1
|
Figiel S, Pasqualin C, Bery F, Maupoil V, Vandier C, Potier-Cartereau M, Domingo I, Guibon R, Bruyere F, Maheo K, Fromont G. Functional Organotypic Cultures of Prostate Tissues: A Relevant Preclinical Model that Preserves Hypoxia Sensitivity and Calcium Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1268-1275. [PMID: 30954471 DOI: 10.1016/j.ajpath.2019.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
In prostate cancer research, there is a lack of valuable preclinical models. Tumor cell heterogeneity and sensitivity to microenvironment signals, such as hypoxia or extracellular calcium concentration, are difficult to reproduce. Here, we developed and characterized an ex vivo tissue culture model preserving these properties. Prostate tissue slices from 26 patients were maintained ex vivo under optimized culture conditions. The expression of markers associated with proliferation, androgen-receptor signaling, and hypoxia was assessed by immunostaining. A macroscope was used to achieve real-time calcium fluorescence optical imaging. Tissue morphology was maintained successfully without necrosis for 5 days. Compared with native tumors and tissue cultured with androgens, androgen deprivation in the medium led to decreased expression of both androgen receptor and its target gene products, prostate specific antigen (PSA) and ETS-related gene (ERG). Ex vivo cultured slices also were sensitive to hypoxia because carbonic anhydrase IX and zinc finger E-box binding homeobox 1 (Zeb1) protein levels increased in 1% oxygen. Exposure of slices to supraphysiological extracellular Ca2+ concentration induced a robust and rapid Ca2+ entry, with a greater response in tumor compared with nontumor tissue. This ex vivo model reproduces the morphologic and functional characteristics of human prostate cancer, including sensitivity to androgen deprivation and induced response to hypoxia and extracellular Ca2+. It therefore could become an attractive tool for drug response prediction studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roseline Guibon
- Inserm UMR U1069, Tours, France; Department of Pathology, CHU-Universite de Tours, Tours, France
| | - Franck Bruyere
- Department of Urology, CHU-Universite de Tours, Tours, France
| | | | - Gaelle Fromont
- Inserm UMR U1069, Tours, France; Department of Pathology, CHU-Universite de Tours, Tours, France.
| |
Collapse
|
2
|
Linxweiler J, Körbel C, Müller A, Hammer M, Veith C, Bohle RM, Stöckle M, Junker K, Menger MD, Saar M. A novel mouse model of human prostate cancer to study intraprostatic tumor growth and the development of lymph node metastases. Prostate 2018; 78:664-675. [PMID: 29572953 DOI: 10.1002/pros.23508] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/23/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND In this study, we aimed to establish a versatile in vivo model of prostate cancer, which adequately mimics intraprostatic tumor growth, and the natural routes of metastatic spread. In addition, we analyzed the capability of high-resolution ultrasonography (hrUS), in vivo micro-CT (μCT), and 9.4T MRI to monitor tumor growth and the development of lymph node metastases. METHODS A total of 5 × 105 VCaP cells or 5 × 105 cells of LuCaP136- or LuCaP147 spheroids were injected into the prostate of male CB17-SCID mice (n = 8 for each cell type). During 12 weeks of follow-up, orthotopic tumor growth, and metastatic spread were monitored by repetitive serum-PSA measurements and imaging studies including hrUS, μCT, and 9.4T MRI. At autopsy, primary tumors and metastases were harvested and examined by histology and immunohistochemistry (CK5, CK8, AMACR, AR, Ki67, ERG, and PSA). From imaging results and PSA-measurements, tumor volume doubling time, tumor-specific growth rate, and PSA-density were calculated. RESULTS All 24 mice developed orthotopic tumors. The tumor growth could be reliably monitored by a combination of hrUS, μCT, MRI, and serum-PSA measurements. In most animals, lymph node metastases could be detected after 12 weeks, which could also be well visualized by hrUS, and MRI. Immunohistochemistry showed positive signals for CK8, AMACR, and AR in all xenograft types. CK5 was negative in VCaP- and focally positive in LuCaP136- and LuCaP147-xenografts. ERG was positive in VCaP- and negative in LuCaP136- and LuCaP147-xenografts. Tumor volume doubling times and tumor-specific growth rates were 21.2 days and 3.9 %/day for VCaP-, 27.6 days and 3.1 %/day for LuCaP136- and 16.2 days and 4.5 %/day for LuCaP147-xenografts, respectively. PSA-densities were 433.9 ng/mL per milliliter tumor for VCaP-, 6.5 ng/mL per milliliter tumor for LuCaP136-, and 11.2 ng/mL per milliliter tumor for LuCaP147-xenografts. CONCLUSIONS By using different monolayer and 3D spheroid cell cultures in an orthotopic xenograft model, we established an innovative, versatile in vivo model of prostate cancer, which enables the study of both intraprostatic tumor growth as well as metastatic spread to regional lymph nodes. HrUS and MRI are feasible tools to monitor tumor growth and the development of lymph node metastases while these cannot be visualized by μCT.
Collapse
Affiliation(s)
| | - Christina Körbel
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Andreas Müller
- Department of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Markus Hammer
- Department of Urology, Saarland University, Homburg/Saar, Germany
| | - Christian Veith
- Department of General and Surgical Pathology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Rainer M Bohle
- Department of General and Surgical Pathology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Michael Stöckle
- Department of Urology, Saarland University, Homburg/Saar, Germany
| | - Kerstin Junker
- Department of Urology, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias Saar
- Department of Urology, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
3
|
Gentilini LD, Jaworski FM, Tiraboschi C, Pérez IG, Kotler ML, Chauchereau A, Laderach DJ, Compagno D. Stable and high expression of Galectin-8 tightly controls metastatic progression of prostate cancer. Oncotarget 2018; 8:44654-44668. [PMID: 28591719 PMCID: PMC5546508 DOI: 10.18632/oncotarget.17963] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 04/23/2017] [Indexed: 12/21/2022] Open
Abstract
Two decades ago, Galectin-8 was described as a prostate carcinoma biomarker since it is only expressed in the neoplastic prostate, but not in the healthy tissue. To date, no biological function has been attributed to Galectin-8 that could explain this differential expression. In this study we silenced Galectin-8 in two human prostate cancer cell lines, PC3 and IGR-CaP1, and designed a pre-clinical experimental model that allows monitoring the pathology from its early steps to the long-term metastatic stages. We show for the first time that the natural and conserved expression of Gal-8 in tumour cells is responsible for the metastatic evolution of prostate cancer. In fact, Gal-8 controls the rearrangement of the cytoskeleton and E-Cadherin expression, with a major impact on anoikis and homotypic aggregation of tumour cells, both being essential processes for the survival of circulating tumour cells during metastasis. While localized prostate cancer can be cured, metastatic and advanced disease remains a significant therapeutic challenge, urging for the identification of prognostic markers of the metastatic process. Collectively, our results highlight Galectin-8 as a potential target for anti-metastatic therapy against prostate cancer.
Collapse
Affiliation(s)
- Lucas Daniel Gentilini
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Felipe Martín Jaworski
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Carolina Tiraboschi
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Ignacio González Pérez
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Monica Lidia Kotler
- Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | | | - Diego Jose Laderach
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
| | - Daniel Compagno
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
4
|
Saar M, Körbel C, Linxweiler J, Jung V, Kamradt J, Hasenfus A, Stöckle M, Unteregger G, Menger MD. Orthotopic tumorgrafts in nude mice: A new method to study human prostate cancer. Prostate 2015; 75:1526-37. [PMID: 26074274 DOI: 10.1002/pros.23027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/05/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND In vivo model systems in prostate cancer research that authentically reproduce tumor growth are still sparse. While orthotopic implantation is technically difficult, particularly in the mouse, most models favor subcutaneous tumor growth. This however provides little information about natural tumor growth behavior and tumor stroma interaction. Furthermore, established prostate cancer cell lines grown as in vivo xenografts are not able to reflect the variety of tumor specific growth patterns and growth behavior in men. Primary cell cultures are difficult to handle and an induction of orthotopic tumors has not been successful yet. Therefore, a tumorgraft model using tumor tissue from prostatectomy specimens was developed. METHODS Balb/c nude mice were used to graft fresh prostate tumor tissue by renal subcapsular and orthotopic implantation. Testosterone propionate was supplemented. Animals were tracked by means of 30 MHz ultrasound to monitor tumor engraftment and growth. Autopsy, histology, PSA measurements as well as immunostaining and PCR for human tissue were performed to confirm orthotopic tumor growth. RESULTS Renal subcapsular engraftment was seen in 2 of 3 mice. Orthotopic engraftment was observed in 7 of 11 animals (63.6%) with an overall engraftment of 5 out of 9 patient specimens (55.6%). Ultrasound confirmed the tumor growth over time. Of interest, the tumorgrafts not only retained essential features of the parental tumors, but also stained positive for tumor specific markers such as AR, PSA, and AMACR. Tumor positive animals showed highly elevated serum PSA levels with confirmation of a human specific PCR sequence and a human endothelial cell lining in the tumor vessels. CONCLUSIONS Standardized implantation of fresh tumor tissue in nude mice prostates generates tumorgrafts with histological properties of organ-confined prostate cancer. These tumorgrafts display a new approach for an optimized in vivo model of prostate cancer and will allow further investigations on specific pathways of tumor initiation and progression as well as therapeutic response.
Collapse
Affiliation(s)
- Matthias Saar
- Department of Urology and Pediatric Urology, Saarland University, Homburg/Saar, Germany
| | - Christina Körbel
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Johannes Linxweiler
- Department of Urology and Pediatric Urology, Saarland University, Homburg/Saar, Germany
| | - Volker Jung
- Department of Urology and Pediatric Urology, Saarland University, Homburg/Saar, Germany
| | - Jörn Kamradt
- Department of Urology and Pediatric Urology, Saarland University, Homburg/Saar, Germany
| | - Andrea Hasenfus
- Institute of Pathology, Saarland University, Homburg/Saar, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University, Homburg/Saar, Germany
| | - Gerhard Unteregger
- Department of Urology and Pediatric Urology, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
5
|
Narlik-Grassow M, Blanco-Aparicio C, Carnero A. The PIM family of serine/threonine kinases in cancer. Med Res Rev 2013; 34:136-59. [PMID: 23576269 DOI: 10.1002/med.21284] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proviral insertion site in Moloney murine leukemia virus, or PIM proteins, are a family of serine/threonine kinases composed of three different isoforms (PIM1, PIM2, and PIM3) that are highly evolutionarily conserved. These proteins are regulated primarily by transcription and stability through pathways that are controlled by Janus kinase/Signal transducer and activator of transcription, JAK/STAT, transcription factors. The PIM family proteins have been found to be overexpressed in hematological malignancies and solid tumors, and their roles in these tumors were confirmed in mouse tumor models. Furthermore, the PIM family proteins have been implicated in the regulation of apoptosis, metabolism, cell cycle, and homing and migration, which has led to the postulation of these proteins as interesting targets for anticancer drug discovery. In the present work, we review the importance of PIM kinases in tumor growth and as drug targets.
Collapse
Affiliation(s)
- Maja Narlik-Grassow
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | | | | |
Collapse
|
6
|
The IGR-CaP1 xenograft model recapitulates mixed osteolytic/blastic bone lesions observed in metastatic prostate cancer. Neoplasia 2012; 14:376-87. [PMID: 22745584 DOI: 10.1593/neo.12308] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 12/19/2022] Open
Abstract
Bone metastases have a devastating impact on quality of life and bone pain in patients with prostate cancer and decrease survival. Animal models are important tools in investigating the pathogenesis of the disease and in developing treatment strategies for bone metastases, but few animal models recapitulate spontaneous clinical bone metastatic spread. In the present study, IGR-CaP1, a new cell line derived from primary prostate cancer, was stably transduced with a luciferase-expressing viral vector to monitor tumor growth in mice using bioluminescence imaging. The IGR-CaP1 tumors grew when subcutaneously injected or when orthotopically implanted, reconstituted the prostate adenocarcinoma with glandular acini-like structures, and could disseminate to the liver and lung. Bone lesions were detected using bioluminescence imaging after direct intratibial or intracardiac injections. Anatomic bone structure assessed using high-resolution computed tomographic scans showed both lytic and osteoblastic lesions. Technetium Tc 99m methylene diphosphonate micro single-photon emission computed tomography confirmed the mixed nature of the lesions and the intensive bone remodeling. We also identified an expression signature for responsiveness of IGR-CaP1 cells to the bone microenvironment, namely expression of CXCR4, MMP-9, Runx2, osteopontin, osteoprotegerin, ADAMTS14, FGFBP2, and HBB. The IGR-CaP1 cell line is a unique model derived from a primary tumor, which can reconstitute human prostate adenocarcinoma in animals and generate experimental bone metastases, providing a novel means for understanding the mechanisms of bone metastasis progression and allowing preclinical testing of new therapies.
Collapse
|