1
|
Maury P, Hirayama R, Li X, Mahou P, Schanne-Klein MC, Lacombe S, Gref R, Porcel E. Synergistic effect of Gemcitabin-loaded metal organic frameworks nanoparticles with particle therapy. Int J Pharm 2024; 665:124721. [PMID: 39293579 DOI: 10.1016/j.ijpharm.2024.124721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Combination of nanoagents with radiations has opened up new perspectives in cancer treatment, improving both tumor diagnosis and therapeutic index. This work presents the first investigation of an innovative strategy that combines porous metal-organic frameworks (nanoMOFs) loaded with the anti-cancer drug Gemcitabine monophosphate (GemMP) and particle therapy-a globally emerging technique that offers more precise radiation targeting and enhanced biological efficacy compared to conventional radiotherapy. This radiochemotherapy has been confronted with two major obstacles limiting the efficacy of therapeutics when tested in vivo: (i) the presence of hypoxia, one of the most important causes for radiotherapy failure and (ii) the presence of a microenvironment, main biological barrier to the direct penetration of nanoparticles into cancer cells. On the one hand, this study explore the effects of hypoxia on drug delivery systems in combination with radiation, demonstrating that GemMP-loaded nanoMOFs significantly enhance the anticancer efficacy of particle therapy under both normoxic (pO2 = 20 %) and hypoxic (pO2 = 0.5 %) conditions. Notably, the presence of GemMP-loaded nanoMOFs allows the irradiation dose to be reduced by 1.4-fold in normoxia and at least 1.6-fold in hypoxia, achieving the same cytotoxic effect (SF=10 %) as carbon or helium ions alone. Synergistic effects between GemMP-loaded nanoMOFs and radiations have been observed and quantified. On the other hand, we also highlighted the ability of the nanoMOFs to diffuse through an extracellular matrix and accumulate in cells. An higher effect of the encapsulated GemMP than the free drug was observed, confirming the key role of the nanoMOFs in transporting the active substance to the cancer cells as a Trojan horse. This paves the way to the design of "all-in-one" nanodrugs where each component plays a role in the optimization of cancer therapy to maximize cytotoxic effects on hypoxic tumor cells while minimizing toxicity on healthy tissue.
Collapse
Affiliation(s)
- Pauline Maury
- Université Paris Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405 Orsay, France; Université Paris-Saclay, Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, F-94800, Villejuif, France; Gustave Roussy, Département de radiothérapie, F-94800, Villejuif, France
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, QST Hospital, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Xue Li
- Université Paris Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405 Orsay, France
| | - Pierre Mahou
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Marie-Claire Schanne-Klein
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Sandrine Lacombe
- Université Paris Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405 Orsay, France
| | - Ruxandra Gref
- Université Paris Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405 Orsay, France
| | - Erika Porcel
- Université Paris Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405 Orsay, France.
| |
Collapse
|
2
|
Perecko T, Pereckova J, Hoferova Z, Falk M. Cell-type specific anti-cancerous effects of nitro-oleic acid and its combination with gamma irradiation. Biol Chem 2024; 405:177-187. [PMID: 37712609 DOI: 10.1515/hsz-2023-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Nitro-fatty acids (NFAs) are endogenous lipid mediators capable of post-translational modifications of selected regulatory proteins. Here, we investigated the anti-cancerous effects of nitro-oleic acid (NO2OA) and its combination with gamma irradiation on different cancer cell lines. The effects of NO2OA on cell death, cell cycle distribution, or expression of p21 and cyclin D1 proteins were analyzed in cancer (A-549, HT-29 and FaDu) or normal cell lines (HGF, HFF-1). Dose enhancement ratio at 50 % survival fraction (DERIC50) was calculated for samples pre-treated with NO2OA followed by gamma irradiation. NO2OA suppressed viability and induced apoptotic cell death. These effects were cell line specific but not in general selective for cancer cells. HT-29 cell line exerted higher sensitivity toward NO2OA treatment among cancer cell lines tested: induction of cell cycle arrest in the G2/M phase was associated with an increase in p21 and a decrease in cyclin D1 expression. Pre-treatment of HT-29 cells with NO2OA prior irradiation showed a significantly increased DERIC50, demonstrating radiosensitizing effects. In conclusion, NO2OA exhibited potential for combined chemoradiotherapy. Our results encourage the development of new NFAs with improved features for cancer chemoradiation.
Collapse
Affiliation(s)
- Tomas Perecko
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, CZ-612 00 Brno, Czech Republic
| | - Jana Pereckova
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, CZ-612 00 Brno, Czech Republic
| | - Zuzana Hoferova
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, CZ-612 00 Brno, Czech Republic
| | - Martin Falk
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
3
|
Zdrowowicz M, Datta M, Rychłowski M, Rak J. Radiosensitization of PC3 Prostate Cancer Cells by 5-Thiocyanato-2'-deoxyuridine. Cancers (Basel) 2022; 14:cancers14082035. [PMID: 35454941 PMCID: PMC9025292 DOI: 10.3390/cancers14082035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Radiation therapy is one of the main treatments for cancer. However, the success of treatment by radiation therapy is largely dependent on tumor radiosensitivity. To improve therapeutic outcomes, radiation therapy should be combined with the use of a radiosensitizer which enables irradiation at lower doses with higher efficacies. 5-Thiocyanato-2′-deoxyuridine has been reported as a potential radiosensitizer of DNA damage based on advanced radiation chemical studies. In this paper, for the first time, we demonstrate the radiosensitizing properties of this modified nucleoside at the cellular level. The tested analogue increases the sensitivity of prostate cancer cells to ionizing radiation which is, at least partially, related to an increase in the number of DNA double-strand breaks and cell cycle regulation. Abstract Purpose: The radiosensitizing properties of uracil analogs modified in the C5 position are very interesting in the context of their effectiveness and safety in radiation therapy. Recently, radiation chemical studies have confirmed that 5-thiocyanato-2′-deoxyuridine (SCNdU) undergoes dissociation induced by an excess electron attachment and established this nucleoside as a potential radiosensitizer. In this paper, we verify the sensitizing properties of SCNdU at the cellular level and prove that it can effectively enhance ionizing radiation-induced cellular death. Methods and Materials: Prostate cancer cells were treated with SCNdU and irradiated with X rays. The cytotoxicity of SCNdU was determined by MTT test. Cell proliferation was assessed using a clonogenic assay. Cell cycle analyses, DNA damage, and cell death analyses were performed by flow cytometry. Results: SCNdU treatment significantly suppressed the proliferation and increased the radiosensitivity of prostate cancer cells. The radiosensitizing effect expressed by the dose enhancement factor is equal to 1.69. Simultaneous exposure of cells to SCNdU and radiation causes an increase in the fraction of the most radiosensitive G2/M phase, enhancement of the histone H2A.X phosphorylation level, and apoptosis induction. Finally, SCNdU turned out to be marginally cytotoxic in the absence of ionizing radiation. Conclusions: Our findings indicate that SCNdU treatment enhances the radiosensitivity of prostate cancer cells in a manner associated with the cell cycle regulation, double strand formation, and a slight induction of apoptosis.
Collapse
Affiliation(s)
- Magdalena Zdrowowicz
- Laboratory of Biological Sensitizers, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.D.); (J.R.)
- Correspondence:
| | - Magdalena Datta
- Laboratory of Biological Sensitizers, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.D.); (J.R.)
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland;
| | - Janusz Rak
- Laboratory of Biological Sensitizers, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.D.); (J.R.)
| |
Collapse
|
4
|
Aytatli A, Barlak N, Sanli F, Caglar HO, Gundogdu B, Tatar A, Ittmann M, Karatas OF. AZD4547 targets the FGFR/Akt/SOX2 axis to overcome paclitaxel resistance in head and neck cancer. Cell Oncol (Dordr) 2021; 45:41-56. [PMID: 34837170 DOI: 10.1007/s13402-021-00645-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Development of chemoresistance is one of the major obstacles to the treatment of head and neck squamous cell carcinoma (HNSCC). The PI3K/Akt pathway, involved in drug resistance, has been found to be overactivated in > 90% of HNSCCs. Aberrant activation of the FGF receptors (FGFRs) has been reported to cause overactivation of the PI3K/Akt pathway and to be associated with the maintenance of stem cell features, which is controlled via SOX2 expression. In this study, we aimed at investigating the potential of using AZD4547, an orally bioavailable FGFR inhibitor, to overcome taxol-resistance by targeting the FGFR/Akt/SOX2 axis in HNSCC. METHODS We initially evaluated FGFR2 and SOX2 expression using in silico tools. We analyzed the FGFR/Akt/SOX2 axis in normal/tumor tissue pairs and in recombinant FGF2 treated HNSCC cells. Next, we explored the effects of AZD4547 alone and in combination with taxol on the proliferation, migration and colony forming capacities of parental/taxol-resistant cells using in vitro models. RESULTS We found that the p-FGFR, p-AKT, p-GSK-3β and SOX2 expression levels were higher in tumor tissues than in its corresponding normal tissues, and that AZD4547 effectively suppressed the expression of FGFR and its downstream targets in recombinant FGF2 treated HNSCC cells. We also found that AZD4547 diminished the viability, migration and colony forming capacity of HNSCC cells, and that co-treatment with taxol potentiated the impact of taxol on these cells. Finally, we found that AZD4547 inhibited the overexpressed FGFR/Akt/SOX2 axis and profoundly suppressed cancer-related phenotypes in taxol-resistant HNSCC cells. CONCLUSION From our data we conclude that AZD4547 may increase the impact of taxol during HNSCC treatment. We suggest AZD4547 as a therapeutic agent to overcome taxol-resistance.
Collapse
Affiliation(s)
- Abdulmelik Aytatli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Neslisah Barlak
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Fatma Sanli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Hasan Onur Caglar
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
| | - Betul Gundogdu
- Department of Medical Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Arzu Tatar
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Michael E. DeBakey VAMC, Houston, TX, 77030, USA
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey.
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
5
|
van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021; 11:653621. [PMID: 34041023 PMCID: PMC8143268 DOI: 10.3389/fonc.2021.653621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells tend to rewire their metabolic pathways. Although different types of malignant cells share this phenomenon, there is a large intracellular variability how these metabolic patterns are altered. Fortunately, differences in metabolic patterns between normal tissue and malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular metabolism to improve treatment outcome is an emerging field proposing a variety of promising strategies in primary tumor and metastatic lesion treatment. These strategies, capable of either sensitizing or protecting tissues, target either tumor or normal tissue and are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF) stabilization, glucose metabolism, mitochondrial function and the redox balance. Several compounds or therapies are still in under (pre-)clinical development, while others are already used in clinical practice. Here, we describe different strategies from bench to bedside to optimize the therapeutic ratio through modulation of the cellular metabolism. This review gives an overview of the current state on development and the mechanism of action of modulators affecting cellular metabolism with the aim to improve the radiotherapy response on tumors or to protect the normal tissue and therefore contribute to an improved therapeutic ratio.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Dermatology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emma Zwilling
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
6
|
Spisz P, Kozak W, Chomicz-Mańka L, Makurat S, Falkiewicz K, Sikorski A, Czaja A, Rak J, Zdrowowicz M. 5-( N-Trifluoromethylcarboxy)aminouracil as a Potential DNA Radiosensitizer and Its Radiochemical Conversion into N-Uracil-5-yloxamic Acid. Int J Mol Sci 2020; 21:E6352. [PMID: 32883013 PMCID: PMC7504071 DOI: 10.3390/ijms21176352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023] Open
Abstract
Hypoxia-a hallmark of solid tumors-dramatically impairs radiotherapy, one of the most common anticancer modalities. The adverse effect of the low-oxygen state can be eliminated by the concomitant use of a hypoxic cell radiosensitizer. In the present paper, we show that 5-(N-trifluoromethylcarboxy) aminouracil (CF3CONHU) can be considered as an effective radiosensitizer of DNA damage, working under hypoxia. The title compound was synthesized in the reaction of 5-aminouracil and trifluoroacetic anhydride in trifluoroacetic acid. Then, an aqueous and deoxygenated solution of the HPLC purified compound containing tert-butanol as a hydroxyl radical scavenger was irradiated with X-rays. Radiodegradation in a 26.67 ± 0.31% yield resulted in only one major product-N-uracil-5-yloxamic acid. The mechanism that is possibly responsible for the formation of the observed radioproduct has been elucidated with the use of DFT calculations. The cytotoxic test against the PC3 prostate cancer cell line and HDFa human dermal fibroblasts confirmed the low cytotoxicity of CF3CONHU. Finally, a clonogenic assay and flow cytometric analysis of histone H2A.X phosphorylation proved the radiosensitization in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Magdalena Zdrowowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.S.); (W.K.); (L.C.-M.); (S.M.); (K.F.); (A.S.); (A.C.); (J.R.)
| |
Collapse
|
7
|
Williams KS, Secomb TW, El-Kareh AW. Additive Damage Models for Cellular Pharmacodynamics of Radiation-Chemotherapy Combinations. Bull Math Biol 2017; 80:1236-1258. [PMID: 28849417 DOI: 10.1007/s11538-017-0316-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
Abstract
Many cancer patients receive combination treatments with radiation and chemotherapy. Available mathematical models for cellular pharmacodynamics have limited ability to represent observed in vitro responses to radiochemotherapy. Here, a family of additive damage models is proposed to describe cell kill resulting from radiochemotherapy with fixed schedule and variable doses. The pathways by which the agents produce cellular damage are assumed to converge in a single cell death process, so that survival depends on total damage, which can be represented as a sum of contributions from the various damage pathways. Heterogeneity in response across the cell population is ascribed to variations in the damage threshold for cell kill. The family of proposed models includes effects of one or two pathways of damage for each agent, saturation in drug responses, and cooperative or antagonistic interactions between agents. Models from this family with 4-7 unknown parameters are tested for their ability to fit 218 in vitro literature data sets for a range of drugs and cell lines. Overall, the additive damage models are found to outperform models based on the existing concept of independent cell kill, according to the corrected Akaike Information Criterion. The results are used to assess the importance of the various effects included in the models. These additive damage models have potential applications to the optimization of treatment and to the analysis and interpretation of in vitro screening data for new drug-radiation combinations.
Collapse
Affiliation(s)
| | - Timothy W Secomb
- Program in Applied Mathematics, University of Arizona, Tucson, AZ, USA.,Microcirculation Division, University of Arizona, Tucson, AZ, USA.,Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Ardith W El-Kareh
- Program in Applied Mathematics, University of Arizona, Tucson, AZ, USA. .,Microcirculation Division, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
8
|
Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays. PLoS One 2012; 7:e46536. [PMID: 23094027 PMCID: PMC3477108 DOI: 10.1371/journal.pone.0046536] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/31/2012] [Indexed: 12/04/2022] Open
Abstract
Background Cell viability and motility comprise ubiquitous mechanisms involved in a variety of (patho)biological processes including cancer. We report a technical comparative analysis of the novel impedance-based xCELLigence Real-Time Cell Analysis detection platform, with conventional label-based endpoint methods, hereby indicating performance characteristics and correlating dynamic observations of cell proliferation, cytotoxicity, migration and invasion on cancer cells in highly standardized experimental conditions. Methodology/Principal Findings Dynamic high-resolution assessments of proliferation, cytotoxicity and migration were performed using xCELLigence technology on the MDA-MB-231 (breast cancer) and A549 (lung cancer) cell lines. Proliferation kinetics were compared with the Sulforhodamine B (SRB) assay in a series of four cell concentrations, yielding fair to good correlations (Spearman's Rho 0.688 to 0.964). Cytotoxic action by paclitaxel (0–100 nM) correlated well with SRB (Rho>0.95) with similar IC50 values. Reference cell migration experiments were performed using Transwell plates and correlated by pixel area calculation of crystal violet-stained membranes (Rho 0.90) and optical density (OD) measurement of extracted dye (Rho>0.95). Invasion was observed on MDA-MB-231 cells alone using Matrigel-coated Transwells as standard reference method and correlated by OD reading for two Matrigel densities (Rho>0.95). Variance component analysis revealed increased variances associated with impedance-based detection of migration and invasion, potentially caused by the sensitive nature of this method. Conclusions/Significance The xCELLigence RTCA technology provides an accurate platform for non-invasive detection of cell viability and motility. The strong correlations with conventional methods imply a similar observation of cell behavior and interchangeability with other systems, illustrated by the highly correlating kinetic invasion profiles on different platforms applying only adapted matrix surface densities. The increased sensitivity however implies standardized experimental conditions to minimize technical-induced variance.
Collapse
|
9
|
Wouters A, Pauwels B, Lardon F, Pattyn GGO, Lambrechts HAJ, Baay M, Meijnders P, Vermorken JB. In vitro study on the schedule-dependency of the interaction between pemetrexed, gemcitabine and irradiation in non-small cell lung cancer and head and neck cancer cells. BMC Cancer 2010; 10:441. [PMID: 20723210 PMCID: PMC2931492 DOI: 10.1186/1471-2407-10-441] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 08/19/2010] [Indexed: 12/14/2022] Open
Abstract
Background Based on their different mechanisms of action, non-overlapping side effects and radiosensitising potential, combining the antimetabolites pemetrexed (multitargeted antifolate, MTA) and gemcitabine (2',2'-difluorodeoxycytidine, dFdC) with irradiation (RT) seems promising. This in vitro study, for the first time, presents the triple combination of MTA, dFdC and irradiation using various treatment schedules. Methods The cytotoxicity, radiosensitising potential and cell cycle effect of MTA were investigated in A549 (NSCLC) and CAL-27 (SCCHN) cells. Using simultaneous or sequential exposure schedules, the cytotoxicity and radiosensitising effect of 24 h MTA combined with 1 h or 24 h dFdC were analysed. Results Including a time interval between MTA exposure and irradiation seemed favourable to MTA immediately preceding or following radiotherapy. MTA induced a significant S phase accumulation that persisted for more than 8 h after drug removal. Among different MTA/dFdC combinations tested, the highest synergistic interaction was produced by 24 h MTA followed by 1 h dFdC. Combined with irradiation, this schedule showed a clear radiosensitising effect. Conclusions Results from our in vitro model suggest that the sequence 24 h MTA → 1 h dFdC → RT is the most rational design and would, after confirmation in an in vivo setting, possibly provide the greatest benefit in the clinic.
Collapse
Affiliation(s)
- An Wouters
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp, 2610 Wilrijk, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Background: The aim of this study was to evaluate the radiosensitising effect of gemcitabine, in terms of cell-cycle progression, induction of apoptosis, and to investigate the molecular events regulating apoptosis. Methods: Tumour cells were treated with gemcitabine, radiation, or the combination. 0–72 h after treatment, cells were collected for cell-cycle analysis and apoptosis determination. Caspase 8 and 9, Bid and tBid expression were determined by western blot. The mitochondrial membrane potential was determined using flow cytometry. An RT2Profiler PCR Array for human apoptotic genes was performed after the combination or TRAIL treatment. Results: Gemcitabine and radiation resulted in an early S-phase block immediately after treatment, after which the cells moved synchronously through the cell cycle. When cell-cycle distribution returned to pre-treatment levels, an increased induction of apoptosis was observed with activation of caspase 8 and 9 and a reduction of the mitochondrial membrane potential. Gene expression after treatment with radiosensitising conditions was comparable with expression after the TRAIL treatment. Conclusion: A role for the cell-cycle perturbations and the induction of apoptosis could be attributed to the radiosensitising effect of gemcitabine. Apoptosis induction was comparable with the apoptotic pathway observed after the TRAIL treatment, that is the involvement of the extrinsic apoptosis pathway.
Collapse
|
11
|
Dinçbaş FO, Oksüz DC, Atalar B, Altug T, Ilvan S, Gedik N, Ozel S, Koca S. The role of amifostine on late normal tissue damage induced by pelvic radiotherapy with concomitant gemcitabine: an in vivo study. Med Oncol 2008; 26:402-8. [PMID: 19043677 DOI: 10.1007/s12032-008-9136-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Accepted: 11/07/2008] [Indexed: 11/25/2022]
Abstract
In this in vivo study, we aimed to assess the radioprotective effect of amifostine on late normal tissue damage induced by gemcitabine concomitant with pelvic radiotherapy by histopathological and quantitative methods. Fifty-six male Wistar albino rats were randomly divided into seven experimental groups as follows: (I) gemcitabine, (II) radiation + gemcitabine, (III) radiation + gemcitabine + amifostine, (IV) radiation + amifostine, (V) sham radiation, (VI) amifostine, (VII) radiation. Irradiation was given to pelvic region with a dose of 25 Gy in 5 fractions. Amifostine was given for 30 min; gemcitabine was administered 24 h before the first fraction of radiotherapy. All animals were killed at the end of 4th month. Pathological examination was performed and the tissue collagen content was measured in bladder and rectal tissues. Fifty-one animals that were alive at the end of the follow-up period were analyzed. Thirty-five animals (68.6%) revealed grades I-III late effect in histopathological examination. We observed grade III colitis in 1 animal (radiation + gemcitabine) and bladder fibrosis in 4 animals (radiation and radiation + gemcitabine groups). There was no significant difference between any groups for bladder cystitis and fibrosis by Kruskal-Wallis method. Colitis was seen significantly lower in the radiation + gemcitabine + amifostine group (P = 0.0005). The collagen contents in the bladder and rectum of radiation and radiation + gemcitabine groups were markedly increased as compared to the sham group. This effect was reversed in the groups which received amifostine in addition to radiation and radiation + gemcitabine groups, but this difference was not significant. This study demonstrated that amifostine may have a beneficial effect in limiting rectal colitis from the radiosensitizing effect of gemcitabine.
Collapse
Affiliation(s)
- Fazilet Oner Dinçbaş
- Department of Radiation Oncology, Cerrahpaşa Medical Faculty, Istanbul University, Fatih, 34303 Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Jarjanazi H, Kiefer J, Savas S, Briollais L, Tuzmen S, Pabalan N, Ibrahim-Zada I, Mousses S, Ozcelik H. Discovery of genetic profiles impacting response to chemotherapy: application to gemcitabine. Hum Mutat 2008; 29:461-7. [DOI: 10.1002/humu.20732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Supiot S, Thillays F, Rio E, Gouard S, Morgenstern A, Bruchertseifer F, Mahé MA, Chatal JF, Davodeau F, Chérel M. Gemcitabine radiosensitizes multiple myeloma cells to low let, but not high let, irradiation. Radiother Oncol 2007; 83:97-101. [PMID: 17383762 DOI: 10.1016/j.radonc.2007.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 11/14/2006] [Accepted: 02/09/2007] [Indexed: 11/23/2022]
Abstract
The radiosensitizing properties of gemcitabine in relation to low Linear Energy Transfer (LET) particles (Cobalt 60) and high-LET particles (alpha-RIT (213)Bi-radiolabeled CHX-DTPA-B-B4) were analyzed. Three multiple myeloma cell lines (LP1, RPMI 8226, U266) were irradiated with or without 10 nM gemcitabine 24 h prior to radiation. Gemcitabine led to radiosensitization of LP1 and U266 cells with low-LET (Radiation Enhancement Ratio: 1.55 and 1.49, respectively) but did not radiosensitize any cell line when combined with high-LET.
Collapse
Affiliation(s)
- Stéphane Supiot
- Département de Recherche en Cancérologie, Université de Nantes, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bobek V, Pinterova D, Kolostova K, Boubelik M, Douglas J, Teyssler P, Pavlasek J, Kovarik J. Streptokinase increases the sensitivity of colon cancer cells to chemotherapy by gemcitabine and cis-platine in vitro. Cancer Lett 2006; 237:95-101. [PMID: 16005145 DOI: 10.1016/j.canlet.2005.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2005] [Revised: 05/19/2005] [Accepted: 05/24/2005] [Indexed: 11/25/2022]
Abstract
The aim was to determine the effect of fybrinolytic therapy by streptokinase on chemotherapy and radiation response in human colon cancer cells. The cells were treated with different concentrations of gemcitabine, cis-platine and streptokinase, at a single use or in combinations. Radiation was tested at a dose 0.5, 5 and 15 Gy in three different schedules. The chemotherapy showed higher cytotoxic effect in combination with streptokinase. On the other hand, the combination of chemotherapy with streptokinase and radiotherapy provide no improvement in sensitivity of cancer cells to treatment. The data suggest that fybrinolytic therapy could influence the effect of chemotherapy.
Collapse
Affiliation(s)
- Vladimir Bobek
- Department of Tumor Biology, Third Faculty of Medicine, Charles University, Ruska 87, Prague 10, 100 34, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pauwels B, Korst AEC, Pattyn GGO, Lambrechts HAJ, Kamphuis JAE, De Pooter CMJ, Peters GJ, Lardon F, Vermorken JB. The relation between deoxycytidine kinase activity and the radiosensitising effect of gemcitabine in eight different human tumour cell lines. BMC Cancer 2006; 6:142. [PMID: 16734894 PMCID: PMC1513392 DOI: 10.1186/1471-2407-6-142] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 05/30/2006] [Indexed: 11/30/2022] Open
Abstract
Background Gemcitabine (dFdC) is an active antitumour agent with radiosensitising properties, shown both in preclinical and clinical studies. In the present study, the relation between deoxycytidine kinase (dCK) activity and the radiosensitising effect of gemcitabine was investigated in eight different human tumour cell lines. Methods Tumour cells were treated with dFdC (0–100 nM) for 24 h prior to radiotherapy (RT) (γ-Co60, 0–6 Gy, room temperature). Cell survival was determined 7, 8, or 9 days after RT by the sulforhodamine B test. dCK activity of the cells was determined by an enzyme activity assay. Results A clear concentration-dependent radiosensitising effect of dFdC was observed in all cell lines. The degree of radiosensitisation was also cell line dependent and seemed to correlate with the sensitivity of the cell line to the cytotoxic effect of dFdC. The dCK activity of our cell lines varied considerably and differed up to three fold from 5 to 15 pmol/h/mg protein between the tested cell lines. In this range dCK activity was only weakly related to radiosensitisation (correlation coefficient 0.62, p = 0.11). Conclusion Gemcitabine needs to be metabolised to the active nucleotide in order to radiosensitise the cells. Since dFdCTP accumulation and incorporation into DNA are concentration dependent, the degree of radiosensitisation seems to be related to the extent of dFdCTP incorporated into DNA required to inhibit DNA repair. The activity of dCK does not seem to be the most important factor, but is clearly a major factor. Other partners of the intracellular metabolism of gemcitabine in relation to the cell cycle effects and DNA repair could be more responsible for the radiosensitising effect than dCK activity.
Collapse
Affiliation(s)
- Bea Pauwels
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp (UA/UZA), Wilrijk, Belgium
| | - Annelies EC Korst
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp (UA/UZA), Wilrijk, Belgium
| | - Greet GO Pattyn
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp (UA/UZA), Wilrijk, Belgium
| | - Hilde AJ Lambrechts
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp (UA/UZA), Wilrijk, Belgium
| | - Juliette AE Kamphuis
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Godefridus J Peters
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Filip Lardon
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp (UA/UZA), Wilrijk, Belgium
| | - Jan B Vermorken
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp (UA/UZA), Wilrijk, Belgium
| |
Collapse
|
16
|
Pauwels B, Korst AEC, Andriessen V, Baay MFD, Pattyn GGO, Lambrechts HAJ, Pooter CMJD, Lardon F, Vermorken JB. Unraveling the mechanism of radiosensitization by gemcitabine: the role of TP53. Radiat Res 2005; 164:642-50. [PMID: 16238441 DOI: 10.1667/rr3445.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gemcitabine has excellent radiosensitizing properties, as shown in both preclinical and clinical studies. Radiosensitization correlated with the early S-phase block of gemcitabine. In the present study, we investigated the role of TP53 in the radiosensitizing effect of gemcitabine. Isogenic A549 cells differing in TP53 status were treated with gemcitabine during the 24 h prior to irradiation. Cell survival was determined 7 days after irradiation by the sulforhodamine B test. In addition, cell cycle perturbation was determined by flow cytometry and TP53 expression by Western blot analysis. Gemcitabine caused a concentration-dependent radiosensitizing effect in all cell lines. Transformed A549 cells were less sensitive to the cytotoxic effect of gemcitabine. The cell cycle arrest early in the S phase was dependent on the drug dose but was comparable in the different cell lines and was not related to functional TP53. Using isogenic cell lines, we have shown that neither TP53 status nor the transfection procedure influenced the radiosensitizing effect of gemcitabine. Since both the radiosensitizing effect at equitoxic concentrations and the cell cycle effect of gemcitabine were independent of TP53 expression, it is likely that TP53 protein does not play a crucial role in the radiosensitizing mechanism of gemcitabine.
Collapse
Affiliation(s)
- Bea Pauwels
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp (UIA/UZA).
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pauwels B, Korst AEC, Lambrechts HAJ, Pattyn GGO, de Pooter CMJ, Lardon F, Vermorken JB. The radiosensitising effect of difluorodeoxyuridine, a metabolite of gemcitabine, in vitro. Cancer Chemother Pharmacol 2005; 58:219-28. [PMID: 16331496 DOI: 10.1007/s00280-005-0158-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 11/14/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE Gemcitabine is an active antitumour agent with radiosensitising properties. Gemcitabine is rapidly metabolised, intracellularly as well as extracellularly, by deoxycytidine deaminase to difluorodeoxyuridine (dFdU), a compound with little antitumour activity. However, plasma concentrations are maintained for a prolonged period (>24 h) at levels known to cause growth inhibition. This is the first study that investigates the radiosensitising potential of dFdU in vitro. METHODS ECV304 and H292, human cancer cells, were treated with different concentrations dFdU (0-100 microM) during 24 h before radiation treatment (RT). The schedule dependency of the radiosensitising effect was studied by varying the interval between dFdU and radiation treatment. In addition, the cell cycle effect of dFdU was investigated with flow cytometry, and the induction of apoptosis under radiosensitising conditions was determined by Annexin V staining and caspase 3 cleavage. RESULTS dFdU caused a clear concentration-dependent radiosensitising effect in both ECV304 and H292 cells. Dose enhancement factor (DEF) increased with an increasing concentration of dFdU: DEFs were 1.10, 1.60 and 2.17 after treatment with 10, 25 and 50 microM dFdU, respectively, in ECV304 cells and 1.08, 1.31 and 1.60 after treatment with 25, 50 and 100 microM, respectively, in H292 cells. DEFs decreased with an increasing interval of 0-24 h between dFdU treatment and radiation. Under radiosensitising conditions, the combination dFdU and radiation resulted in an increased induction of apoptosis. In addition, the cell cycle effect of dFdU, an arrest at the early S phase, is comparable with the cell cycle effect of gemcitabine. CONCLUSIONS dFdU, the main metabolite of gemcitabine, causes a concentration- and schedule- dependent radiosensitising effect in vitro. Since the metabolite is present in plasma for a long period (>24 h) after treatment with gemcitabine, it might be partly responsible for the interaction between radiotherapy and gemcitabine. This observation might have important consequences for the optimal schedules of the combination gemcitabine and radiation therapy.
Collapse
Affiliation(s)
- Bea Pauwels
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | | | | | | | | | | |
Collapse
|
18
|
Pauwels B, Korst AEC, Lardon F, Vermorken JB. Combined Modality Therapy of Gemcitabine and Radiation. Oncologist 2005; 10:34-51. [PMID: 15632251 DOI: 10.1634/theoncologist.10-1-34] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The combination of gemcitabine and radiotherapy is a promising combined modality therapy. However, the clinical application of this combination has to be implemented carefully because of an increased toxicity to normal tissues. A body of experimental evidence shows that gemcitabine is a potent radiosensitizer in vitro and in vivo. The observations so far indicate that various mechanisms are responsible for the radiosensitizing effect. Although it is often difficult to transfer experimental data to the clinic, these studies offer the possibility to develop an improved schedule of administration for patient treatment, based on rational evidence in tumor biology. In the current review, the preclinical data that support the use of gemcitabine as a radiosensitizing agent and the clinical trials that have been conducted to date are summarized.
Collapse
Affiliation(s)
- Bea Pauwels
- Laboratory of Cancer Research and Clinical Oncology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | | | | |
Collapse
|
19
|
Guelman LR, Cabana JI, del Luján Pagotto RM, Zieher LM. Ionizing radiation‐induced damage on developing cerebellar granule cells cultures can be prevented by an early amifostine post‐treatment. Int J Dev Neurosci 2004; 23:1-7. [PMID: 15730881 DOI: 10.1016/j.ijdevneu.2004.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 09/30/2004] [Accepted: 10/06/2004] [Indexed: 11/28/2022] Open
Abstract
Developing central nervous system (CNS) is highly sensitive to ionizing radiation due, in part, to reactive oxygen species (ROS) damage. A variety of compounds able to protect brain cells essentially by decreasing ROS production have been widely used to confirm ROS participation in different mechanisms of brain injury, as well as to evaluate them as therapeutic tools. To test if ionizing radiation-induced damage on immature cerebellar granule cells is mainly mediated by ROS accumulation, a free radical scavenger--amifostine (amf)--was used in an in vitro model. Moreover, the amf therapeutic effect was investigated. Results show that only an early (20-30 min) post-treatment with amf, acting through an antioxidant mechanism, has been effective in preventing cerebellar granule cell loss observed after ionizing radiation exposure in vitro. These data suggest that immature cerebellar granule cells grown in vitro are highly vulnerable to ROS damage and that a therapeutic intervention could be effective in a narrow temporal window. Moreover, radiation-induced cell death can be partially prevented by a complete limitation of ROS generation, suggesting that other mechanisms besides oxidative stress would also be responsible for the cellular damage found in this model.
Collapse
Affiliation(s)
- Laura Ruth Guelman
- 1 Cátedra de Farmacología, Facultad de Medicina, UBA, Paraguay 2155, piso 15, 1121 Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
20
|
Sangar VK, Cowan R, Margison GP, Hendry JH, Clarke NW. An evaluation of gemcitabines differential radiosensitising effect in related bladder cancer cell lines. Br J Cancer 2004; 90:542-8. [PMID: 14735206 PMCID: PMC2409540 DOI: 10.1038/sj.bjc.6601538] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to establish the radiosensitising properties of gemcitabine in a pair of related bladder tumour cell lines with differential radiosensitivity. The radioresistant bladder tumour cell line MGH-U1 and its radiosensitive mutant clone, S40b (both p53 mutant), had SF2 values (surviving fraction at 2 Gy) of 0.98 and 0.64, respectively (P<0.001). Colony-forming assays showed that at 0.01 μM gemcitabine radiosensitisation occurred only in the S40b cell line (dose-modifying factor (DMF)=1.4). At 0.3 μM (killing 50% of cells), both cell lines were radiosensitised; DMF=2.25 and 1.2 for MGH-U1 and S40b, respectively. These data suggest that gemcitabine is an effective radiosensitiser in bladder cancer cell lines, with greater sensitisation in the radioresistant parental line–a feature that should be useful in a clinical setting.
Collapse
Affiliation(s)
- V K Sangar
- Cancer Research UK Experimental Radiation Oncology Group, Paterson Institute for Cancer Research, Manchester M20 4BX, UK.
| | | | | | | | | |
Collapse
|
21
|
Pauwels B, Korst AEC, Pattyn GGO, Lambrechts HAJ, Van Bockstaele DR, Vermeulen K, Lenjou M, de Pooter CMJ, Vermorken JB, Lardon F. Cell cycle effect of gemcitabine and its role in the radiosensitizing mechanism in vitro. Int J Radiat Oncol Biol Phys 2003; 57:1075-83. [PMID: 14575839 DOI: 10.1016/s0360-3016(03)01443-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The mechanism of radiosensitization by gemcitabine is still unclear. It has been hypothesized that the accumulation of cells in early S phase may play a role in enhancing radiosensitivity. METHODS AND MATERIALS The schedule dependency of the radiosensitizing effect was studied in ECV304, human bladder cancer cells, and H292, human lung cancer cells, by varying the incubation time and time interval between gemcitabine and radiation treatment. To determine the role of cell cycle perturbations in the radiosensitization, the influence of gemcitabine on the cell cycle at the moment of radiation was investigated by flow cytometry. RESULTS The radiosensitizing effect increased with a longer incubation period: Dose enhancement factors varied from 1.30 to 2.82 in ECV304 and from 1.04 to 1.78 in H292 after treatment during 8-32 h, respectively. Radiosensitization decreased with an increasing interval: Dose enhancement factors varied from 2.26 to 1.49 in ECV304 and from 1.45 to 1.11 in H292 after an interval 0-24 h, respectively. Cells were blocked in the early S phase of the cell cycle by gemcitabine. The highest percentage S-phase cells was observed after treatment with the schedules that resulted in the highest radiosensitizing effect. CONCLUSIONS We observed a clear schedule-dependent radiosensitization by gemcitabine. Our findings demonstrated a correlation between gemcitabine-induced early S-phase block and the radiosensitizing effect.
Collapse
Affiliation(s)
- Bea Pauwels
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp (UIA/UZA), Wilrijk, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|