1
|
Dowling QM, Park YJ, Fries CN, Gerstenmaier NC, Ols S, Yang EC, Wargacki AJ, Dosey A, Hsia Y, Ravichandran R, Walkey CD, Burrell AL, Veesler D, Baker D, King NP. Hierarchical design of pseudosymmetric protein nanocages. Nature 2024:10.1038/s41586-024-08360-6. [PMID: 39695230 DOI: 10.1038/s41586-024-08360-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions1,2. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry3. Here, inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540 and 960 subunits. At 49, 71 and 96 nm diameter, these nanocages are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work substantially broadens the variety of self-assembling protein architectures that are accessible through design.
Collapse
Affiliation(s)
- Quinton M Dowling
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Chelsea N Fries
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Neil C Gerstenmaier
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sebastian Ols
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Adam J Wargacki
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Yang Hsia
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Carl D Walkey
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Khmelinskaia A, Bethel NP, Fatehi F, Antanasijevic A, Borst AJ, Lai SH, Wang JYJ, Mallik BB, Miranda MC, Watkins AM, Ogohara C, Caldwell S, Wu M, Heck AJR, Veesler D, Ward AB, Baker D, Twarock R, King NP. Local structural flexibility drives oligomorphism in computationally designed protein assemblies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562842. [PMID: 37905007 PMCID: PMC10614843 DOI: 10.1101/2023.10.18.562842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. For example, clathrin coats adopt a wide variety of architectures to adapt to vesicular cargos of various sizes. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, most existing methods focus on designing static structures with high accuracy. Here we characterize the structures of three distinct computationally designed protein assemblies that each form multiple unanticipated architectures, and identify flexibility in specific regions of the subunits of each assembly as the source of structural diversity. Cryo-EM single-particle reconstructions and native mass spectrometry showed that only two distinct architectures were observed in two of the three cases, while we obtained six cryo-EM reconstructions that likely represent a subset of the architectures present in solution in the third case. Structural modeling and molecular dynamics simulations indicated that the surprising observation of a defined range of architectures, instead of non-specific aggregation, can be explained by constrained flexibility within the building blocks. Our results suggest that deliberate use of structural flexibility as a design principle will allow exploration of previously inaccessible structural and functional space in designed protein assemblies.
Collapse
|
3
|
Dowling QM, Park YJ, Gerstenmaier N, Yang EC, Wargacki A, Hsia Y, Fries CN, Ravichandran R, Walkey C, Burrell A, Veesler D, Baker D, King NP. Hierarchical design of pseudosymmetric protein nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545393. [PMID: 37398374 PMCID: PMC10312784 DOI: 10.1101/2023.06.16.545393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions 1-3. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry 4,5. Inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540, and 960 subunits. At 49, 71, and 96 nm diameter, these nanoparticles are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work represents an important step towards the accurate design of arbitrary self-assembling nanoscale protein objects.
Collapse
Affiliation(s)
- Quinton M Dowling
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Neil Gerstenmaier
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adam Wargacki
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Yang Hsia
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Chelsea N Fries
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Carl Walkey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anika Burrell
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
5
|
Ochoa JM, Nguyen VN, Nie M, Sawaya MR, Bobik TA, Yeates TO. Symmetry breaking and structural polymorphism in a bacterial microcompartment shell protein for choline utilization. Protein Sci 2020; 29:2201-2212. [PMID: 32885887 DOI: 10.1002/pro.3941] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023]
Abstract
Bacterial microcompartments are protein-based organelles that carry out specialized metabolic functions in diverse bacteria. Their outer shells are built from several thousand protein subunits. Some of the architectural principles of bacterial microcompartments have been articulated, with lateral packing of flat hexameric BMC proteins providing the basic foundation for assembly. Nonetheless, a complete understanding has been elusive, partly owing to polymorphic mechanisms of assembly exhibited by most microcompartment types. An earlier study of one homologous BMC shell protein subfamily, EutS/PduU, revealed a profoundly bent, rather than flat, hexameric structure. The possibility of a specialized architectural role was hypothesized, but artifactual effects of crystallization could not be ruled out. Here we report a series of crystal structures of an orthologous protein, CutR, from a glycyl-radical type choline-utilizing microcompartment from the bacterium Streptococcus intermedius. Depending on crystal form, expression construct, and minor mutations, a range of novel quaternary architectures was observed, including two spiral hexagonal assemblies. A new graphical approach helps illuminate the variations in BMC hexameric structure, with results substantiating the idea that the EutS/PduU/CutR subfamily of BMC proteins may endow microcompartment shells with flexible modes of assembly.
Collapse
Affiliation(s)
- Jessica M Ochoa
- UCLA-Molecular Biology Institute, University of California, Los Angeles (UCLA), California, Los Angeles, USA
| | - Vy N Nguyen
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), California, Los Angeles, USA
| | - Mengxiao Nie
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), California, Los Angeles, USA
| | - Michael R Sawaya
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles (UCLA), California, Los Angeles, USA
| | - Thomas A Bobik
- Department of Biochemistry, Biophysics and Molecular Biology; Iowa State University, Ames, Iowa, USA
| | - Todd O Yeates
- UCLA-Molecular Biology Institute, University of California, Los Angeles (UCLA), California, Los Angeles, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), California, Los Angeles, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles (UCLA), California, Los Angeles, USA
| |
Collapse
|
6
|
Song C, Takai-Todaka R, Miki M, Haga K, Fujimoto A, Ishiyama R, Oikawa K, Yokoyama M, Miyazaki N, Iwasaki K, Murakami K, Katayama K, Murata K. Dynamic rotation of the protruding domain enhances the infectivity of norovirus. PLoS Pathog 2020; 16:e1008619. [PMID: 32614892 PMCID: PMC7331980 DOI: 10.1371/journal.ppat.1008619] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Norovirus is the major cause of epidemic nonbacterial gastroenteritis worldwide. Lack of structural information on infection and replication mechanisms hampers the development of effective vaccines and remedies. Here, using cryo-electron microscopy, we show that the capsid structure of murine noroviruses changes in response to aqueous conditions. By twisting the flexible hinge connecting two domains, the protruding (P) domain reversibly rises off the shell (S) domain in solutions of higher pH, but rests on the S domain in solutions of lower pH. Metal ions help to stabilize the resting conformation in this process. Furthermore, in the resting conformation, the cellular receptor CD300lf is readily accessible, and thus infection efficiency is significantly enhanced. Two similar P domain conformations were also found simultaneously in the human norovirus GII.3 capsid, although the mechanism of the conformational change is not yet clear. These results provide new insights into the mechanisms of non-enveloped norovirus transmission that invades host cells, replicates, and sometimes escapes the hosts immune system, through dramatic environmental changes in the gastrointestinal tract.
Collapse
Affiliation(s)
- Chihong Song
- National Institute for Physiological Sciences, Okazaki, Japan
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | - Kei Haga
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Akira Fujimoto
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Ryoka Ishiyama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuki Oikawa
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | - Naoyuki Miyazaki
- Institute for Protein Research, Osaka University, Suita, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, Suita, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | | | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
- National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (KK); (KM)
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki, Japan
- * E-mail: (KK); (KM)
| |
Collapse
|
7
|
High-resolution cryo-EM structures of outbreak strain human norovirus shells reveal size variations. Proc Natl Acad Sci U S A 2019; 116:12828-12832. [PMID: 31182604 PMCID: PMC6601263 DOI: 10.1073/pnas.1903562116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Despite being a leading cause of foodborne illnesses, accounting for 58% of all outbreaks and over 96% of nonbacterial outbreaks, there are no approved treatments available for norovirus infections. Assembled shells of the viruses without genetic materials enclosed are currently being used as candidates for vaccine trials. Although the virus shells have been thought to exist in a single-sized assembly, our structures in near-atomic detail reveal clear variations in size between different outbreak strains, and in spatial and angular arrangements of the antigenic surface spikes. The structures we present serve as valuable templates for facilitating vaccine formulations. Noroviruses are a leading cause of foodborne illnesses worldwide. Although GII.4 strains have been responsible for most norovirus outbreaks, the assembled virus shell structures have been available in detail for only a single strain (GI.1). We present high-resolution (2.6- to 4.1-Å) cryoelectron microscopy (cryo-EM) structures of GII.4, GII.2, GI.7, and GI.1 human norovirus outbreak strain virus-like particles (VLPs). Although norovirus VLPs have been thought to exist in a single-sized assembly, our structures reveal polymorphism between and within genogroups, with small, medium, and large particle sizes observed. Using asymmetric reconstruction, we were able to resolve a Zn2+ metal ion adjacent to the coreceptor binding site, which affected the structural stability of the shell. Our structures serve as valuable templates for facilitating vaccine formulations.
Collapse
|
8
|
Conley M, Emmott E, Orton R, Taylor D, Carneiro DG, Murata K, Goodfellow IG, Hansman GS, Bhella D. Vesivirus 2117 capsids more closely resemble sapovirus and lagovirus particles than other known vesivirus structures. J Gen Virol 2017; 98:68-76. [PMID: 27902397 PMCID: PMC5370393 DOI: 10.1099/jgv.0.000658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/11/2016] [Indexed: 01/06/2023] Open
Abstract
Vesivirus 2117 is an adventitious agent that, in 2009, was identified as a contaminant of Chinese hamster ovary cells propagated in bioreactors at a pharmaceutical manufacturing plant belonging to Genzyme. The consequent interruption in supply of Fabrazyme and Cerezyme (drugs used to treat Fabry and Gaucher diseases, respectively) caused significant economic losses. Vesivirus 2117 is a member of the Caliciviridae, a family of small icosahedral viruses encoding a positive-sense RNA genome. We have used cryo-electron microscopy and three-dimensional image reconstruction to calculate a structure of vesivirus 2117 virus-like particles as well as feline calicivirus and a chimeric sapovirus. We present a structural comparison of several members of the Caliciviridae, showing that the distal P domain of vesivirus 2117 is morphologically distinct from that seen in other known vesivirus structures. Furthermore, at intermediate resolutions, we found a high level of structural similarity between vesivirus 2117 and Caliciviridae from other genera: sapovirus and rabbit hemorrhagic disease virus. Phylogenetic analysis confirms vesivirus 2117 as a vesivirus closely related to canine vesiviruses. We postulate that morphological differences in virion structure seen between vesivirus clades may reflect differences in receptor usage.
Collapse
Affiliation(s)
- Michaela Conley
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Edward Emmott
- Department of Pathology, Division of Virology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Richard Orton
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - David Taylor
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Present address: Howard Hughes Medical Institute, 742 Stanley Hall, MS 3220 University of California, Berkeley, CA 94720-3220, USA
| | - Daniel G Carneiro
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
- Present address: School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Ian G Goodfellow
- Department of Pathology, Division of Virology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Grant S Hansman
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Present address: Centre for Infectious Diseases, Department of Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - David Bhella
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
9
|
Structural studies on chimeric Sesbania mosaic virus coat protein: Revisiting SeMV assembly. Virology 2016; 489:34-43. [DOI: 10.1016/j.virol.2015.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 01/25/2023]
|
10
|
Shionoiri N, Nogariya O, Tanaka M, Matsunaga T, Tanaka T. Capsid protein oxidation in feline calicivirus using an electrochemical inactivation treatment. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:410-415. [PMID: 25310599 DOI: 10.1016/j.jhazmat.2014.09.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
Pathogenic viral infections are an international public health concern, and viral disinfection has received increasing attention. Electrochemical treatment has been used for treatment of water contaminated by bacteria for several decades, and although in recent years several reports have investigated viral inactivation kinetics, the mode of action of viral inactivation by electrochemical treatment remains unclear. Here, we demonstrated the inactivation of feline calicivirus (FCV), a surrogate for human noroviruses, by electrochemical treatment in a developed flow-cell equipped with a screen-printed electrode. The viral infectivity titer was reduced by over 5 orders of magnitude after 15 min of treatment at 0.9V vs. Ag/AgCl. Proteomic study of electrochemically inactivated virus revealed oxidation of peptides located in the viral particles; oxidation was not observed in the non-treated sample. Furthermore, transmission electron microscopy revealed that viral particles in the treated sample had irregular structures. These results suggest that electrochemical treatment inactivates FCV via oxidation of peptides in the structural region, causing structural deformation of virus particles. This first report of viral protein damage through electrochemical treatment will contribute to broadening the understanding of viral inactivation mechanisms.
Collapse
Affiliation(s)
- Nozomi Shionoiri
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Osamu Nogariya
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Masayoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
11
|
The red clover necrotic mosaic virus capsid protein N-terminal amino acids possess specific RNA binding activity and are required for stable virion assembly. Virus Res 2013; 176:107-18. [PMID: 23747688 DOI: 10.1016/j.virusres.2013.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 11/21/2022]
Abstract
The red clover necrotic mosaic virus (RCNMV) bipartite RNA genome is packaged into two virion populations containing either RNA-1 and RNA-2 or multiple copies of RNA-2 only. To understand this distinctive packaging scheme, we investigated the RNA-binding properties of the RCNMV capsid protein (CP). Maltose binding protein-CP fusions exhibited the highest binding affinities for RNA probes containing the RNA-2 trans-activator or the 3' non-coding region from RNA-1. Other viral and non-viral RNA probes displayed CP binding but to a much lower degree. Deletion of the highly basic N-terminal 50 residues abolished CP binding to viral RNA transcripts. In planta studies of select CP deletion mutants within this N-terminal region revealed that it was indispensable for stable virion formation and the region spanning CP residues 5-15 is required for systemic movement. Thus, the N-terminal region of the CP is involved in both producing two virion populations due to its RNA binding properties and virion stability.
Collapse
|
12
|
Cryo-EM structure of a novel calicivirus, Tulane virus. PLoS One 2013; 8:e59817. [PMID: 23533651 PMCID: PMC3606144 DOI: 10.1371/journal.pone.0059817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/19/2013] [Indexed: 12/18/2022] Open
Abstract
Tulane virus (TV) is a newly isolated cultivatable calicivirus that infects juvenile rhesus macaques. Here we report a 6.3 Å resolution cryo-electron microscopy structure of the TV virion. The TV virion is about 400 Å in diameter and consists of a T = 3 icosahedral protein capsid enclosing the RNA genome. 180 copies of the major capsid protein VP1 (∼57 KDa) are organized into two types of dimers A/B and C/C and form a thin, smooth shell studded with 90 dimeric protrusions. The overall capsid organization and the capsid protein fold of TV closely resemble that of other caliciviruses, especially of human Norwalk virus, the prototype human norovirus. These close structural similarities support TV as an attractive surrogate for the non-cultivatable human noroviruses. The most distinctive feature of TV is that its C/C dimers are in a highly flexible conformation with significantly reduced interactions between the shell (S) domain and the protruding (P) domain of VP1. A comparative structural analysis indicated that the P domains of TV C/C dimers were much more flexible than those of other caliciviruses. These observations, combined with previous studies on other caliciviruses, led us to hypothesize that the enhanced flexibility of C/C dimer P domains are likely required for efficient calicivirus-host cell interactions and the consequent uncoating and genome release. Residues in the S-P1 hinge between the S and P domain may play a critical role in the flexibility of P domains of C/C dimers.
Collapse
|
13
|
Cheng S, Brooks CL. Viral capsid proteins are segregated in structural fold space. PLoS Comput Biol 2013; 9:e1002905. [PMID: 23408879 PMCID: PMC3567143 DOI: 10.1371/journal.pcbi.1002905] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 12/16/2012] [Indexed: 02/04/2023] Open
Abstract
Viral capsid proteins assemble into large, symmetrical architectures that are not found in complexes formed by their cellular counterparts. Given the prevalence of the signature jelly-roll topology in viral capsid proteins, we are interested in whether these functionally unique capsid proteins are also structurally unique in terms of folds. To explore this question, we applied a structure-alignment based clustering of all protein chains in VIPERdb filtered at 40% sequence identity to identify distinct capsid folds, and compared the cluster medoids with a non-redundant subset of protein domains in the SCOP database, not including the viral capsid entries. This comparison, using Template Modeling (TM)-score, identified 2078 structural "relatives" of capsid proteins from the non-capsid set, covering altogether 210 folds following the definition in SCOP. The statistical significance of the 210 folds shared by two sets of the same sizes, estimated from 10,000 permutation tests, is less than 0.0001, which is an upper bound on the p-value. We thus conclude that viral capsid proteins are segregated in structural fold space. Our result provides novel insight on how structural folds of capsid proteins, as opposed to their surface chemistry, might be constrained during evolution by requirement of the assembled cage-like architecture. Also importantly, our work highlights a guiding principle for virus-based nanoplatform design in a wide range of biomedical applications and materials science.
Collapse
Affiliation(s)
- Shanshan Cheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charles L. Brooks
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
14
|
Vorup-Jensen T. On the roles of polyvalent binding in immune recognition: perspectives in the nanoscience of immunology and the immune response to nanomedicines. Adv Drug Deliv Rev 2012; 64:1759-81. [PMID: 22705545 DOI: 10.1016/j.addr.2012.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 12/31/2022]
Abstract
Immunology often conveys the image of large molecules, either in the soluble state or in the membrane of leukocytes, forming multiple contacts with a target for actions of the immune system. Avidity names the ability of a polyvalent molecule to form multiple connections of the same kind with ligands tethered to the same surface. Polyvalent interactions are vastly stronger than their monovalent equivalent. In the present review, the functional consequences of polyvalent interactions are explored in a perspective of recent theoretical advances in understanding the thermodynamics of such binding. From insights on the structural biology of soluble pattern recognition molecules as well as adhesion molecules in the cell membranes or in their proteolytically shed form, this review documents the prominent role of polyvalent interactions in making the immune system a formidable barrier to microbial infection as well as constituting a significant challenge to the application of nanomedicines.
Collapse
|
15
|
Capsid structure and its stability at the late stages of bacteriophage SPP1 assembly. J Virol 2012; 86:6768-77. [PMID: 22514336 DOI: 10.1128/jvi.00412-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of the bacteriophage SPP1 capsid was determined at subnanometer resolution by cryo-electron microscopy and single-particle analysis. The icosahedral capsid is composed of the major capsid protein gp13 and the auxiliary protein gp12, which are organized in a T=7 lattice. DNA is arranged in layers with a distance of ~24.5 Å. gp12 forms spikes that are anchored at the center of gp13 hexamers. In a gp12-deficient mutant, the centers of hexamers are closed by loops of gp13 coming together to protect the SPP1 genome from the outside environment. The HK97-like fold was used to build a pseudoatomic model of gp13. Its structural organization remains unchanged upon tail binding and following DNA release. gp13 exhibits enhanced thermostability in the DNA-filled capsid. A remarkable convergence between the thermostability of the capsid and those of the other virion components was found, revealing that the overall architecture of the SPP1 infectious particle coevolved toward high robustness.
Collapse
|
16
|
Turnip yellow mosaic virus forms infectious particles without the native beta-annulus structure and flexible coat protein N-terminus. Virology 2012; 422:165-73. [DOI: 10.1016/j.virol.2011.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/20/2011] [Accepted: 10/19/2011] [Indexed: 11/22/2022]
|
17
|
Matsuura K, Murasato K, Kimizuka N. Syntheses and self-assembling behaviors of pentagonal conjugates of tryptophane zipper-forming peptide. Int J Mol Sci 2011; 12:5187-99. [PMID: 21954352 PMCID: PMC3179159 DOI: 10.3390/ijms12085187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/30/2011] [Accepted: 08/10/2011] [Indexed: 01/31/2023] Open
Abstract
Pentagonal conjugates of tryptophane zipper-forming peptide (CKTWTWTE) with a pentaazacyclopentadecane core (Pentagonal-Gly-Trpzip and Pentagonal-Ala-Trpzip) were synthesized and their self-assembling behaviors were investigated in water. Pentagonal-Gly-Trpzip self-assembled into nanofibers with the width of about 5 nm in neutral water (pH 7) via formation of tryptophane zipper, which irreversibly converted to nanoribbons by heating. In contrast, Pentagonal-Ala-Trpzip formed irregular aggregates in water.
Collapse
Affiliation(s)
- Kazunori Matsuura
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan; E-Mails: (K.M.); (N.K.)
- International Research Center for Molecular Systems, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuya Murasato
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan; E-Mails: (K.M.); (N.K.)
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan; E-Mails: (K.M.); (N.K.)
- International Research Center for Molecular Systems, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Xing L, Li TC, Mayazaki N, Simon MN, Wall JS, Moore M, Wang CY, Takeda N, Wakita T, Miyamura T, Cheng RH. Structure of hepatitis E virion-sized particle reveals an RNA-dependent viral assembly pathway. J Biol Chem 2010; 285:33175-33183. [PMID: 20720013 DOI: 10.1074/jbc.m110.106336] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatitis E virus (HEV) induces acute hepatitis in humans with a high fatality rate in pregnant women. There is a need for anti-HEV research to understand the assembly process of HEV native capsid. Here, we produced a large virion-sized and a small T=1 capsid by expressing the HEV capsid protein in insect cells with and without the N-terminal 111 residues, respectively, for comparative structural analysis. The virion-sized capsid demonstrates a T=3 icosahedral lattice and contains RNA fragment in contrast to the RNA-free T=1 capsid. However, both capsids shared common decameric organization. The in vitro assembly further demonstrated that HEV capsid protein had the intrinsic ability to form decameric intermediate. Our data suggest that RNA binding is the extrinsic factor essential for the assembly of HEV native capsids.
Collapse
Affiliation(s)
- Li Xing
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616; Structural Virology Section, Karolinska Institute, Huddinge University Hospital, SE-14186 Stockholm, Sweden
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Naoyuki Mayazaki
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616; Structural Virology Section, Karolinska Institute, Huddinge University Hospital, SE-14186 Stockholm, Sweden
| | - Martha N Simon
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000
| | - Joseph S Wall
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000
| | - Mary Moore
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Che-Yen Wang
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Naokazu Takeda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Tatsuo Miyamura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - R Holland Cheng
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616.
| |
Collapse
|
19
|
Shoemaker GK, van Duijn E, Crawford SE, Uetrecht C, Baclayon M, Roos WH, Wuite GJL, Estes MK, Prasad BVV, Heck AJR. Norwalk virus assembly and stability monitored by mass spectrometry. Mol Cell Proteomics 2010; 9:1742-51. [PMID: 20418222 DOI: 10.1074/mcp.m900620-mcp200] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Viral capsid assembly, in which viral proteins self-assemble into complexes of well defined architecture, is a fascinating biological process. Although viral structure and assembly processes have been the subject of many excellent structural biology studies in the past, questions still remain regarding the intricate mechanisms that underlie viral structure, stability, and assembly. Here we used native mass spectrometry-based techniques to study the structure, stability, and assembly of Norwalk virus-like particles. Although detailed structural information on the fully assembled capsid exists, less information is available on potential capsid (dis)assembly intermediates, largely because of the inherent heterogeneity and complexity of the disassembly pathways. We used native mass spectrometry and atomic force microscopy to investigate the (dis)assembly of the Norwalk virus-like particles as a function of solution pH, ionic strength, and VP1 protein concentration. Native MS analysis at physiological pH revealed the presence of the complete capsid (T = 3) consisting of 180 copies of VP1. The mass of these capsid particles extends over 10 million Da, ranking them among the largest protein complexes ever analyzed by native MS. Although very stable under acidic conditions, the capsid was found to be sensitive to alkaline treatment. At elevated pH, intermediate structures consisting of 2, 4, 6, 18, 40, 60, and 80 copies of VP1 were observed with the VP1(60) (3.36-MDa) and VP1(80) (4.48-MDa) species being most abundant. Atomic force microscopy imaging and ion mobility mass spectrometry confirmed the formation of these latter midsize spherical particles at elevated pH. All these VP1 oligomers could be reversely assembled into the original capsid (VP1(180)). From the MS data collected over a range of experimental conditions, we suggest a disassembly model in which the T = 3 VP1(180) particles dissociate into smaller oligomers, predominantly dimers, upon alkaline treatment prior to reassembly into VP1(60) and VP1(80) species.
Collapse
Affiliation(s)
- Glen K Shoemaker
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Krishna V, Noid WG, Voth GA. The multiscale coarse-graining method. IV. Transferring coarse-grained potentials between temperatures. J Chem Phys 2009; 131:024103. [PMID: 19603966 PMCID: PMC2721766 DOI: 10.1063/1.3167797] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 06/12/2009] [Indexed: 11/14/2022] Open
Abstract
This work develops a method for the construction of multiscale coarse-grained (MS-CG) force fields at different temperatures based on available atomistic data at a given reference temperature. The validity of this theory is demonstrated numerically by applying it to construct MS-CG models of the Lennard-Jones liquid and simple point charge water model systems.
Collapse
Affiliation(s)
- Vinod Krishna
- Department of Chemistry and Center for Biophysical Modeling and Simulation, University of Utah, Salt Lake City, Utah 84112-0850, USA
| | | | | |
Collapse
|
21
|
Abstract
AbstractWe propose that certain patterns (scars) could be relevant to extend the classic Caspar and Klug construction for icosahedrally-shaped virus capsids. These scars are theoretically and numerically predicted to be formed by electrons arranged on a sphere to minimize the repulsive Coulomb potential (the Thomson problem) and are experimentally found in spherical crystals formed by self-assembled polystyrene beads (an instance of the generalized Thomson problem). Scars could be produced on the capsid at an intermediate stage of its evolution and the release of the bending energy present in scars into stretching energy could allow for shape-changes. The conjecture can be tested in experiments and/or in numerical simulations.
Collapse
|
22
|
Nguyen HD, Brooks CL. Generalized structural polymorphism in self-assembled viral particles. NANO LETTERS 2008; 8:4574-81. [PMID: 19367856 PMCID: PMC2772182 DOI: 10.1021/nl802828v] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The protein shells, called capsids, of nearly all spherical viruses adopt icosahedral symmetry; however, self-assembly of such empty structures often occurs with multiple misassembly steps resulting in the formation of aberrant structures. Using simple models that represent the coat proteins preassembled in the two different predetermined species that are common motifs of viral capsids (i.e., pentameric and hexameric capsomers), we perform molecular dynamics simulations of the spontaneous self-assembly of viral capsids of different sizes containing T = 1,3,4,7,9,12,13,16, and 19 proteins in their icosahedral repeating unit. We observe, in addition to icosahedral capsids, a variety of nonicosahedral yet highly ordered and enclosed capsules. Such structural polymorphism is demonstrated to be an inherent property of the coat proteins, independent of the capsid complexity and the elementary kinetic mechanisms. Moreover, there exist two distinctive classes of polymorphic structures: aberrant capsules that are larger than their respective icosahedral capsids, in T = 1-7 systems; and capsules that are smaller than their respective icosahedral capsids when T = 7-19. Different kinetic mechanisms responsible for self-assembly of those classes of aberrant structures are deciphered, providing insights into the control of the self-assembly of icosahedral capsids.
Collapse
Affiliation(s)
- Hung D Nguyen
- Department of Chemistry, 930 North University Avenue, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
23
|
Lawson CL, Dutta S, Westbrook JD, Henrick K, Berman HM. Representation of viruses in the remediated PDB archive. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2008; D64:874-82. [PMID: 18645236 PMCID: PMC2677383 DOI: 10.1107/s0907444908017393] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 06/09/2008] [Indexed: 11/24/2022]
Abstract
A new scheme has been devised to represent viruses and other biological assemblies with regular noncrystallographic symmetry in the Protein Data Bank (PDB). The scheme describes existing and anticipated PDB entries of this type using generalized descriptions of deposited and experimental coordinate frames, symmetry and frame transformations. A simplified notation has been adopted to express the symmetry generation of assemblies from deposited coordinates and matrix operations describing the required point, helical or crystallographic symmetry. Complete correct information for building full assemblies, subassemblies and crystal asymmetric units of all virus entries is now available in the remediated PDB archive.
Collapse
Affiliation(s)
- Catherine L Lawson
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854-8087, USA.
| | | | | | | | | |
Collapse
|
24
|
Ochoa WF, Havens WM, Sinkovits RS, Nibert ML, Ghabrial SA, Baker TS. Partitivirus structure reveals a 120-subunit, helix-rich capsid with distinctive surface arches formed by quasisymmetric coat-protein dimers. Structure 2008; 16:776-86. [PMID: 18462682 DOI: 10.1016/j.str.2008.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/07/2008] [Accepted: 02/09/2008] [Indexed: 11/30/2022]
Abstract
Two distinct partitiviruses, Penicillium stoloniferum viruses S and F, can be isolated from the fungus Penicillium stoloniferum. The bisegmented dsRNA genomes of these viruses are separately packaged in icosahedral capsids containing 120 coat-protein subunits. We used transmission electron cryomicroscopy and three-dimensional image reconstruction to determine the structure of Penicillium stoloniferum virus S at 7.3 A resolution. The capsid, approximately 350 A in outer diameter, contains 12 pentons, each of which is topped by five arched protrusions. Each of these protrusions is, in turn, formed by a quasisymmetric dimer of coat protein, for a total of 60 such dimers per particle. The density map shows numerous tubular features, characteristic of alpha helices and consistent with secondary structure predictions for the coat protein. This three-dimensional structure of a virus from the family Partitiviridae exhibits both similarities to and differences from the so-called "T = 2" capsids of other dsRNA viruses.
Collapse
Affiliation(s)
- Wendy F Ochoa
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Stable structures of icosahedral symmetry can serve numerous functional roles, including chemical microencapsulation and delivery of drugs and biomolecules, epitope presentation to allow for an efficient immunization process, synthesis of nanoparticles of uniform size, observation of encapsulated reactive intermediates, formation of structural elements for supramolecular constructs, and molecular computing. By examining physical models of spherical virus assembly we have arrived at a general synthetic strategy for producing chemical capsids at size scales between fullerenes and spherical viruses. Such capsids can be formed by self-assembly from a class of molecules developed from a symmetric pentagonal core. By designing chemical complementarity into the five interface edges of the molecule, we can produce self-assembling stable structures of icosahedral symmetry. We considered three different binding mechanisms: hydrogen bonding, metal binding, and formation of disulfide bonds. These structures can be designed to assemble and disassemble under controlled environmental conditions. We have conducted molecular dynamics simulation on a class of corannulene-based molecules to demonstrate the characteristics of self-assembly and to aid in the design of the molecular subunits. The edge complementarities can be of diverse structure, and they need not reflect the fivefold symmetry of the molecular core. Thus, self-assembling capsids formed from coded subunits can serve as addressable nanocontainers or custom-made structural elements.
Collapse
|
26
|
Worrall JAR, Górna M, Pei XY, Spring DR, Nicholson RL, Luisi BF. Design and chance in the self-assembly of macromolecules. Biochem Soc Trans 2007; 35:502-7. [PMID: 17511639 DOI: 10.1042/bst0350502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The principles of self-assembly are described for naturally occurring macromolecules and for complex assemblies formed from simple synthetic constituents. Many biological molecules owe their function and specificity to their three-dimensional folds, and, in many cases, these folds are specified entirely by the sequence of the constituent amino acids or nucleic acids, and without the requirement for additional machinery to guide the formation of the structure. Thus sequence may often be sufficient to guide the assembly process, starting from denatured components having little or no folds, to the completion state with the stable, equilibrium fold that encompasses functional activity. Self-assembly of homopolymeric structures does not necessarily preserve symmetry, and some polymeric assemblies are organized so that their chemically identical subunits pack stably in geometrically non-equivalent ways. Self-assembly can also involve scaffolds that lack structure, as seen in the multi-enzyme assembly, the degradosome. The stable self-assembly of lipids into dynamic membraneous sheets is also described, and an example is shown in which a synthetic detergent can assemble into membrane layers.
Collapse
Affiliation(s)
- J A R Worrall
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | |
Collapse
|
27
|
Bahadur RP, Rodier F, Janin J. A Dissection of the Protein–Protein Interfaces in Icosahedral Virus Capsids. J Mol Biol 2007; 367:574-90. [PMID: 17270209 DOI: 10.1016/j.jmb.2006.12.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 12/11/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
We selected 49 icosahedral virus capsids whose crystal structures are reported in the Protein Data Bank. They belong to the T=1, T=3, pseudo T=3 and other lattice types. We identified in them 779 unique interfaces between pairs of subunits, all repeated by icosahedral symmetry. We analyzed the geometric and physical chemical properties of these interfaces and compared with interfaces in protein-protein complexes and homodimeric proteins, and with crystal packing contacts. The capsids contain one to 16 subunits implicated in three to 66 unique interfaces. Each subunit loses 40-60% of its accessible surface in contacts with an average of 8.5 neighbors. Many of the interfaces are very large with a buried surface area (BSA) that can exceed 10,000 A(2), yet 39% are small with a BSA<800 A(2) comparable to crystal packing contacts. Pairwise capsid interfaces overlap, so that one-third of the residues are part of more than one interface. Those with a BSA>800 A(2) resemble homodimer interfaces in their chemical composition. Relative to the protein surface, they are non-polar, enriched in aliphatic residues and depleted of charged residues, but not of neutral polar residues. They contain one H-bond per about 200 A(2) BSA. Small capsid interfaces (BSA<800 A(2)) are only slightly more polar. They have a similar amino acid composition, but they bury fewer atoms and contain fewer H-bonds for their size. Geometric parameters that estimate the quality of the atomic packing suggest that the small capsid interfaces are loosely packed like crystal packing contacts, whereas the larger interfaces are close-packed as in protein-protein complexes and homodimers. We discuss implications of these findings on the mechanism of capsid assembly, assuming that the larger interfaces form first to yield stable oligomeric species (capsomeres), and that medium-size interfaces allow the stepwise addition of capsomeres to build larger intermediates.
Collapse
Affiliation(s)
- Ranjit Prasad Bahadur
- Yeast Structural Genomics, IBBMC Université Paris-Sud, CNRS UMR 8619, 91405-Orsay, France
| | | | | |
Collapse
|
28
|
Royer WE, Sharma H, Strand K, Knapp JE, Bhyravbhatla B. Lumbricus Erythrocruorin at 3.5 Å Resolution: Architecture of a Megadalton Respiratory Complex. Structure 2006; 14:1167-77. [PMID: 16843898 DOI: 10.1016/j.str.2006.05.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 04/28/2006] [Accepted: 05/01/2006] [Indexed: 11/28/2022]
Abstract
Annelid erythrocruorins are highly cooperative extracellular respiratory proteins with molecular masses on the order of 3.6 million Daltons. We report here the 3.5 A crystal structure of erythrocruorin from the earthworm Lumbricus terrestris. This structure reveals details of symmetrical and quasi-symmetrical interactions that dictate the self-limited assembly of 144 hemoglobin and 36 linker subunits. The linker subunits assemble into a core complex with D(6) symmetry onto which 12 hemoglobin dodecamers bind to form the entire complex. Although the three unique linker subunits share structural similarity, their interactions with each other and the hemoglobin subunits display striking diversity. The observed diversity includes design features that have been incorporated into the linker subunits and may be critical for efficient assembly of large quantities of this complex respiratory protein.
Collapse
Affiliation(s)
- William E Royer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | |
Collapse
|
29
|
Chen R, Neill JD, Estes MK, Prasad BVV. X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity. Proc Natl Acad Sci U S A 2006; 103:8048-53. [PMID: 16702551 PMCID: PMC1472427 DOI: 10.1073/pnas.0600421103] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Indexed: 11/18/2022] Open
Abstract
Caliciviruses, grouped into four genera, are important human and veterinary pathogens with a potential for zoonosis. In these viruses, capsid-related functions such as assembly, antigenicity, and receptor interactions are predominantly encoded in a single protein that forms an icosahedral capsid. Understanding of the immunologic functions and pathogenesis of human caliciviruses in the Norovirus and Sapovirus genera is hampered by the lack of a cell culture system or animal models. Much of our understanding of these viruses, including the structure, has depended on recombinant capsids. Here we report the atomic structure of a native calicivirus from the Vesivirus genus that exhibits a broad host range possibly including humans and map immunological function onto a calicivirus structure. The vesivirus structure, despite a similar architectural design as seen in the recombinant norovirus capsid, exhibits novel features and indicates how the unique modular organization of the capsid protein with interdomain flexibility, similar to an antibody structure with a hinge and an elbow, integrates capsid-related functions and facilitates strain diversity in caliciviruses. The internally located N-terminal arm participates in a novel network of interactions through domain swapping to assist the assembly of the shell domain into an icosahedral scaffold, from which the protruding domain emanates. Neutralization epitopes localize to three hypervariable loops in the distal portion of the protruding domain surrounding a region that exhibits host-specific conservation. These observations suggest a mechanism for antigenic diversity and host specificity in caliciviruses and provide a structural framework for vaccine development.
Collapse
Affiliation(s)
- Rong Chen
- *Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
| | - John D. Neill
- National Animal Disease Center, Agriculture Research Service, U.S. Department of Agriculture, Ames, IA 50010
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030; and
| | - B. V. Venkataram Prasad
- *Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030; and
| |
Collapse
|
30
|
Pornillos O, Chang G. Inverted repeat domains in membrane proteins. FEBS Lett 2005; 580:358-62. [PMID: 16406365 DOI: 10.1016/j.febslet.2005.12.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 12/19/2005] [Indexed: 11/17/2022]
Abstract
With the upsurge in known membrane protein structures, common structural themes have started to emerge. One of these is the inverted repeat, a tandem of alpha-helical domains that have similar tertiary folds but opposite membrane orientations. In all previously known examples, both repeat units were encoded in a single continuous polypeptide. Recent structures of a bacterial multidrug transporter, EmrE, revealed an inverted repeat membrane protein wherein the two repeat units are assembled from two polypeptides with the same primary sequence. Here, we speculate on some of the implications of the EmrE structure with regards to our understanding of membrane protein evolution and topogenesis.
Collapse
Affiliation(s)
- Owen Pornillos
- The Scripps Research Institute, Department of Molecular Biology, La Jolla, CA 92037, USA
| | | |
Collapse
|
31
|
Dutta S, Berman HM. Large macromolecular complexes in the Protein Data Bank: a status report. Structure 2005; 13:381-8. [PMID: 15766539 DOI: 10.1016/j.str.2005.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 01/18/2005] [Accepted: 01/19/2005] [Indexed: 11/24/2022]
Abstract
The growing number of large macromolecular complexes in the Protein Data Bank (PDB) has warranted a closer look at these structures. An overview of the types of molecules that form these large complexes is presented here. Some of the challenges at the PDB in representing, archiving, visualizing, and analyzing these structures are discussed along with possible means to overcome them.
Collapse
Affiliation(s)
- Shuchismita Dutta
- The Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
32
|
Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO. Protein structures forming the shell of primitive bacterial organelles. Science 2005; 309:936-8. [PMID: 16081736 DOI: 10.1126/science.1113397] [Citation(s) in RCA: 324] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacterial microcompartments are primitive organelles composed entirely of protein subunits. Genomic sequence databases reveal the widespread occurrence of microcompartments across diverse microbes. The prototypical bacterial microcompartment is the carboxysome, a protein shell for sequestering carbon fixation reactions. We report three-dimensional crystal structures of multiple carboxysome shell proteins, revealing a hexameric unit as the basic microcompartment building block and showing how these hexamers assemble to form flat facets of the polyhedral shell. The structures suggest how molecular transport across the shell may be controlled and how structural variations might govern the assembly and architecture of these subcellular compartments.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- Molecular Biology Institute, University of California, Los Angeles (UCLA), Box 951570, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Coulibaly F, Chevalier C, Gutsche I, Pous J, Navaza J, Bressanelli S, Delmas B, Rey FA. The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 2005; 120:761-72. [PMID: 15797378 DOI: 10.1016/j.cell.2005.01.009] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2004] [Revised: 11/12/2004] [Accepted: 01/07/2005] [Indexed: 10/25/2022]
Abstract
Double-stranded RNA virions are transcriptionally competent icosahedral particles that must translocate across a lipid bilayer to function within the cytoplasm of the target cell. Birnaviruses are unique among dsRNA viruses as they have a single T = 13 icosahedral shell, lacking the characteristic inner capsid observed in the others. We determined the crystal structures of the T = 1 subviral particle (260 angstroms in diameter) and of the T = 13 intact virus particle (700 angstroms in diameter) of an avian birnavirus to 3 angstroms and 7 angstroms resolution, respectively. Our results show that VP2, the only component of the virus icosahedral capsid, is homologous both to the capsid protein of positive-strand RNA viruses, like the T = 3 nodaviruses, and to the T = 13 capsid protein of members of the Reoviridae family of dsRNA viruses. Together, these results provide important insights into the multiple functions of the birnavirus capsid and reveal unexpected structural relationships among icosahedral viruses.
Collapse
Affiliation(s)
- Fasséli Coulibaly
- Laboratoire de Virologie Moléculaire et Structurale, UMR 2472/1157 CNRS-INRA and IFR 115, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Stehle T, Dermody TS. Structural Similarities in the Cellular Receptors Used by Adenovirus and Reovirus. Viral Immunol 2004; 17:129-43. [PMID: 15279694 DOI: 10.1089/0882824041310621] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adenovirus and reovirus are nonenveloped viruses that engage cell-surface receptors using filamentous attachment proteins with head-and-tail morphology. The coxsackievirus and adenovirus receptor (CAR) and reovirus receptor junctional adhesion molecule 1 (JAM1) are immunoglobulin superfamily members that form homodimers stabilized by ionic and hydrophobic contacts between their N-terminal immunoglobulin-like domains. Both proteins are expressed at regions of cell-cell contact and contain sequences in their cytoplasmic tails that anchor the proteins to the actin cytoskeleton. Like CAR and JAM1, the attachment proteins of adenovirus and reovirus, fiber and sigma1, respectively, also share key structural features. Both fiber and sigma1 have defined regions of flexibility within the tail, which is constructed in part using an unusual triple beta-spiral motif. The head domains of both proteins are formed by an 8-stranded beta-barrel with identical beta-strand connectivity. Strikingly, both adenovirus fiber and reovirus 1 engage their receptors by interacting with sequences that also mediate formation of receptor homodimers. Therefore, while adenovirus and reovirus belong to different virus families and have few overall properties in common, the observed similarities between the receptors and attachment proteins of these viruses suggest a conserved mechanism of attachment and an evolutionary relationship.
Collapse
Affiliation(s)
- Thilo Stehle
- Laboratory of Developmental Immunology and Renal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
35
|
Fokine A, Chipman PR, Leiman PG, Mesyanzhinov VV, Rao VB, Rossmann MG. Molecular architecture of the prolate head of bacteriophage T4. Proc Natl Acad Sci U S A 2004; 101:6003-8. [PMID: 15071181 PMCID: PMC395913 DOI: 10.1073/pnas.0400444101] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The head of bacteriophage T4 is a prolate icosahedron with one unique portal vertex to which the phage tail is attached. The three-dimensional structure of mature bacteriophage T4 head has been determined to 22-A resolution by using cryo-electron microscopy. The T4 capsid has a hexagonal surface lattice characterized by the triangulation numbers T(end) = 13 laevo for the icosahedral caps and T(mid) = 20 for the midsection. Hexamers of the major capsid protein gene product (gp)23* and pentamers of the vertex protein gp24*, as well as the outer surface proteins highly antigenic outer capsid protein (hoc) and small outer capsid protein (soc), are clearly evident in the reconstruction. The size and shape of the gp23* hexamers are similar to the major capsid protein organization of bacteriophage HK97. The binding sites and shape of the hoc and soc proteins have been established by analysis of the soc(-) and hoc(-)soc(-) T4 structures.
Collapse
Affiliation(s)
- Andrei Fokine
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | |
Collapse
|
36
|
Bruinsma RF, Gelbart WM, Reguera D, Rudnick J, Zandi R. Viral self-assembly as a thermodynamic process. PHYSICAL REVIEW LETTERS 2003; 90:248101. [PMID: 12857229 DOI: 10.1103/physrevlett.90.248101] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2002] [Indexed: 05/24/2023]
Abstract
The protein shells, or capsids, of nearly all spherelike viruses adopt icosahedral symmetry. In the present Letter, we propose a statistical thermodynamic model for viral self-assembly. We find that icosahedral symmetry is not expected for viral capsids constructed from structurally identical protein subunits and that this symmetry requires (at least) two internal "switching" configurations of the protein. Our results indicate that icosahedral symmetry is not a generic consequence of free energy minimization but requires optimization of internal structural parameters of the capsid proteins.
Collapse
Affiliation(s)
- Robijn F Bruinsma
- Department of Physics and Astronomy, The University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
37
|
Stehle T, Dermody TS. Structural evidence for common functions and ancestry of the reovirus and adenovirus attachment proteins. Rev Med Virol 2003; 13:123-32. [PMID: 12627395 PMCID: PMC7169122 DOI: 10.1002/rmv.379] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The crystal structure of the reovirus attachment protein, sigma1, reveals a fibre-like structure that is remarkably similar to that of the adenovirus attachment protein, fibre. Both proteins are trimers with head-and-tail morphology. They share unique domain structures and functional properties including defined regions of flexibility within the tail and an unusual symmetry mismatch with the pentameric viral capsid protein into which they are inserted. Moreover, the receptors for reoviruses and adenoviruses, junctional adhesion molecule 1 and coxsackievirus and adenovirus receptor, respectively, also share key structural and functional properties. Although reoviruses and adenoviruses belong to different virus families and have few properties in common, the observed similarities between sigma1 and fibre point to a conserved mechanism of attachment and an ancient evolutionary relationship.
Collapse
Affiliation(s)
- Thilo Stehle
- Laboratory of Developmental Immunology and Renal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Terence S. Dermody
- Departments of Pediatrics and Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
38
|
Desvoyes B, Scholthof HB. Host-dependent recombination of a Tomato bushy stunt virus coat protein mutant yields truncated capsid subunits that form virus-like complexes which benefit systemic spread. Virology 2002; 304:434-42. [PMID: 12504582 DOI: 10.1006/viro.2002.1714] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the contribution of the Tomato bushy stunt virus (TBSV) coat protein (CP) and its corresponding RNA to systemic infection of plants. Compared to results obtained with a mutant lacking the 5'-half of the CP gene, the presence of those CP-RNA sequences in another mutant benefited TBSV infection on Nicotiana benthamiana even though wild-type CP expression was eliminated by introduction of a small out-of-frame deletion. RT-PCR of viral RNA associated with rapid infections established by this CP frameshift deletion mutant revealed that in planta recombination had provided the progeny with the ability to express a truncated CP (tCP) with a block of N-proximal 30 residues deleted from the 66 amino acid RNA-binding domain. Subsequent biochemical characterizations revealed the presence of large ribonucleoprotein complexes that were shown to contain viral RNA as well as the approximately 38-kDa tCP. Electron microscopic examination of purified complexes showed particle-like structures that were nonuniform in size and shape compared to wild-type TBSV particles. Inoculation of pepper with the tCP-containing ribonucleoprotein complexes resulted in a rapid systemic infection similar to that caused by wild-type TBSV. In contrast, infections established in pepper by the original CP frameshift deletion mutant transcripts were restricted to inoculated leaves and did not yield recombinants capable of systemically infecting this host. In summary, TBSV possesses the flexibility to form alternative virion-like structures even if a substantial portion of the RNA-binding domain is deleted from the CP; mutants producing the tCP-containing particle-like structures are more effective for virus spread than those devoid of CP expression; and recombination events to produce the alternative tCP-RNA complexes are host-dependent.
Collapse
Affiliation(s)
- Bénédicte Desvoyes
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843, USA
| | | |
Collapse
|
39
|
Miles G, Movileanu L, Bayley H. Subunit composition of a bicomponent toxin: staphylococcal leukocidin forms an octameric transmembrane pore. Protein Sci 2002; 11:894-902. [PMID: 11910032 PMCID: PMC2373538 DOI: 10.1110/ps.4360102] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Staphylococcal leukocidin pores are formed by the obligatory interaction of two distinct polypeptides, one of class F and one of class S, making them unique in the family of beta-barrel pore-forming toxins (beta-PFTs). By contrast, other beta-PFTs form homo-oligomeric pores; for example, the staphylococcal alpha-hemolysin (alpha HL) pore is a homoheptamer. Here, we deduce the subunit composition of a leukocidin pore by two independent methods: gel shift electrophoresis and site-specific chemical modification during single-channel recording. Four LukF and four LukS subunits coassemble to form an octamer. This result in part explains properties of the leukocidin pore, such as its high conductance compared to the alpha HL pore. It is also pertinent to the mechanism of assembly of beta-PFT pores and suggests new possibilities for engineering these proteins.
Collapse
Affiliation(s)
- George Miles
- Department of Medical Biochemistry and Genetics, The Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | | | |
Collapse
|
40
|
Chappell JD, Prota AE, Dermody TS, Stehle T. Crystal structure of reovirus attachment protein sigma1 reveals evolutionary relationship to adenovirus fiber. EMBO J 2002; 21:1-11. [PMID: 11782420 PMCID: PMC125343 DOI: 10.1093/emboj/21.1.1] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reovirus attaches to cellular receptors with the sigma1 protein, a fiber-like molecule protruding from the 12 vertices of the icosahedral virion. The crystal structure of a receptor-binding fragment of sigma1 reveals an elongated trimer with two domains: a compact head with a new beta-barrel fold and a fibrous tail containing a triple beta-spiral. Numerous structural and functional similarities between reovirus sigma1 and the adenovirus fiber suggest an evolutionary link in the receptor-binding strategies of these two viruses. A prominent loop in the sigma1 head contains a cluster of residues that are conserved among reovirus serotypes and are likely to form a binding site for junction adhesion molecule, an integral tight junction protein that serves as a reovirus receptor. The fibrous tail is mainly responsible for sigma1 trimer formation, and it contains a highly flexible region that allows for significant movement between the base of the tail and the head. The architecture of the trimer interface and the observed flexibility indicate that sigma1 is a metastable structure poised to undergo conformational changes upon viral attachment and cell entry.
Collapse
Affiliation(s)
- James D. Chappell
- Departments of
Pediatrics and Microbiology and Immunology and Elizabeth B.Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232 and Laboratory of Developmental Immunology and Renal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA Corresponding authors e-mail: or
J.D.Chappell and A.E.Prota contributed equally to this work
| | - Andrea E. Prota
- Departments of
Pediatrics and Microbiology and Immunology and Elizabeth B.Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232 and Laboratory of Developmental Immunology and Renal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA Corresponding authors e-mail: or
J.D.Chappell and A.E.Prota contributed equally to this work
| | - Terence S. Dermody
- Departments of
Pediatrics and Microbiology and Immunology and Elizabeth B.Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232 and Laboratory of Developmental Immunology and Renal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA Corresponding authors e-mail: or
J.D.Chappell and A.E.Prota contributed equally to this work
| | - Thilo Stehle
- Departments of
Pediatrics and Microbiology and Immunology and Elizabeth B.Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN 37232 and Laboratory of Developmental Immunology and Renal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA Corresponding authors e-mail: or
J.D.Chappell and A.E.Prota contributed equally to this work
| |
Collapse
|