(2)), and relaxation dispersion (R(1rho)) in conjunction with molecular dynamics and mutagenesis to characterize the dynamics of the TAR apical loop and investigate previously proposed long-range interactions with the distant bulge. Replacement of the wild-type apical loop with a UUCG loop did not significantly affect the structural dynamics at the bulge, indicating that the apical loop and the bulge act largely as independent dynamical recognition centers. The apical loop undergoes complex dynamics at multiple timescales that are likely important for adaptive recognition: U31 and G33 undergo limited motions, G32 is highly flexible at picosecond-nanosecond timescales, and G34 and C30 form a dynamic Watson-Crick basepair in which G34 and A35 undergo a slow (approximately 30 mus) likely concerted looping in and out motion, with A35 also undergoing large amplitude motions at picosecond-nanosecond timescales. Our study highlights the power of combining NMR, molecular dynamics, and mutagenesis in characterizing RNA dynamics.
Collapse
|
36
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
37
|
Abstract
This chapter reviews the methodologies for RNA structure determination by liquid-state nuclear magnetic resonance (NMR). The routine production of milligram quantities of isotopically labeled RNA remains critical to the success of NMR-based structure studies. The standard method for the preparation of isotopically labeled RNA for structural studies in solution is in vitro transcription from DNA oligonucleotide templates using T7 RNA polymerase and unlabeled or isotopically labeled nucleotide triphosphates (NTPs). The purification of the desired RNA can be performed by either denaturing polyacrylamide gel electrophoresis (PAGE) or anion-exchange chromatography. Our basic strategy for studying RNA in solution by NMR is outlined. The topics covered include RNA resonance assignment, restraint collection, and the structure calculation process. Selected examples of NMR spectra are given for a correctly folded 30 nucleotide-containing RNA.
Collapse
|
38
|
Zheng S, Robertson TA, Varani G. A knowledge-based potential function predicts the specificity and relative binding energy of RNA-binding proteins. FEBS J 2007; 274:6378-91. [PMID: 18005254 DOI: 10.1111/j.1742-4658.2007.06155.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA-protein interactions are fundamental to gene expression. Thus, the molecular basis for the sequence dependence of protein-RNA recognition has been extensively studied experimentally. However, there have been very few computational studies of this problem, and no sustained attempt has been made towards using computational methods to predict or alter the sequence-specificity of these proteins. In the present study, we provide a distance-dependent statistical potential function derived from our previous work on protein-DNA interactions. This potential function discriminates native structures from decoys, successfully predicts the native sequences recognized by sequence-specific RNA-binding proteins, and recapitulates experimentally determined relative changes in binding energy due to mutations of individual amino acids at protein-RNA interfaces. Thus, this work demonstrates that statistical models allow the quantitative analysis of protein-RNA recognition based on their structure and can be applied to modeling protein-RNA interfaces for prediction and design purposes.
Collapse
Affiliation(s)
- Suxin Zheng
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
39
|
Ong SAK, Lin HH, Chen YZ, Li ZR, Cao Z. Efficacy of different protein descriptors in predicting protein functional families. BMC Bioinformatics 2007; 8:300. [PMID: 17705863 PMCID: PMC1997217 DOI: 10.1186/1471-2105-8-300] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 08/17/2007] [Indexed: 02/02/2023] Open
Abstract
Background Sequence-derived structural and physicochemical descriptors have frequently been used in machine learning prediction of protein functional families, thus there is a need to comparatively evaluate the effectiveness of these descriptor-sets by using the same method and parameter optimization algorithm, and to examine whether the combined use of these descriptor-sets help to improve predictive performance. Six individual descriptor-sets and four combination-sets were evaluated in support vector machines (SVM) prediction of six protein functional families. Results The performance of these descriptor-sets were ranked by Matthews correlation coefficient (MCC), and categorized into two groups based on their performance. While there is no overwhelmingly favourable choice of descriptor-sets, certain trends were found. The combination-sets tend to give slightly but consistently higher MCC values and thus overall best performance such that three out of four combination-sets show slightly better performance compared to one out of six individual descriptor-sets. Conclusion Our study suggests that currently used descriptor-sets are generally useful for classifying proteins and the prediction performance may be enhanced by exploring combinations of descriptors.
Collapse
Affiliation(s)
- Serene AK Ong
- Department of Pharmacy, National University of Singapore, Blk S16, Level 8, 08-14, 3 Science Drive 2, Singapore 117543, Singapore
| | - Hong Huang Lin
- Department of Pharmacy, National University of Singapore, Blk S16, Level 8, 08-14, 3 Science Drive 2, Singapore 117543, Singapore
| | - Yu Zong Chen
- Department of Pharmacy, National University of Singapore, Blk S16, Level 8, 08-14, 3 Science Drive 2, Singapore 117543, Singapore
| | - Ze Rong Li
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Zhiwei Cao
- Shanghai Center for Bioinformatics Technology, 100, Qinzhou Road, Shanghai 200235 P.R. China
| |
Collapse
|
40
|
Yuan Y, Compton SA, Sobczak K, Stenberg MG, Thornton CA, Griffith JD, Swanson MS. Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. Nucleic Acids Res 2007; 35:5474-86. [PMID: 17702765 PMCID: PMC2018611 DOI: 10.1093/nar/gkm601] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The MBNL and CELF proteins act antagonistically to control the alternative splicing of specific exons during mammalian postnatal development. This process is dysregulated in myotonic dystrophy because MBNL proteins are sequestered by (CUG)n and (CCUG)n RNAs expressed from mutant DMPK and ZNF9 genes, respectively. While these observations predict that MBNL proteins have a higher affinity for these pathogenic RNAs versus their normal splicing targets, we demonstrate that MBNL1 possesses comparably high affinities for (CUG)n and (CAG)n RNAs as well as a splicing target, Tnnt3. Mapping of a MBNL1-binding site upstream of the Tnnt3 fetal exon indicates that a preferred binding site for this protein is a GC-rich RNA hairpin containing a pyrimidine mismatch. To investigate how pathogenic RNAs sequester MBNL1 in DM1 cells, we used a combination of chemical/enzymatic structure probing and electron microscopy to determine that MBNL1 forms a ring-like structure which binds to the dsCUG helix. While the MBNL1 N-terminal region is required for RNA binding, the C-terminal region mediates homotypic interactions which may stabilize intra- and/or inter-ring interactions. Our results provide a mechanistic basis for dsCUG-induced MBNL1 sequestration and highlight a striking similarity in the binding sites for MBNL proteins on splicing precursor and pathogenic RNAs.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sarah A. Compton
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Krzysztof Sobczak
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Myrna G. Stenberg
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Charles A. Thornton
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jack D. Griffith
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
- *To whom correspondence should be addressed. +1 352 273 8076+1 352 273 8284
| |
Collapse
|
41
|
Pérez-Díaz L, Duhagon MA, Smircich P, Sotelo-Silveira J, Robello C, Krieger MA, Goldenberg S, Williams N, Dallagiovanna B, Garat B. Trypanosoma cruzi: molecular characterization of an RNA binding protein differentially expressed in the parasite life cycle. Exp Parasitol 2007; 117:99-105. [PMID: 17475252 PMCID: PMC2020836 DOI: 10.1016/j.exppara.2007.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 03/02/2007] [Accepted: 03/14/2007] [Indexed: 12/18/2022]
Abstract
Molecular studies have shown several peculiarities in the regulatory mechanisms of gene expression in trypanosomatids. Protein coding genes are organized in long polycistronic units that seem to be constitutively transcribed. Therefore, post-transcriptional regulation of gene expression is considered to be the main point for control of transcript abundance and functionality. Here we describe the characterization of a 17 kDa RNA-binding protein from Trypanosoma cruzi (TcRBP19) containing an RNA recognition motive (RRM). This protein is coded by a single copy gene located in a high molecular weight chromosome of T. cruzi. Orthologous genes are present in the TriTryp genomes. TcRBP19 shows target selectivity since among the different homoribopolymers it preferentially binds polyC. TcRBP19 is a low expression protein only barely detected at the amastigote stage localizing in a diffuse pattern in the cytoplasm.
Collapse
Affiliation(s)
- Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | - María Ana Duhagon
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | - Pablo Smircich
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | - José Sotelo-Silveira
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
- Departamento de Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable Avda Italia 3318, Montevideo, Uruguay
| | - Carlos Robello
- Departamento de Bioquímica, Facultad de Medicina, Gral Flores 2125, 11800, Montevideo, Uruguay
| | - Marco Aurelio Krieger
- Instituto de Biología Molecular do Paraná, Rua Profesor Algacyr Munhoz Mader 3775, Curitiba 81350-010, Brazil
| | - Samuel Goldenberg
- Instituto de Biología Molecular do Paraná, Rua Profesor Algacyr Munhoz Mader 3775, Curitiba 81350-010, Brazil
| | - Noreen Williams
- Dept. of Microbiology and Immunology. 253 Biomedical Research Building. University at Buffalo. Buffalo 14214, NY. USA
| | - Bruno Dallagiovanna
- Instituto de Biología Molecular do Paraná, Rua Profesor Algacyr Munhoz Mader 3775, Curitiba 81350-010, Brazil
- Corresponding authors: fax: +598 2 525 86 17 E-mail: (B. Garat); or fax: +55 41 33163267 E-mail: (B. Dallagiovanna)
| | - Beatriz Garat
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
- Corresponding authors: fax: +598 2 525 86 17 E-mail: (B. Garat); or fax: +55 41 33163267 E-mail: (B. Dallagiovanna)
| |
Collapse
|
42
|
Hamma T, Ferré-D'Amaré AR. Pseudouridine synthases. ACTA ACUST UNITED AC 2007; 13:1125-35. [PMID: 17113994 DOI: 10.1016/j.chembiol.2006.09.009] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/15/2006] [Accepted: 09/18/2006] [Indexed: 10/23/2022]
Abstract
Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.
Collapse
Affiliation(s)
- Tomoko Hamma
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | | |
Collapse
|
43
|
Lin HH, Han LY, Zhang HL, Zheng CJ, Xie B, Cao ZW, Chen YZ. Prediction of the functional class of metal-binding proteins from sequence derived physicochemical properties by support vector machine approach. BMC Bioinformatics 2006; 7 Suppl 5:S13. [PMID: 17254297 PMCID: PMC1764469 DOI: 10.1186/1471-2105-7-s5-s13] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Metal-binding proteins play important roles in structural stability, signaling, regulation, transport, immune response, metabolism control, and metal homeostasis. Because of their functional and sequence diversity, it is desirable to explore additional methods for predicting metal-binding proteins irrespective of sequence similarity. This work explores support vector machines (SVM) as such a method. SVM prediction systems were developed by using 53,333 metal-binding and 147,347 non-metal-binding proteins, and evaluated by an independent set of 31,448 metal-binding and 79,051 non-metal-binding proteins. The computed prediction accuracy is 86.3%, 81.6%, 83.5%, 94.0%, 81.2%, 85.4%, 77.6%, 90.4%, 90.9%, 74.9% and 78.1% for calcium-binding, cobalt-binding, copper-binding, iron-binding, magnesium-binding, manganese-binding, nickel-binding, potassium-binding, sodium-binding, zinc-binding, and all metal-binding proteins respectively. The accuracy for the non-member proteins of each class is 88.2%, 99.9%, 98.1%, 91.4%, 87.9%, 94.5%, 99.2%, 99.9%, 99.9%, 98.0%, and 88.0% respectively. Comparable accuracies were obtained by using a different SVM kernel function. Our method predicts 67% of the 87 metal-binding proteins non-homologous to any protein in the Swissprot database and 85.3% of the 333 proteins of known metal-binding domains as metal-binding. These suggest the usefulness of SVM for facilitating the prediction of metal-binding proteins. Our software can be accessed at the SVMProt server http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi.
Collapse
Affiliation(s)
- HH Lin
- Bioinformatics and Drug Design Group, Department of Pharmacy and Department of Computational Science, National University of Singapore, Blk SOC1, Level 7, 3 Science Drive 2, Singapore 117543
| | - LY Han
- Bioinformatics and Drug Design Group, Department of Pharmacy and Department of Computational Science, National University of Singapore, Blk SOC1, Level 7, 3 Science Drive 2, Singapore 117543
| | - HL Zhang
- Bioinformatics and Drug Design Group, Department of Pharmacy and Department of Computational Science, National University of Singapore, Blk SOC1, Level 7, 3 Science Drive 2, Singapore 117543
| | - CJ Zheng
- Bioinformatics and Drug Design Group, Department of Pharmacy and Department of Computational Science, National University of Singapore, Blk SOC1, Level 7, 3 Science Drive 2, Singapore 117543
| | - B Xie
- Bioinformatics and Drug Design Group, Department of Pharmacy and Department of Computational Science, National University of Singapore, Blk SOC1, Level 7, 3 Science Drive 2, Singapore 117543
| | - ZW Cao
- Shanghai Center for Bioinformatics Technology, 100, Qinzhou Road, Shanghai 200235 P.R. China
| | - YZ Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy and Department of Computational Science, National University of Singapore, Blk SOC1, Level 7, 3 Science Drive 2, Singapore 117543
- Shanghai Center for Bioinformatics Technology, 100, Qinzhou Road, Shanghai 200235 P.R. China
| |
Collapse
|
44
|
Johnson JE, Julien KR, Hoogstraten CG. Alternate-site isotopic labeling of ribonucleotides for NMR studies of ribose conformational dynamics in RNA. JOURNAL OF BIOMOLECULAR NMR 2006; 35:261-74. [PMID: 16937241 DOI: 10.1007/s10858-006-9041-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 06/02/2006] [Indexed: 05/04/2023]
Abstract
Heteronuclear NMR spin relaxation studies of conformational dynamics are coming into increasing use to help understand the functions of ribozymes and other RNAs. Due to strong 13C-13C magnetic interactions within the ribose ring, however, these studies have thus far largely been limited to (13)C and (15)N resonances on the nucleotide base side chains. We report here the application of the alternate-site (13)C isotopic labeling scheme, pioneered by LeMaster for relaxation studies of amino acid side chains, to nucleic acid systems. We have used different strains of E. coli to prepare mononucleotides containing (13)C label in one of two patterns: Either C1' or C2' in addition to C4', termed (1'/2',4') labeling, or nearly complete labeling at the C2' and C4' sites only, termed (2',4') labeling. These patterns provide isolated 13C-1H spin systems on the labeled carbon atoms and thus allow spin relaxation studies without interference from 13C-13C scalar or dipolar coupling. Using relaxation studies of AMP dissolved in glycerol at varying temperature to produce systems with correlation times characteristic of different size RNAs, we demonstrate the removal of errors due to 13C-13C interaction in T (1) measurements of larger nucleic acids and in T (1rho) measurements in RNA molecules. By extending the applicability of spin relaxation measurements to backbone ribose groups, this technology should greatly improve the flexibility and completeness of NMR analyses of conformational dynamics in RNA.
Collapse
Affiliation(s)
- James E Johnson
- Department of Biochemistry & Molecular Biology, Michigan State University, 212 Biochemistry Building, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
45
|
Svitkin YV, Sonenberg N. Translational control by the poly(A) binding protein: A check for mRNA integrity. Mol Biol 2006. [DOI: 10.1134/s0026893306040133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Kash JC, Goodman AG, Korth MJ, Katze MG. Hijacking of the host-cell response and translational control during influenza virus infection. Virus Res 2006; 119:111-20. [PMID: 16630668 DOI: 10.1016/j.virusres.2005.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 09/23/2005] [Accepted: 10/20/2005] [Indexed: 11/17/2022]
Abstract
Influenza virus is a major public health problem with annual deaths in the US of 36,000 with pandemic outbreaks, such as in 1918, resulting in deaths exceeding 20 million worldwide. Recently, there is much concern over the introduction of highly pathogenic avian influenza H5N1 viruses into the human population. Influenza virus has evolved complex translational control strategies that utilize cap-dependent translation initiation mechanisms and involve the recruitment of both viral and host-cell proteins to preferentially synthesize viral proteins and prevent activation of antiviral responses. Influenza virus is a member of the Orthomyxoviridae family of negative-stranded, segmented RNA viruses and represents a particularly attractive model system as viral replication strategies are closely intertwined with normal cellular processes including the host defense and stress pathways. In this chapter, we review the parallels between translational control in influenza virus infected cells and in stressed cells with a focus on selective translation of viral mRNAs and the antagonism of the dsRNA and host antiviral responses. Moreover, we will discuss how the use of genomic technologies such as DNA microarrays and high through-put proteomics can be used to gain new insights into the control of protein synthesis during viral infection and provide a near comprehensive view of virus-host interactions.
Collapse
Affiliation(s)
- John C Kash
- Department of Microbiology, University of Washington School of Medicine, Box 358070, Seattle, WA 98195-8070, USA.
| | | | | | | |
Collapse
|
47
|
Pérez-Cañadillas JM. Grabbing the message: structural basis of mRNA 3'UTR recognition by Hrp1. EMBO J 2006; 25:3167-78. [PMID: 16794580 PMCID: PMC1500993 DOI: 10.1038/sj.emboj.7601190] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 05/18/2006] [Indexed: 11/09/2022] Open
Abstract
The recognition of specific signals encoded within the 3'-untranslated region of the newly transcribed mRNA triggers the assembly of a multiprotein machine that modifies its 3'-end. Hrp1 recognises one of such signals, the so-called polyadenylation enhancement element (PEE), promoting the recruitment of other polyadenylation factors in yeast. The molecular bases of this interaction are revealed here by the solution structure of a complex between Hrp1 and an oligonucleotide mimicking the PEE. Six consecutive bases (AUAUAU) are specifically recognised by two RNA-binding domains arranged in tandem. Both protein and RNA undergo significant conformational changes upon complex formation with a concomitant large surface burial of RNA bases. Key aspects of RNA specificity can be explained by the presence of intermolecular aromatic-aromatic contacts and hydrogen bonds. Altogether, the Hrp1-PEE structure represents one of the first steps towards understanding of the assembly of the cleavage and polyadenylation machinery at the atomic level.
Collapse
|
48
|
Lejeune D, Delsaux N, Charloteaux B, Thomas A, Brasseur R. Protein-nucleic acid recognition: statistical analysis of atomic interactions and influence of DNA structure. Proteins 2006; 61:258-71. [PMID: 16121397 DOI: 10.1002/prot.20607] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We analyzed structural features of 11,038 direct atomic contacts (either electrostatic, H-bonds, hydrophobic, or other van der Waals interactions) extracted from 139 protein-DNA and 49 protein-RNA nonhomologous complexes from the Protein Data Bank (PDB). Globally, H-bonds are the most frequent interactions (approximately 50%), followed by van der Waals, hydrophobic, and electrostatic interactions. From the protein viewpoint, hydrophilic amino acids are over-represented in the interaction databases: Positively charged amino acids mainly contact nucleic acid phosphate groups but can also interact with base edges. From the nucleotide point of view, DNA and RNA behave differently: Most protein-DNA interactions involve phosphate atoms, while protein-RNA interactions involve more frequently base edge and ribose atoms. The increased participation of DNA phosphate involves H-bonds rather than salt bridges. A statistical analysis was performed to find the occurrence of amino acid-nucleotide pairs most different from chance. These pairs were analyzed individually. Finally, we studied the conformation of DNA in the interaction sites. Despite the prevalence of B-DNA in the database, our results suggest that A-DNA is favored in the interaction sites.
Collapse
Affiliation(s)
- Diane Lejeune
- Centre de Biophysique Moléculaire Numérique, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | | | | | | | | |
Collapse
|
49
|
Gawande B, Robida MD, Rahn A, Singh R. Drosophila Sex-lethal protein mediates polyadenylation switching in the female germline. EMBO J 2006; 25:1263-72. [PMID: 16511567 PMCID: PMC1422161 DOI: 10.1038/sj.emboj.7601022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 02/02/2006] [Indexed: 01/16/2023] Open
Abstract
The Drosophila master sex-switch protein Sex-lethal (SXL) regulates the splicing and/or translation of three known targets to mediate somatic sexual differentiation. Genetic studies suggest that additional target(s) of SXL exist, particularly in the female germline. Surprisingly, our detailed molecular characterization of a new potential target of SXL, enhancer of rudimentary (e(r)), reveals that SXL regulates e(r) by a novel mechanism--polyadenylation switching--specifically in the female germline. SXL binds to multiple SXL-binding sites, which include the GU-rich poly(A) enhancer, and competes for the binding of CstF64 in vitro. The SXL-binding sites are able to confer sex-specific poly(A) switching onto an otherwise nonresponsive polyadenylation signal in vivo. The sex-specific poly(A) switching of e(r) provides a means for translational regulation in germ cells. We present a model for the SXL-dependent poly(A) site choice in the female germline.
Collapse
Affiliation(s)
- Bharat Gawande
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|
50
|
Thomas B, Akoulitchev AV. Mass spectrometry of RNA. Trends Biochem Sci 2006; 31:173-81. [PMID: 16483781 DOI: 10.1016/j.tibs.2006.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 12/16/2005] [Accepted: 01/30/2006] [Indexed: 10/25/2022]
Abstract
A complex population of non-coding RNAs is present in higher organisms. These RNAs have a multitude of functions and execute control over gene expression through various, often poorly understood, mechanisms. At present, the identification and analysis of functional regulatory RNAs and disparate ribonucleoprotein complexes remain an experimental challenge for biologists. They require specially designed approaches and techniques in genomics and RNA biochemistry. Developments in technologies based on mass spectrometry could offer sensitive and efficient solutions to analysis of the sequence, structure, modification and composition of RNA.
Collapse
Affiliation(s)
- Benjamin Thomas
- Central Proteomics Facility, Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|